∆A_{CP} in Charm Decays at LHCb

B. Viaud

(LAL-in2p3)

On behalf of the LHCb collaboration

4th SuperB Collaboration Meeting - La Biodola (Isola d'Elba) Italy

from 31 May 2012 to 05 June 2012 (Europe/Rome)

La Biodola, Isola d'Elba

- Charm Physics is essentially a 2-generation physics: any CPV above O(0.1%) means something new.
 - \rightarrow NP, or unexpected strong effects
- D-D mixing, CP violating decays and rare decays involve FCNC's that are strongly GIM-suppressed (low mass down-type quarks in the loop)

 \rightarrow NP contributions can have measurable effects (not hidden by SM)

- FCNC with down-type quarks in the loop: constrain NP couplings that can't be reached by B/K decays.
 - \rightarrow Complementarity with the B-physics program.
- Very large samples of charmed particles at hadronic colliders !

Charm decays are a good place to look for NP and constrain its properties !

CP Violation in Charm

Two complementary ways to seek CPV (and NP) in Charm Decays

- D oscillate, so one can look for two manifestations of indirect CPV
 - CPV in mixing: $\overline{D0} \rightarrow D0 \neq D0 \rightarrow \overline{D0}$
 - CPV in the interplay between mixing and decay
- $A(D \rightarrow f) \neq A(D \rightarrow f)$: direct CPV
- Direct CPV is as good an opportunity as indirect
 - Mixing is slow, strong phases can be large in decays.
 - While indirect CPV is nearly universal, direct depends a lot on the final state. Measuring many brings many complementary clues.
- CPV is small: ~0.1% to ~1% for direct CPV ⇔ What's SM; What's NP ? Probably an order of magnitude below for indirect CPV.
 - Today: direct CPV @ LHCb.

Focus on the current most precise example: $Acp(KK)-Acp(\pi\pi)$

LHCb

LHCb NP via the precision study of CPV and Flavor Physics

Key point: huge b and c production in high E p-p collisions

- @ $\sqrt{s}=7$ TeV: $\sigma(pp \rightarrow b\bar{b}+X)=(284 \pm 20 \pm 49) \ \mu b [1]$ $\sigma(pp \rightarrow c\bar{c}+X)=(6100 \pm 930) \ \mu b [2]$ In 1fb⁻¹: ~10¹² cc pairs in LHCb's acceptance

Key point: dedicated experiment, optimized for *Flavor Physics* in a *hadronic* environment.

- Forward detector
- Performant vertexing, p and M reconstruction, particle-ID
- Very selective, polyvalent and configurable trigger.

[1] Phys. Lett. B694: 209-216, 2010[2] LHCb-CONF-2010-013

Typical Performance

- Charged tracks momentum: $\sigma p/p=0.35-0.55\%$, $\sigma m=10-20 \text{ MeV/c}^2$
- ECAL: $\sigma E/E = 10\%/\sqrt{E} \oplus 1\%$ (E in GeV)
- muon-ID $\varepsilon(\mu \rightarrow \mu) \sim 95\%$, mis-ID rate $(\pi \rightarrow \mu) \sim 1\%$
- $K \pi$ separation $\varepsilon(K \rightarrow K) \sim 95\%$, mis-ID rate $(\pi \rightarrow K) \sim 10\%$
- Proper time: $\sigma_t \sim 30-50$ fs, $\sigma_z \sim 60 \mu m$ (Prim. Vtx) $\sigma_z \sim 150 \mu m$ (Secondary Vtx)

Trigger/DAQ

Peak Luminosity

- 2011: 3-4 10³²/cm²/s
- 2012: 4 10³²/cm²/s
- •<#collisions> per bunch crossing ~1.5

"Luminosity Leveling" to obtained that from LHC's luminosity

$$\Delta A_{CP}$$

$$=$$

$$A_{CP}(D^{0} \rightarrow K^{+}K^{-}) - A_{CP}(D^{0} \rightarrow \pi^{+}\pi^{-})$$

- 0.6 fb⁻¹ (2011)
- Phys.Rev.Lett. 108 (2012) 111602

Analysis Strategy

 K/π

$\Delta A_{RAW} = A_{RAW}(K^+K^-) - A_{RAW}(\pi^+\pi^-) = \Delta A_{CP}$

- This rule gives a very robust way to detect a CPV effect
- But remember ! It can be broken by
 - Large asymmetries (>>1%): Taylor Expansion breaking down
 - Dependence of $A_P(D^*)$ and $A_D(\pi_s)$ upon $\varepsilon(KK)/\varepsilon(\pi\pi)$. Ex: $A_D(\pi_s)$ depends upon the π_S phase space, and KK and $\pi\pi$ selections favor a different region.
 - Different and asymmetric peaking backgrounds.
- So the fun in this analysis is to avoid those problems.
 Main protections:
 - Measurements in separate bins of P_T and η of D^* 's, P of π_S
 - Fiducial cuts to remove regions of large asymmetry
 - Many checks...

Time integrated asymmetries: a combination of direct & indirect CPV.

$$A_{CP}(f) \approx a_{CP}^{\mathrm{dir}}(f) + \frac{\langle t \rangle}{\tau} a_{CP}^{\mathrm{ind}}$$

Depends on $\langle t \rangle$ of the D⁰ in the sample (\sim time given the mixing to interfere).

Indirect CPV universal to a very good approximation, but lifetime acceptance can differ between KK and $\pi\pi$.

$$\Delta A_{CP} = \left[a_{CP}^{\text{dir}}(K^-K^+) - a_{CP}^{\text{dir}}(\pi^-\pi^+)\right] + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{\text{ind}}$$

 \rightarrow Also measure $\triangle < t >$ to disentangle each contribution

HFAG combination

$$a_{CP}^{ind} = (-0.03 \pm 0.23)\%$$

 $\Delta a_{CP}^{dir} = (-0.42 \pm 0.27)\%$
Consistency with NO
CPV hypothesis: 28%

. .

Selection

Cut-based selection: use the decay topology and kinematics, and LHCb's PID performance.

- Track & Vertex fit quality
- Tracks must not come from the primary vertex (PV) & ct(D)>100 μm.
- D must come from the PV, to reject D* from B decays
- θ between D⁰ in lab frame and its daughters
 in D⁰ rest frame: |cosθ|<0.9
- Tracks identified as kaon/pions using PID info from the RICH
- P_T(D)>2 GeV/c
- *N.B. This offline selection applied on candidates that fired a similar (looser) selection in the High Level trigger*

Fiducial cuts

The magnetic field breaks the symmetry of the detector

(this includes also the beam pipe)

Fiducial cuts

Kinematic regions where A_{RAW} *can reach* 100% !

- Breaks the formalism (too large an for a Taylor expansion)
- Possible second order effects if the efficiency for being in this region differs between KK and ππ.
- Depends more on P_X than on $P_{T,D}^*$, η_{D^*} or $P_{slow \pi}$

Thus: not treated perfectly by the kine. binning

Left-right binning + the fact that ~1/2 the sample is taken with B-field Up and ~1/2 with B-field Down should limit the overall effect. However, to be more robust, sacrifice 25% of the statistics with <u>Fiducial cuts</u>

P_x

 D^{*+} MagDown

Fiducial cuts

Kinematic regions where A_{RAW} can reach 100% !

- Breaks the formalism (too large an for a Taylor expansion)
- Possible second order effects if the efficiency for being in this region differs between KK and $\pi\pi$.
- Depends more on P_x than on $P_{T,D}^*$, η_{D^*} or $P_{slow \pi}$

Thus: not treated perfectly by the kine. binning

Left-right binning + the fact that $\sim 1/2$ the sample is taken with B-field Up and $\sim 1/2$ with B-field Down should limit the overall effect. However, to be more robust, sacrifice 25% of the statistics with Fiducial cuts

 D^{*+} MagDown

Mass spectra and signal yields

 $\delta m = m(h^+h^-\pi^+) - m(h^+h) - m(\pi^+)$

Signal Extraction

In 216 bins

54 bins in $P_{T,D^*} \times \eta_{D^*} \times P_{slow_{\pi}} \times left/right$ × 2 Mag Up / Mag Down × 2 Before/After an LHC technical stop

Fit to δ**m distributions**

) <u>Signal</u>: double gaussian convolved with a function describing a asymmetric tail.

D*+ and D*- parameters float separately.

2) <u>Background</u>: B[1 - exp(-($\delta m - \delta m_0$)/C)]

Finally: A_{RAW} and △A_{RAW} in each bin, then weighted average

 $\Delta A_{CP} = (-0.82 \pm 0.21_{stat})\%$

 $(\chi^2 / NDF = 211/215)$

Fit to background subtracted decay time distributions yields:

 $\Delta \langle t \rangle / \tau = [9.83 \pm 0.22 (\text{stat.}) \pm 0.19 (\text{syst.})] \%$

This would essentially be a direct CPV

Effect	Uncertainty
∆A_{CP} with vs. without Fiducial cuts	0.01%
Background peaks (+their asymmetry) from m(D ⁰) sideband injected into TOYs to check the effect on the fit.	0.04%
AACP with fit vs. sideband subtraction cuts	0.08%
ΔA_{CP} with multiple candidates vs. only one allowed per event	0.06%
A _{CP} with kinematical bins vs. one single bin	0.02%
TOTAL	0.11%

$$\Delta A_{CP} = (-0.82 \pm 0.21_{stat} \pm 0.11)\%$$

3.5 σ from no CPV.

Cross Checks

- Electron and muon vetoes on the soft pion and D⁰ daughters
- Different kinematic binnings
- Stability of result vs data-taking runs
- Stability vs kinematic variables
- Toy MC studies of fit procedure, statistical errors
- Tightening of PID cuts on D⁰ daughters
- Tightening of kinematic cuts
- Variation with event track multiplicity
- Use of other signal, background line-shapes in the fit
- Use of alternative offline processing (skimming/stripping)
- Internal consistency between subsamples (splitting left/right, field up/ field down)

Cross Checks

No evidence of dependence on relevant kinematic variables

Stability with time

Stability wrt PID

No significant variation of ΔA_{CP} when tightening the cut on the hadron PID information provided by the RICH

PID tight+

$$\Delta A_{CP} = (-0.88 \pm 0.26_{stat})\%$$

PID tight++

$$\Delta A_{CP} = (-1.03 \pm 0.31_{stat})\%$$

Internal consistency:	Subsample	ΔA_{CP}	χ^2/ndf	
	Pre-TS, field up, left	$(-1.22 \pm 0.59)\%$	13/26(98%)	
a closer look	Pre-TS, field up, right	$(-1.43 \pm 0.59)\%$	27/26(39%)	
	Pre-TS, field down, left	$(-0.59 \pm 0.52)\%$	19/26(84%)	
<i>Split the 216 bins into <mark>8</mark> smaller</i>	Pre-TS, field down, right	$(-0.51 \pm 0.52)\%$	29/26(30%)	
sets and check γ^2 for each.	Post-TS, field up, left	$(-0.79 \pm 0.90)\%$	26/26(44%)	
	Post-TS, field up, right	$(+0.42 \pm 0.93)\%$	21/26(77%)	
and between them:	Post-TS, field down, left	$(-0.24 \pm 0.56)\%$	34/26(15%)	
$\chi^2 / NDF = 6.7/7$	Post-TS, field down, right	$(-1.59 \pm 0.57)\%$	35/26(12%)	
	All data	$(-0.82 \pm 0.21)\%$	211/215(56%)	

World Wide

Year	Experiment	Results	Δ(t)/τ	(t) /τ
2007	Belle	$A_{\Gamma} = (0.01 \pm 0.30 \text{ (stat.)} \pm 0.15 \text{ (syst.)})\%$	-	-
2008	BaBar	$A_{\Gamma} = (0.26 \pm 0.36 \text{ (stat.)} \pm 0.08 \text{ (syst.)})\%$	-	-
2011	LHCb	$A_{\Gamma} = (-0.59 \pm 0.59 \text{ (stat.)} \pm 0.21 \text{ (syst.)})\%$	-	-
2008	BaBar	$\begin{aligned} A_{CP}(KK) &= (0.00 \pm 0.34 \text{ (stat.)} \pm 0.13 \text{ (syst.)})\% \\ A_{CP}(\pi\pi) &= (-0.24 \pm 0.52 \text{ (stat.)} \pm 0.22 \text{ (syst.)})\% \end{aligned}$	0.00	1.00
2008	Belle	$\Delta A_{CP} = (-0.86 \pm 0.60 \text{ (stat.)} \pm 0.07 \text{ (syst.)})\%$	0.00	1.00
2011	LHCb	$\Delta A_{CP} = (-0.82 \pm 0.21 \text{ (stat.)} \pm 0.11 \text{ (syst.)})\%$	0.10	2.08
2012	CDF Prelim.	$\Delta A_{CP} = (-0.62 \pm 0.21 \text{ (stat.)} \pm 0.10 \text{ (syst.)})\%$	0.25	2.58

CDF public note 10784

$$a_{CP}^{\text{ind}} = (-0.025 \pm 0.231)\%$$

 $\Delta a_{CP}^{\text{dir}} = (-0.656 \pm 0.154)\%$

Agreement with no CPV: 6×10⁻⁵

SM or NP ??

Predictions are difficult with D mesons

- Too light (heavy) for the techniques that work in B (K) physics

Present consensus

- Difficult for the SM to generate more than O(10⁻⁴-10⁻³) (canonic point of view till 2011)
- But possible: one can think of Hadronic enhancements pushing it up to O(1%)
- Would help: Individual asymmetries
- Would help: Several decay modes should be affected by the same NP, but not the same strong effects: compare A_{CP} measured in each mode to distinguish enhanced contributions of higher order standard model diagrams from NP effects

$$\begin{split} \underline{Ex}: & \rightarrow D^{+}{}_{(S)} \not\rightarrow K_{S}h^{+}; \ \phi h^{+} \\ & \rightarrow D^{+} \not\rightarrow K^{+}\overline{K}{}^{*0}; \ K^{*}^{+}\overline{K}{}^{0} \\ & \rightarrow D^{+} \not\rightarrow \rho^{0}\pi^{+}; \ \pi^{+} \ \pi^{0}; \ \pi^{+} \eta^{'} \\ & \rightarrow D_{S} \not\rightarrow K^{+}\phi, \ K^{+}\eta^{'}, \ K^{(*)0}\pi^{+} \\ & \rightarrow D \not\rightarrow h^{+}h^{-}h^{+}; \ h^{+}h^{-}h^{+}h^{-} \end{split}$$

See, e.g., Isidori, Kamenik, Ligeti, Perez (arXiv:1111.4987) Brod, Kagan, Zupan (arXiv:1111.5000) Cheng, Chaing (arXiv:1201.0785) Pirtskhalava, Uttayarat (arXiv:1112.5451) Bhattacharya, Gronau, Rosner (arXiv:1201.2351) Feldmann, Nandi, Soni (arXiv:1202.3795) **Grossman, Kagan, Zupan (arXiv:1204.3557)**

Prospects

Short term (1.1 or 2.5 fb⁻¹)

• Update $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{RAW}(\pi^+\pi^-)$

 $\rightarrow \sigma$ from 0.25% to ~0.15% may be enough to confirm a 4-5 σ effect.

• ΔA_{CP} with $D^+_{(S)} \rightarrow K_S h^+$ vs. ϕh^+ (work started !)

 \rightarrow Expect ~7M D⁺ $\rightarrow \phi \pi^+$ and ~3.5M D+ $\rightarrow K_S \pi^+$

Belle: $\Delta A_{CP}(D^+ \rightarrow \phi \pi^+ \text{ vs. } D^+_{(S)} \rightarrow \phi \pi^+) = (0.51 \pm 0.28 \pm 0.05)\%$ with 0.238M $D^+ \rightarrow \phi \pi^+$

PRL 108, 071801 (2012)

Belle: $A_{CP}(D^+ \rightarrow K_S \pi^+) = (0.36 \pm 0.09 \pm 0.07)\%$ with 1.7M events

CPV due to the kaon

arXiv:1203.6409

■ Dalitz analyses of D→h+h-h-, h+h+h-h- modes

Longer term: LHCb upgrade (2019)

- Control of systematic effects: good ex. of precision physics @ pp collider.
- Evidence for CPV in charm decays at LHCb
 - → Mostly a direct CPV
 - \rightarrow Not yet a 5 σ effect
 - \rightarrow But not far from it when combined with other experiments (4 σ)
- Could be SM, could be NP, it's anyway very interesting.
- There's a large Charm physics programme at LHCb. Other modes will be studied in the future to over-constrain the problem.
- And don't forget the LHCb's upgrade !

→ Stay tuned (at least for the next 15 years ②)!

Back-up

LHC's Schedule

M.Nessi, Chamonix 2012

Should bring ~180 times more hadronic charm decays !

- 50 fb⁻¹ with $L_{peak} = 1-2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- At $\sqrt{s}=14$ TeV: $\sigma_{cc} \sim 1.8$ times larger

CPU farm

to storage 4kHz)

Fully software trigger: Trigger Efficiency on hadronic decays ×2

(reduce the role the hardware L0 trigger)

-This means ~460M $D^0 \rightarrow K^+K^- \& 130M D^0 \rightarrow \pi^+\pi^-$. Naïve extrapolation: σ Acp~0.015%. That's far below the current systematics. A part of the statistic could be sacrificed to improve it.

-Also for decays like $D^+_{(S)} \rightarrow K_S h^+$ vs. ϕh^+ , will we probably be pushing on the systematics by then.

-And many other things: DCS, precision Dalitz studies, etc...

See e.g. "Workshop on the Implications of of LHCb measurements", CERN, April 16-18, 2012

Mode	2011 yield	$50 \text{ fb}^{-1} \text{ yield}$	Mode	2011 yield	$50 \text{ fb}^{-1} \text{ yield}$
	(kilo events)	(mega events)		(kilo events)	(mega events)
untagged $D^0 \to K^- \pi^+$	230000	41 000	$D^+ \rightarrow K^- \pi^+ \pi^+$	60000	10800
$D^{*+} \rightarrow D^0 \pi^+$; $D^0 \rightarrow K^- \pi^+$	39000	7020	$D^+ \rightarrow K^+ \pi^+ \pi^-$	210	38
$D^{*+} \rightarrow D^0 \pi^+ D^0 \rightarrow K^+ \pi^-$	130		$D^+ \rightarrow K^- K^+ \pi^+$	6500	1170
$D \rightarrow D \pi$, $D \rightarrow R \pi$	100	20	$D^+ \rightarrow \phi \pi^+$	2825	510
$D^0 \rightarrow K^- K^+$	25000	4600	$D^+ \rightarrow \pi^- \pi^+ \pi^+$	3200	575
$D^0 \rightarrow \pi^- \pi^+$	6500	1200	$D^+ \rightarrow K^0_S \pi^+$	1500	945
$D^{*+} \rightarrow D^0 \pi^+; D^0 \rightarrow K^- K^+$	4300	775	$D^+ \to K^0_S K^+$	525	330
$D^{*+} \to D^0 \pi^+; \ D^0 \to \pi^- \pi^+$	1100	200	$D^+ \to K^- K^+ K^+$	60	11
$D^{*+} \to D^0 \pi^+; D^0 \to K^0_S \pi^- \pi^+$	290	180	$D_{a}^{+} \rightarrow K^{-}K^{+}\pi^{+}$	8 900	1 600
$D^{*+} \rightarrow D^0 \pi^+; D^0 \rightarrow K^0_S K^- K^+$	45	30	$D_S^+ \to \phi \pi^+ \ (\phi \to K^- K^+)$	5 350	960
$D^{*+} \to D^0 \pi^+; D^0 \to K^- \pi^- \pi^+ \pi^+$	7800	1400	$D_S^+ \to \pi^- \pi^+ \pi^+$	2000	360
$D^{*+} \to D^0 \pi^+; D^0 \to K^- K^+ \pi^- \pi^+$	120	22	$D_S^+ \to K^- \pi^+ \pi^+$		
$D^{*+} \rightarrow D^0 \pi^+ D^0 \rightarrow \pi^- \pi^- \pi^+ \pi^+$	470	85	$D_S^+ \to \pi^- K^+ \pi^+$	555	100
D^{*+} D^{0} + D^{0} V^{-} + V	110	1000	$D_S^+ \rightarrow K^- K^+ K^+$	49	9
$D^{*+} \rightarrow D^{0}\pi^{+}; D^{0} \rightarrow K^{-}\mu^{+}X$	—	4000	$D_{S}^{+} \rightarrow K_{S}^{0}K^{+}$	413	260
$D^{*+} \rightarrow D^0 \pi^+; D^0 \rightarrow K^+ \mu^- X$	_	0.1	$D_{S}^{+} \rightarrow K_{S}^{0}\pi^{+}$	33	21

samples	parameter(s)	precision
WS/RS $K\pi$	(x'^2, y')	$\mathcal{O}[(10^{-5}, 10^{-4})]$
WS/RS $K\mu\nu$	r_M	$\mathcal{O}(5 \times 10^{-7})$
WS/RS $K\mu\nu$	p/q	$\mathcal{O}(1\%)$
$D^{*+} \rightarrow D^0 \pi^+; D^0 \rightarrow K^- K^+, \pi$	π^+ $\Delta A_{\rm CP}$	0.015%
$D^{*+} \rightarrow D^0 \pi^+; D^0 \rightarrow K^- K^+$	$A_{\rm CP}$	0.010%
$D^{*0} \to D^0 \pi^+; D^0 \to \pi^- \pi^+$	$A_{\rm CP}$	0.015%
$D^{*0} \to D^0 \pi^+; D^0 \to K^0_S \pi^- \pi^+$	(x,y)	(0.015%, 0.010%)
$D^{*0} \to D^0 \pi^+; D^0 \to K^- K^+ (\pi^-)$	$^{-}\pi^{+}) y_{CP}$	0.004% (0.008%)
$D^{*0} \to D^0 \pi^+; D^0 \to K^- K^+ (\pi^-)$	(π^+) A_{Γ}	0.004% (0.008%)
$D^{*0} \to D^0 \pi^+; \ D^0 \to K^- K^+ \pi^-$	π^+ $A_{\rm T}$	2.5×10^{-4}
$D^+ \to K^0_S K^+$	PSP-integrated CPV	10^{-4}
$D^+ \rightarrow K^- K^+ \pi^+$	PSP-integrated CPV	$5 imes 10^{-5}$
$D^+ \rightarrow \pi^- \pi^+ \pi^+$	PSP-integrated CPV	8×10^{-5}

Preliminary estimates !

+

Not everything is solved by increasing the statistics. In some cases, some will be sacrificed to improve systematics.

samples	parameter(s)	precision
WS/RS $K\pi$	(x'^2, y')	$\mathcal{O}[(10^{-5}, 10^{-4})]$
WS/RS $K\mu\nu$	r_M	$\mathcal{O}(5 \times 10^{-7})$
WS/RS $K\mu\nu$	p/q	$\mathcal{O}(1\%)$
$D^{*+} \to D^0 \pi^+; D^0 \to K^- K^+, \pi^- \pi^+$	$\Delta A_{\rm CP}$	0.015%
$D^{*+} \rightarrow D^0 \pi^+; D^0 \rightarrow K^- K^+$	$A_{\rm CP}$	0.010%
$D^{*0} \rightarrow D^0 \pi^+; D^0 \rightarrow \pi^- \pi^+$	$A_{\rm CP}$	0.015%
$D^{*0} \to D^0 \pi^+; D^0 \to K^0_S \pi^- \pi^+$	(x,y)	(0.015%, 0.010%)
$D^{*0} \to D^0 \pi^+; D^0 \to K^- K^+ (\pi^- \pi^+)$) $y_{\rm CP}$	0.004% (0.008%)
$D^{*0} \to D^0 \pi^+; D^0 \to K^- K^+ (\pi^- \pi^+)$) A_{Γ}	0.004%(0.008%)
$D^{*0} \to D^0 \pi^+; \ D^0 \to K^- K^+ \pi^- \pi^+$	A_{T}	2.5×10^{-4}
$D^+ \to K^0_S K^+$	PSP-integrated (10^{-4}
$D^+ \rightarrow K^- K^+ \pi^+$	PSP-integrated ($2PV 5 \times 10^{-5}$
$D^+ \to \pi^- \pi^+ \pi^+$	PSP-integrated O	CPV 8×10^{-5}

Fraction of indirect CP

Reminder:
$$\Delta A_{CP} = \left[a_{CP}^{\text{dir}}(K^-K^+) - a_{CP}^{\text{dir}}(\pi^-\pi^+)\right] + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{\text{ind}}$$

Δ<t>≠0 since the lifetime acceptance differs between KK and ππ

e.g. Smaller KK opening angle: easier to miss cut vetoing tracks from Primary Vertex.

Fit to background subtracted decay time distributions yields:

$$\Delta \langle t \rangle / au = [9.83 \pm 0.22 ({
m stat.}) \pm 0.19 ({
m syst.})] \%$$

*D** from *B* decays

Reminder:
$$\Delta A_{CP} = \left[a_{CP}^{\text{dir}}(K^-K^+) - a_{CP}^{\text{dir}}(\pi^-\pi^+)\right] + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{\text{ind}}$$

Δ<t>≠0 since the lifetime acceptance differs between KK and ππ

e.g. Smaller KK opening angle: easier to miss cut vetoing tracks from Primary Vertex.

Fit to background subtracted decay time distributions yields:

 $\Delta \langle t \rangle / \tau = [9.83 \pm 0.22 (\text{stat.}) \pm 0.19 (\text{syst.})] \%$

➔ Indirect CPV mostly cancels

Sample	Observable	Sensitivity (1.0 fb^{-1})	Sensitivity (2.5 fb^{-1})
Tagged KK	y_{CP}	6×10^{-4}	4×10^{-4}
Tagged $\pi\pi$	y_{CP}	11×10^{-4}	$7 imes 10^{-4}$
Tagged KK	A_{Γ}	6×10^{-4}	4×10^{-4}
Tagged $\pi\pi$	A_{Γ}	11×10^{-4}	$7 imes 10^{-4}$
Tagged WS/RS $K\pi$	$x^{\prime 2}$	7×10^{-5}	4×10^{-5}
Tagged WS/RS $K\pi$	y'	$13 imes 10^{-4}$	$8 imes 10^{-4}$
Tagged $K_S \pi \pi$	x	4×10^{-3}	$3 imes 10^{-3}$
Tagged $K_S \pi \pi$	y	$3 imes 10^{-3}$	$2 imes 10^{-3}$
Tagged $K_S \pi \pi$	q/p	0.4	0.3
Tagged $K_S \pi \pi$	ϕ	25°	15°

Preliminary estimates !

FULL 40 MHz FE READOUT

RICH New photon detectors Calorimeter+Muon Remove MI, SPD, PS New calorimeter FE electronics

Tracking New silicon trackers Reduce straw coverage + a) fiber tracker b) larger silicon tracker

Vertex Locator a) New pixel detector b) Improved strip detector