Tau Physics status report

Alberto Lusiani INFN and Scuola Normale Superiore Pisa

4th SuperB Collaboration Meeting

La Biodola (Isola d'Elba) May 31 – June 4, 2012

Tau physics at SuperB

LFV Decays

- clean and unambiguous New Physics probe
- ♦ complementary to muon LFV (MEG,...)
- no real competition but Belle II
 - advantage of beam polarization

Tau *g*–2

- $(g-2)_{\mu}$: ~3 σ exp vs. th discrepancy
- precise SM and CMSSM predictions
- ♦ no real competition but Belle II
 - advantage of beam polarization

CPV in tau decay

- precise and clean SM prediction
- most NP models below our sensitivity
- can probe some specific models
- set new much improved limits
- beam polarization may help

Tau EDM

- severely constrained from electron EDM
- no real competition but Belle II
 - advantage of beam polarization

plenty of precision physics also possible

Outline of work done

SuperB physics documents

- ♦ arXiv:1109.5028v2 [hep-ex] The impact of SuperB on flavour physics
- arXiv:1008.1541v1 [hep-ex] SuperB white paper: Physics
- ♦ arXiv:1007.4241v1 [physics.ins-det] SuperB white paper: Detector
- arXiv:0810.1312 [hep-ex], Valencia Jan 2008 Workshop Proceedings

SuperB tau physics specific activities

- extrapolations from published analyses results
- \blacklozenge exp. limitations on J.Bernabeu et al. tau EDM and g-2 sensitivity estimates with polarized beams
- ♦ re-optimization of BABAR 3 leptons analysis [mainly B.Oberhof (Pisa)]
- study of events with $\tau \to \mu \gamma$ against $\tau \to \pi \nu$ with beam polarization [mainly A.Cervelli (Pisa)]
- lacktriangle independent work on $\tau \to 3\ell$ by C.Weiland, S.Coquereau [w. A.Bevan (QMUL)]

(related) on-going and planned work

- ♦ since \sim 2011 tau g–2 measurement with BABAR [B.Oberhof (Pisa) PHD thesis]
- ♦ since ~2011 tau EDM measurement with BABAR [S.Martellotti (Pisa) PHD thesis]
- \blacklozenge about to start: beam polarization effects in $\tau \to 3\ell$ [M.Chrzaszcz (Cracow) and A.L.]
- about to start: CPV in tau decay, F.Wilson (RAL)

SuperB $\tau \to 3\ell$ sensitivity re-optimizzing BABAR analysis

- $\tau \to 3\ell$ BABAR analysis by A.Cervelli
- ♦ analysis re-optimized for best UL at SuperB@75 ab⁻¹ (under hypothesis of no signal) (B.Oberhof)

Expected 90% CL upper limits for $\tau \to 3\ell$ at SuperB@75 ab⁻¹ (preliminary)

Channel	Efficiency (%)	exp.bkg	90% CL UL (10 ⁻¹⁰)	
$e^+e^-e^+$	5.2 ± 0.5	1.7 ± 0.6	5.1	
$e^+e^-\mu^+$	2.3 ± 0.2	0.16 ± 0.05	7.5	
$e^+e^+\mu^-$	8.6 ± 0.9	0.3 ± 0.1	2.4	
$\mu^+\mu^-e^+$	4.2 ± 0.4	3.8 ± 1.3	8.3	
$\mu^+\mu^+e^-$	6.5 ± 0.6	0.8 ± 0.3	3.4	
$\mu^+\mu^-\mu^+$	4.1 ± 0.4	3.3 ± 1.0	8.1	

[♦] to be compared with 2·10⁻¹⁰ in the Valencia report first estimate

SuperB sensitivity on tau g-2

♦ SUSY is a viable explaination for existing th.-exp. discrepancy $\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} \approx (3 \pm 1) \times 10^{-9}$

$$\Delta a_{\mu} = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} \approx (3 \pm 1) \times 10^{-9}$$

• SUSY contribution is larger for tau $\Delta a_{\tau}/\Delta a_{\mu} = m_{\tau}^2/m_{\mu}^2 \approx 300$

	Snowmass points predictions						SuperB
	1 a	1 b	2	3	4	5	exp. resolution
$\Delta a_{\mu} \times 10^{-9}$	3.1	3.2	1.6	1.4	4.8	1.1	
$\Delta a_{\tau} \times 10^{-6}$	0.9	0.9	0.5	0.4	1.4	0.3	2.4-1.0

Experimental measurement of tau g - 2 at SuperB

- tau g-2 can be measured from spin-angle differential cross-section $e^+e^- \to \tau^+\tau^-$ (0707.2496 [hep-ph] (J.Bernabeu et al.)
- the amplitude for the $f\bar{f}\gamma$ vertex is:

$$\langle f(p_{-})\overline{f}(p_{+})|J^{\mu}(0)|0\rangle = e\,\overline{u}(p_{-})\left[\gamma^{\mu}\,\,\boldsymbol{F_{1}} + \frac{1}{2m_{f}}(i\,\boldsymbol{F_{2}} + \boldsymbol{F_{3}}\gamma_{5})\sigma^{\mu\nu}q_{\nu} + \left(q^{2}\gamma^{\mu} - q^{\mu}\,\,\not{q}\right)\gamma_{5}\boldsymbol{F_{A}}\right]v(p_{+})$$

 $F_1(q) o$ vector current, $F_A(q) o$ anapole moment, $F_2(q) o (g-2)$, $F_3(q) o$ EDM

$$F_2(0) = \text{Re}\{F_2(0)\} = a_f = (g-2)_f/2$$
 $d_f = \frac{e}{2m_f}F_3(0)$

ightharpoonup Re $F_2(q)$ can be fitted from shape of polar angle differential cross section

$$\frac{d\sigma(e^{+}e^{-} \to \tau^{+}\tau^{-})}{d\cos\theta_{\tau^{-}}} = \frac{\pi \alpha^{2}}{2s}\beta \left[(2 - \beta^{2}\sin^{2}\theta_{\tau^{-}}) |F_{1}(s)|^{2} + 4 \operatorname{Re} F_{2}(s) \right]$$

- lack using 100% polarized e^- beam, analyzing tau polarization with tau decay charged prongs angles one can construct asymmetries that are directly proportional to $\text{Re } F_2(q)$
- assuming perfect detector for SuperB at 75 ab⁻¹: $\Delta a_{\tau} = 0.75 \cdot 10^{-6}$

Experimental measurement of tau g - 2 at SuperB

improved estimate of Δa_{τ}

- ♠ MC study on simulated events with KK generator and Tauola (simulate complete spin correlation density matrix of the initial and final state)
- SuperB at 75 fb⁻¹, $80\% \pm 1\% e^-$ beam polarization
- estimate real conditions effects
 - ▶ 80% geometrical acceptance in polar angle
 - ▶ (uneven) track reconstruction efficiency 97.5% ± 0.1%
- use all tau decay channels (paper only uses $\tau \to \pi \nu, \rho \nu$)
- ♦ combine two proposed measurement methods for Re F₂
- ♦ prelim. MC studies for tau EDM show detector systematics ≈ 10% of stat. error measurements exploiting tau polarization less affected by detector systematics
- $\Delta a_{\tau} = [1.0 2.4] \cdot 10^{-6}$ (uncertainty depends on how well we can exploit all tau decay modes)

NP theoretical expectations for tau EDM

- ♦ in natural SUSY frameworks, lepton EDMs scale linearly with the lepton mass electron EDM upper limit ($d_e < 1.8 \cdot 10^{-27} e$ cm) constrains tau EDM outside of experiment reach
- ♦ no exp. sensitivity for most common NP scenarios given the electron limit
- ♦ enhancements up to 10⁻²² e cm in multi-Higgs models

Experimental measurement of tau EDM

- tau EDM can be measured from spin-angle differential cross-section $e^+e^- \rightarrow \tau^+\tau^-$ (arXiv:0707.1658 [hep-ph])
- polarized beams improve SuperB sensitivity
- ♦ assuming perfect detector, 100% polarized electron beam:

$$\Delta\left(\operatorname{Re}\left\{d_{\tau}^{\gamma}\right\}\right) = 7.2 \cdot 10^{-20} e \,\mathrm{cm}$$

- estimate real conditions effects
 - ▶ 80% geometrical acceptance in polar angle
 - ► (uneven) track reconstruction efficiency 97.5% ± 0.1%
- ♦ SuperB sensitivity estimated at ≈ 10.10⁻²⁰ e cm
- extrapolate result on tau EDM by Belle from 29.5 fb⁻¹ to 75 ab⁻¹
- ♦ SuperB sensitivity estimated at $\approx [17 34] \cdot 10^{-20} e \text{ cm}$ not systematically limited

SuperB can much reduce tau EDM exp. uncertainty

although "natural" SUSY NP effects too small

T/CP-odd observables in tau decay

Theory expectations

- ♦ clean SM predictions
 - ► CP asymmetry rate of $\tau^{\pm} \to K^{\pm} \pi^{0} \nu$ estimated order of ~10⁻¹²
 - $ightharpoonup au^{\pm}
 ightharpoonup au ag{8.3} imes 10^{-3}$ with 2% relative precision
- lacktriangle most NP cannot generate observable *CP*-violating effects in τ decays
- ♦ effects with R-parity viol. SUSY or non-SUSY multi-Higgs up to the current UL from CLEO (~10⁻³)

SuperB sensitivity

- experimental upper limit on charge-dependent angular rate asymmetry for $\tau \to K_S \pi^{\pm} \nu$ [CLEO Collaboration, Phys. Rev. Lett. 88, 111803 (2002), hep-ex/0111095, (13.3 fb⁻¹]
- extrapolating to SuperB at 75 fb⁻¹ \longrightarrow exp. sensitivity improves by a factor \approx 75 resolution on optimal observable from 1.8·10⁻³ to \sim 2.4·10⁻⁵
 - ▶ channel can rely on calibration provided by $\tau \to \pi\pi\pi\nu$ on the K_S sidebands
 - further improvements may be possible with beam polarization (not yet studied)

Update on $\tau \to \mu \gamma$ sensitivity

- ♦ extrapolate from final BABAR result expected upper limit
 - \blacktriangleright BABAR bkg estimates, 2σ box cut & count
 - ▶ assume improved SuperB tracking reduces $\Delta m \Delta E$ box to 65% of BABAR size
 - assume photon efficiency improves by 20%
 (no significant gain possible on loose muon PID used in this analysis)

sensitivity without using beam polarization

```
Valencia limits

tau -> mu gamma

efficiency = 7.40%

expected background = 200

upper limit 90% CL = 1.84e-09

3sigma evidence = 4.16e-09

SuperB limits

tau -> mu gamma

efficiency = 7.32%

expected background = 335

upper limit 90% CL = 2.39e-09

3sigma evidence = 5.44e-09
```

$\tau \to \mu \gamma$ vs. $\tau \to \pi \nu$ helicity angles with polarized beams

A. Cervelli, Elba, May 2011, FastSim selected candidates left, MC truth right

Update on $\tau \to \mu \gamma$ sensitivity with beam polarization

- using A.Cervelli May 2011 (Elba) presentation on $\tau \to \mu \gamma$ vs. $\tau \to \pi(\rho) \nu$ simulated with FastSim
- using most natural SUSY LFV $\tau \rightarrow \mu \gamma$ production mode
- assuming cuts have same effect on all tau hadronic decays in tag side
- assuming we use only hadronic decays on tag side
 (actually, with some degradation leptonic decays can be used as well)

```
SuperB, hadronic tags, 2D Fastsim helicity cuts
tau -> mu gamma
efficiency = 1.60%
expected background = 27
upper limit 90% CL = 3.35e-09
3sigma evidence = 7.09e-09

SuperB limits with 1D helicity cut on MC truth
tau -> mu gamma
efficiency = 5.12%
expected background = 167
upper limit 90% CL = 2.44e-09
3sigma evidence = 5.50e-09
```