B_{u,d} Physics WG Status

John Walsh INFN, Pisa

Introduction

- The B_{u,d} Working Group (convener:Adrian Bevan) has two sub-groups:
 - CPV and Mixing sub-convener: Adrian Bevan
 - Rare, Radiative, Semi-leptonic Decays John Walsh, Tobias Hurth
- Many of the Golden Modes fall into this WG, important work on some of these channels has been performed already in SuperB
- Summarize current status of various selected modes:
 - B-factory measurements
 - LHCb results that are relevant
 - SuperB studies

(extracts from Luth @ FPCP)

Ratio of B \rightarrow D^(*) $\tau \nu$ vs B \rightarrow D^(*) $\ell \nu$ Decays

Z. Phys, C46, 93 (1990)

S.L. decays involving a τ have an additional helicity amplitude (for D*τν):

$$\frac{d\Gamma_{\tau}}{dq^2} = \frac{G_F^2 |V_{cb}|^2 |\mathbf{p}| q^2}{96\pi^3 m_B^2} \left(1 - \frac{m_{\tau}^2}{q^2}\right)^2 \left[\left(|H_{++}|^2 + |H_{--}|^2 + |H_{00}|^2\right) \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} \left(|H_{t-}|^2 + |H_{--}|^2 + |H_{00}|^2\right) \right] \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} \left(|H_{t-}|^2 + |H_{00}|^2\right) \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} \left(|H_{t-}|^2 + |H_{00}|^2\right) \right) \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} \left(|H_{t-}|^2 + |H_{00}|^2\right) \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} \left(|H_{t-}|^2 + |H_{00}|^2\right) \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} \left(|H_{t-}|^2 + |H_{00}|^2\right) \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} \left(|H_{t-}|^2 + |H_{00}|^2\right) \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} \left(|H_{t-}|^2 + |H_{00}|^2\right) \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} \left(|H_{t-}|^2 + |H_{00}|^2\right) \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} \left(|H_{t-}|^2 + |H_{00}|^2\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^$$

For Dτv, only H₀₀ and H_t contribute!

To test the SM Prediction, we measure

$$R(D) = \frac{\Gamma(\overline{B} \to D\tau\nu)}{\Gamma(\overline{B} \to D\ell\nu)} \qquad R(D^*) = \frac{\Gamma(\overline{B} \to D^*\tau\nu)}{\Gamma(\overline{B} \to D^*\ell\nu)}$$

Leptonic τ decays only

Several experimental and theoretical uncertainties cancel in the ratio!

- BB events are fully reconstructed:
 - hadronic B tag

(tag efficiency improved 2x)

reconstruction of D^(*) and e or μ

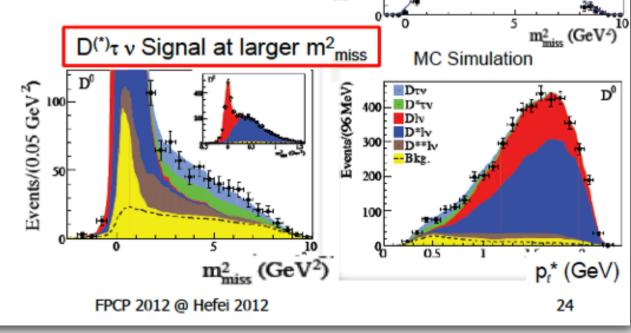
(extend to lower momenta)

- no additional charged particles
- kinematic selections: q² > 4 GeV²

Background suppression by BDT (combinatorial and $D^{**} \ell \nu$)

Full BABAR data sample, MC correction based on data control samples
 V. Lüth
 FPCP 2012 @ Hefei 2012

22


$B \rightarrow D^{(*)} \tau v$: Extraction of Yields from M.L. Fit

- Unbinned M.L. fit
- $m_{\text{miss}}^2 = (P_{\text{ee}} P_{\text{Btag}} P_{\text{D(*)}} P_{\ell})^2$

2-D distributions:

- Missing mass sq
- 4 signal samples: D⁰ℓ, D^{*0}ℓ, D⁺ℓ, D^{*+}ℓ, (e or μ)
- 4 $D^{(*)}\pi^0\ell\nu$ control samples
- PDFs from MC (approximated using Keys fct.)
- Fitted Yields
 - 4 D^(*) τν Signal

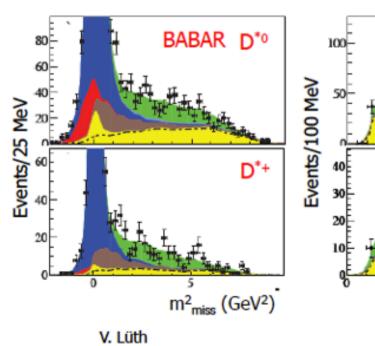
 - 4 D**® Background
- Fixed Backgrounds
 - B⁰-B⁺ cross feed
 - BB combinatorial BG
 - Continuum e⁺e⁻→f f(γ)

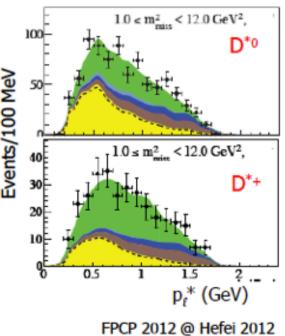
Entries/(0.02 GeV²

Lepton momentum

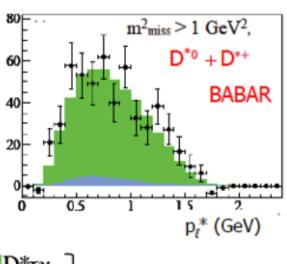
 $D^0 au
u$

Signal


in B rest frame


V. Lüth

	$D^{*0} au u$	$D^{*+}\tau\nu$	$D^* \tau \nu$
$N_{ m sig}$	639 ± 62	245 ± 27	888 ± 63
Significance (σ)	11.3	11.6	16.4
$R(D^*)$	0.322 ± 0.032	0.355 ± 0.039	0.332 ± 0.024


Isospin constrained

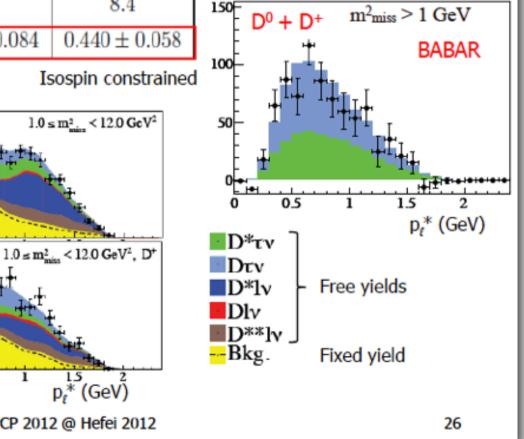
BABAR, to be submitted to PRL

Statistical errors only

25

100

Events/25 MeV


Results of Fit: $B \rightarrow D\tau v$

	$D^0 au u$	$D^+ au u$	$D\tau\nu$
$N_{ m sig}$	314 ± 60	177 ± 31	489 ± 63
Significance (σ)	5.5	6.1	8.4
R(D)	0.429 ± 0.082	0.469 ± 0.084	0.440 ± 0.058

Events/100 MeV

BABAR, to be submitted to PRL

Statistical errors only

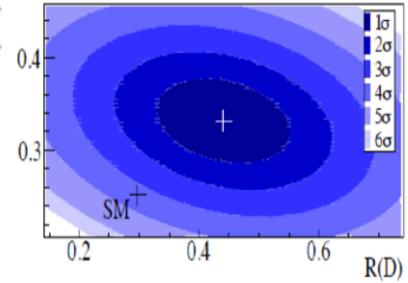
M²_{miss} (GeV²)

BABAR

 D_0

0.5

S.M. Predictions of R(D) and $R(D^*)$

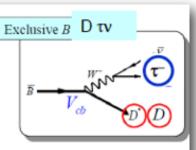

Comparison with S.M. calculation:

	R(D)	R(D*)
BABAR	0.440 ± 0.071	0.332 ± 0.029
SM	0.297 ± 0.017	0.252 ± 0.003
Difference	2.0 σ	2.7 σ

The combination of the two measurements (-0.27 correlation) yields χ²/NDF=14.6/2,

Thus the data are inconsistent with the SM prediction at 3.4 σ

Z. Phys, C46, 93 (1990) PRD 82, 0340276 (2010) PhD 85, 094025 (2012) and recent updates BABAR to be submitted to PRL

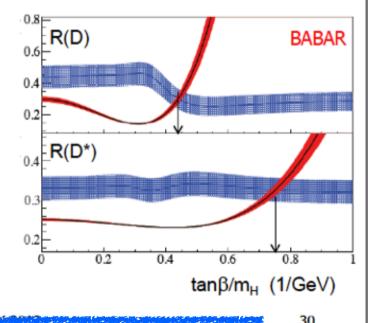

V. Lüth

i.e. Prob. = 6.9×10^{-4} !!

FPCP 2012 @ Hefei 2012

28

Can we explain the excess events?



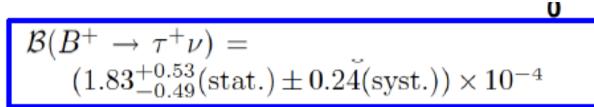
A charged Higgs (2HDM type II) of spin 0 coupling to the τ will only affect H_t

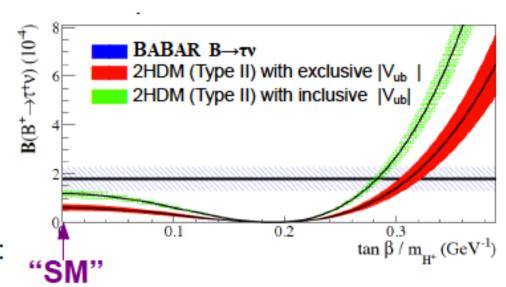
$$H_t^{\rm 2HDM} = H_t^{\rm SM} \times \left(1 + \left(\frac{\tan^2\beta}{m_{H^\pm}^2}\right) + \frac{q^2}{1 \mp m_c/m_b}\right) - \text{for Dtv} + \text{for D*tv}$$

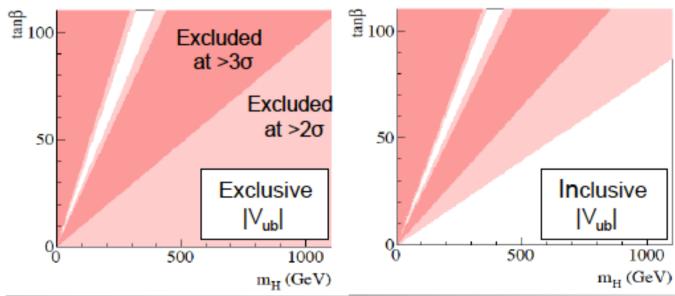
This could enhance or decrease the ratios R(D*) depending on tanβ/m_H

- We estimate the effect of 2DHM, accounting for difference in efficiency, and its uncertainty.
- The data match 2DHM Type II at $tanβ/m_H$ = 0.44 ± 0.02 for R(D) $tanβ/m_H$ = 0.75 ± 0.04 for R(D*)
- The combination of R(D) and R(D*) excludes the Type II 2HDM in the full tanβ-m_H parameter space with a probability of >99.8%, provided M_H>10GeV!

- SuperB: certainly can measure this channel.
- Little focus so far, but perhaps we should increase priority!
- Only at SuperB (Belle 2)


$B \rightarrow \tau \nu$

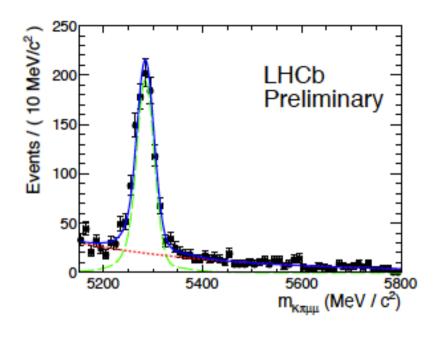

- Branching ratio affected by possible charged Higgs:
 - \blacksquare Exp: BF = (1.67 ± 30) x 10⁻⁴ (HFAG, 2011)

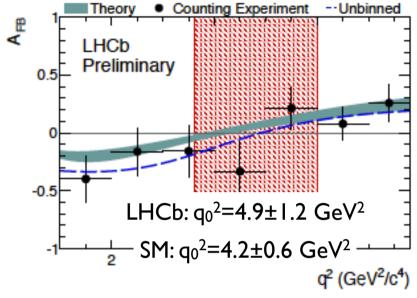

SM: BF =
$$\mathcal{B}(B \to \tau \nu)^{\text{SM}} = (0.79 \pm 0.07) \times 10^{-4} \text{ [UTfit]},$$

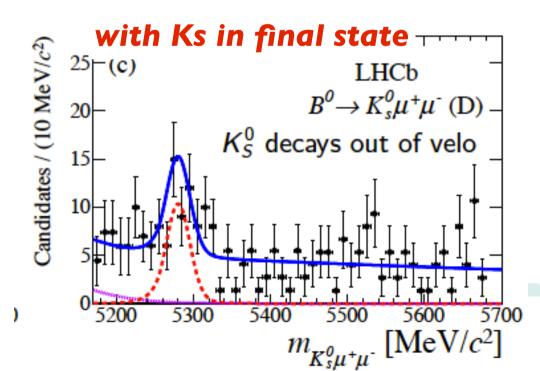
 $\mathcal{B}(B \to \tau \nu)^{\text{SM}} = (0.76 + 0.10 \atop -0.06) \times 10^{-4} \text{ [CKMfit]}$

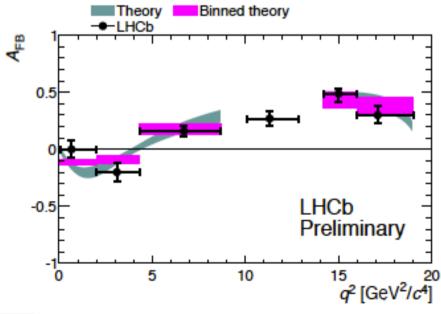
- Mystery: most NP scenarios (2HDM-II, MSSM) reduce BF wrt SM
- Tension with V_{ub} and sin 2β
- Only can be measured in SuperB (and Belle 2)
 - = still relevant even with measurement of B_s → $\mu^+\mu^-$ from LHCb (see Blankenburg's talk from Thursday Physics Meeting)
- Estimated SuperB sensitivity: 3%
 - currently under study in SuperB (Guglielmo De Nardo)
- Related channel B→IV also under study (Marcello Rotondo, Valentina Santoro)

$B \rightarrow TV$ - latest BaBar result






$B \rightarrow X_s |^+|^-$

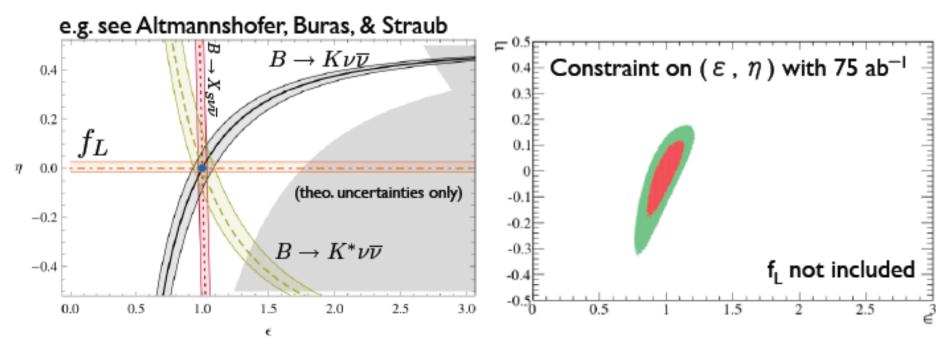

- Important part of SuperB rare decays program:
 - high sensitivity to NP
 - many observables
- LHCb can make very good measurements for a subset of the observables: $B^0 \to K^{*0} \mu^+ \mu^$
 - see next page
- However, much can only be done at e+e- (with high precision):
 - = electron channel \Rightarrow µ/e ratio sensitive to NP (e.g. NMSSM)
 - Isospin asymmetry (requires reco of $K^{*+} o K_s \pi^+, K^+ \pi^0$
 - Inclusive channel: $B \to X_s \ell^+ \ell^-$
- SuperB:
 - current sensitivities extrapolated from BaBar
 - identified interested analysts (Robertson, Walsh)

LHCb results on $B^0 \to K^{*0} \mu^+ \mu^-$

$B \rightarrow X_s I^+ I^-$ sensitivities in SuperB

$$B \rightarrow K^*I^+I^-$$

- (Careful) extrapolations from BaBar
- Need SuperB simulation
 - Especially for fully inclusive analysis


$$B \rightarrow X^s |_+|_-$$

		BABAR	$R(425 \ fb^{-1})$	Super	$B (75 \text{ ab}^{-1})$
Observable	q^2 region [GeV ² /c ⁴]	Stat.	Sys.	Stat.	Sys.
$\sigma \mathcal{B}/\mathcal{B}$	all	0.162	0.063	0.01	0.032-0.048
$\sigma \mathcal{B}/\mathcal{B}$	0.1 - 7.02	0.23	0.070	0.014	0.035 - 0.053
$\sigma \mathcal{B}/\mathcal{B}$	$10.2412.96~\mathrm{and} > 14.06$	0.24	0.071	0.015	0.036 0.054
\mathcal{R}_{K*}	all	0.34	0.07	0.02	0.035 - 0.048
\mathcal{A}_{CP}	all	0.15	0.01	0.009	0.008-0.01
\mathcal{A}_I	0.1 – 7.02	0.17	0.03	0.01	0.015 - 0.023
\mathcal{F}_L	0.1 - 4	0.15	0.04	0.011	0.02 - 0.03
\mathcal{F}_L	4 - 7.84	0.14	0.04	0.011	0.02 - 0.03
\mathcal{A}_{FB}	0.1 - 4	0.14	0.05	0.011	0.025 - 0.038
\mathcal{A}_{FB}	4-7.84	0.14	0.05	0.011	0.025 - 0.038

	$BABAR (425 \ fb^{-1})$						$Super B (75 ab^{-1})$		
Observable	q^2 region	Stat.	Sys.	Stat.	Sys.	Stat.	Sys.	Stat.	Sys.
	$[{\rm GeV^2/c^4}]$	\mathbf{SE}	\mathbf{SE}	RM	RM	\mathbf{SE}	\mathbf{SE}	RM	RM
$\sigma \mathcal{B}/\mathcal{B}$	all	0.11	0.056	0.26	0.06	0.008	0.03 - 0.05	0.019	0.03 - 0.05
$\sigma \mathcal{B}/\mathcal{B}$	0.1-1	0.29	0.07	0.69	0.07	0.022	0.04 - 0.06	0.052	0.04 - 0.06
$\sigma \mathcal{B}/\mathcal{B}$	1–4	0.23	0.06	0.53	0.06	0.017	0.03 - 0.05	0.040	0.03 - 0.05
$\sigma \mathcal{B}/\mathcal{B}$	4 - 7.84	0.18	0.06	0.43	0.06	0.014	0.03 - 0.05	0.032	0.03 - 0.05
$\sigma \mathcal{B}/\mathcal{B}$	10.24 – 12.96	0.31	0.07	0.73	0.07	0.024	0.04 - 0.06	0.055	0.04 - 0.06
$\sigma \mathcal{B}/\mathcal{B}$	>14.06	0.29	0.07	0.69	0.07	0.022	0.04 - 0.06	0.052	0.04 - 0.06
$\mathcal{R}_{{X}_s}$	all	0.21	0.06	0.50	0.06	0.016	0.03 - 0.05	0.038	0.03 - 0.05
$\mathcal{R}_{{X}_s}$	0.1 - 7.84	0.25	0.06	0.58	0.06	0.019	0.03 - 0.05	0.044	0.03 - 0.05
\mathcal{A}_{CP}	all	0.06	0.01	0.14	0.01	0.004	0.005 - 0.008	0.011	0.005 - 0.008
\mathcal{A}_{CP}	0.1 - 7,84	0.07	0.01	0.16	0.01	0.005	0.005 - 0.008	0.012	0.005 - 0.008
\mathcal{A}_I	all	0.05	0.06	0.12	0.06	0.004	0.03 - 0.05	0.009	0.03 - 0.05
\mathcal{A}_I	0.1 - 7.84	0.06	0.06	0.14	0.06	0.005	0.03 - 0.05	0.011	0.03 - 0.05
\mathcal{H}_L	0.1-1	0.17	0.04	0.40	0.04	0.013	0.02 - 0.03	0.030	0.02 - 0.03
\mathcal{H}_L	1–4	0.17	0.04	0.40	0.04	0.013	0.02 - 0.03	0.030	0.02 - 0.03
\mathcal{H}_L	4 - 7.84	0.13	0.04	0.27	0.04	0.009	0.02 - 0.03	0.021	0.02 - 0.03
\mathcal{H}_A	0.1-1	0.22	0.06	0.51	0.06	0.016	0.03 - 0.05	0.039	0.03 - 0.05
\mathcal{H}_A	1–4	0.22	0.06	0.51	0.06	0.016	0.03 - 0.05	0.039	0.03 - 0.05
\mathcal{H}_A	4-7.84	0.15	0.06	0.35	0.06	0.011	0.03 - 0.05	0.026	0.03-0.05

$B \rightarrow K^{(*)} V V$

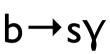
- Sensitive to NP via Z⁰ penguin
- Only weak limits imposed by current B-factories
- Can only be done at SuperB/Belle-2
- Probably most-studied channel thus far at SuperB: Elisa Manoni (Perugia)
 - hadronic tags in fastsim
 - currently performing some BG studies

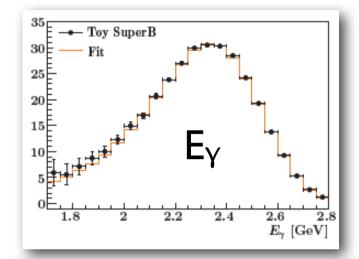
$B \rightarrow X_s \gamma$

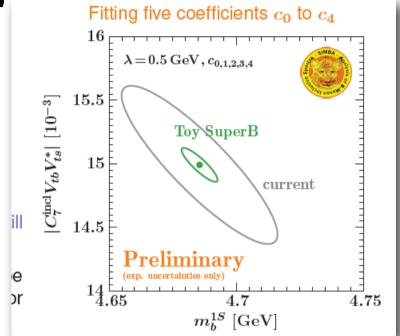
- Featured topic at SuperB Physics Workshop, Frascati, Dec
 2011
 - Some optimism among theorists in reducing theoretical error on BF (currently at 7%, could go to 5% or lower) ⇒ provides impetus for SuperB analysis
 - Systematics-limited ⇒ careful study to estimate sensitivity
- Inclusive channel restricted to e+e- machines (LHCb can do B \rightarrow K* γ)
- A_{CP}: very interesting observable at SuperB (many systematics cancel)
- Status in SuperB: not currently being worked on group from Notre Dame (Jessop, Wang) has pulled out

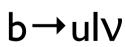
Measuring $A_{CP}(B \rightarrow X_s \gamma)$

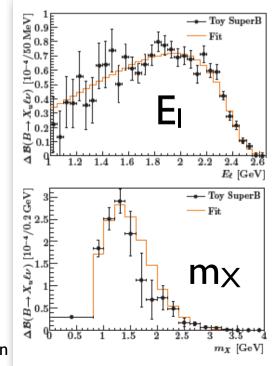
SuperB/Belle-2 only experiments able to measure A_{CP} inclusively

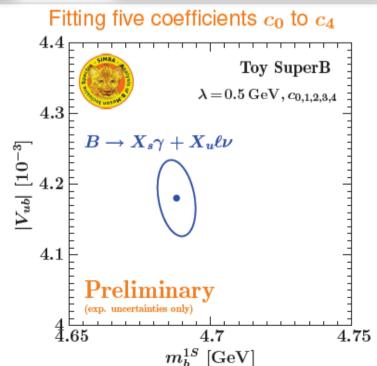

$A_{CP}(B \rightarrow X_{s\gamma})$ with Hadronic Tags Potentially quite powerful because X_s (or X_d) system is fully isolated $\mathbf{B}_{\mathrm{signal}}$ Possible to separate on event-by-event basis $B \rightarrow X_{aY}$ from $B \rightarrow X_{aY}$ decays (which X_s or X_d ? has never been done inclusively) Truly inclusive measurements of: A_{CP}(B→X_sγ) and A_{CP}(B→X_dγ) Isospin asymmetry • Neubert, et al. (PRL 106 (141801) 2011) although they find a larger-thanthought theoretical uncertainty on $A_{CP}(B \rightarrow X_{s\gamma})$, they note an expected difference in A_{CP} for B⁰ and B⁺ decays - this joint CP/isospin asymmetry could be measured at SuperB using hadronic tags

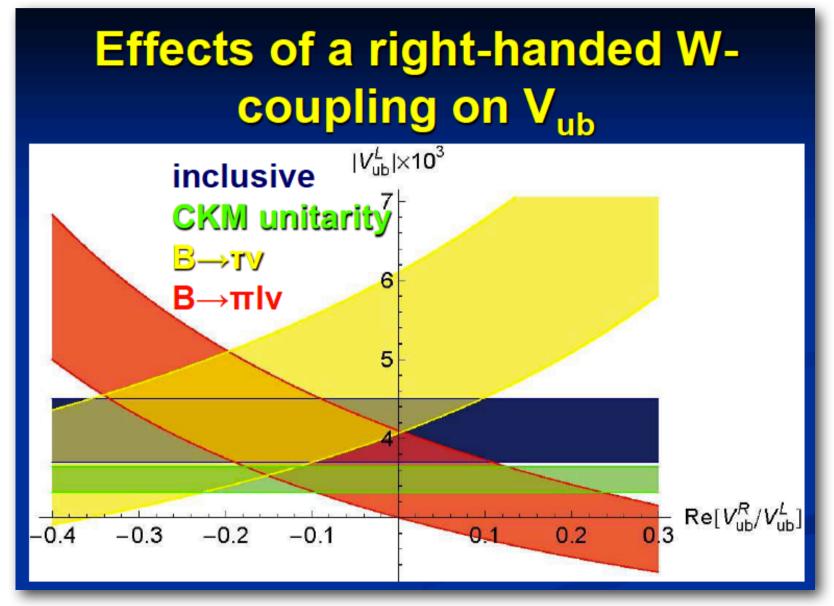

V_{ub} and semileptonic B decays


- We saw at the Physics Meeting on Thursday many interesting aspects of V_{ub}
 - discrepancy between *inclusive* and *exclusive* determinations of V_{ub} (2-3 σ)
 - the current B-factories have completed these measurements, so this discrepancy will be there until resolved at SuperB/Belle 2
 - Gambino: efforts to improve precision of extraction of inclusive V_{ub}
 - Tackmann: extracting inclusive V_{ub} from simultaneous fits to $b \rightarrow ulV$ and $b \rightarrow s\gamma$ (see following)
 - Ciuchini: highlights of the role of V_{ub} in the CKM global fits and how SuperB will be able to severely constraint the parameters (ρ , η)
 - Rotondo: summary of experimental techniques and results
 - Crivellin: right-handed currents as a way to explain inclusive vs. exclusive Vub (and also large BF in $B \rightarrow TV$) (see following)


Global fits to $b \rightarrow ulV$ and $b \rightarrow sY$


Tackman: Toy MC with SuperB stats





SuperB CM, Elba, Jun

Walsh, INFN Pisa

Right-handed currents?

Andreas Crivellin

V_{ub} in SuperB

- Last SuperB work on V_{ub} was at the Valencia Workshop (2008)
- Based on that, current experimental sensitivities are estimated at 2% (inclusive technique) and 3% (exclusive).
- Clearly, these need to be updated, along with estimates of expected theoretical uncertainties (which have already gotten smaller since Valencia)
- So, we are seeking people interested in working on this topic.

SuperB (Belle 2) only, LHCb

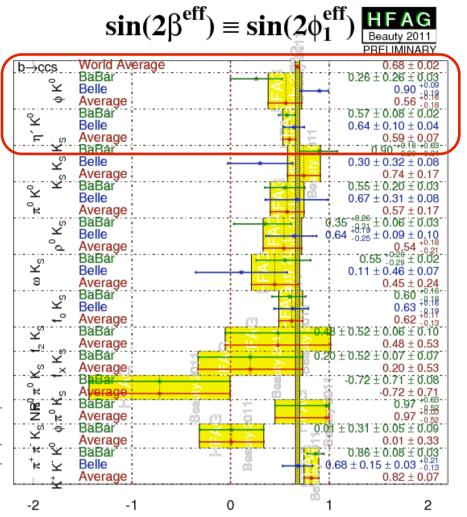
Β→φφΚ

- Sensitive to CP and T violation
- Need angular analysis
- First simulations with SuperB fastsim started

- Currently being studied in SuperB: Marcin Chrzaszcz (Cracow)
- Computing power available in Poland for simulations

$B \rightarrow \eta' K^0$ and $B \rightarrow \phi K^0$

Gluonic penguin modes:


- Sensitivity to NP via TDCPV compare measured sin $2\beta_{eff}$ with $b \rightarrow c\underline{c}s$ value
- B-factory results are in agreement, but higher precision measurements needed
- SuperB sensitivity estimate $\sigma(S) \sim 0.01$ (for $B \rightarrow \eta' K^0$)
 - extrapolation from b-factory results
- Not currently under study in SuperB (although $B \rightarrow \phi K^0$ used as benchmark channel in some SVT detector studies)

Gluonic penguins

 Many other gluonic penguins will be studied at SuperB as well

SuperB sensitivities

Mode	C	urrent	Precision	Predic	ted P	recision (75 ab ⁻¹)	Disco	very Potential
	Stat.	Syst.	$\Delta S^f(\mathrm{Th.})$	Stat.	Syst.	$\Delta S^f(\mathrm{Th.})$	3σ	5σ
$J/\psi K_S^0$	0.022	0.010	0 ± 0.01	0.002	0.005	0 ± 0.001	0.02	0.03
$\eta' K_S^0$	0.08	0.02	0.015 ± 0.015	0.006	0.005	0.015 ± 0.015	0.05	0.08
$\phi K_S^0 \pi^0$	0.28	0.01	_	0.020	0.010	_	-	_
$f_0K_S^0$	0.18	0.04	0 ± 0.02	0.012	0.003	0 ± 0.02	0.07	0.12
$K_{S}^{0}K_{S}^{0}K_{S}^{0}$	0.19	0.03	0.02 ± 0.01	0.015	0.020	0.02 ± 0.01	0.08	0.14
ϕK_S^0	0.26	0.03	0.03 ± 0.02	0.020	0.005	0.03 ± 0.02	0.09	0.14
$\pi^0 K^0_S$	0.20	0.03	0.09 ± 0.07	0.015	0.015	0.09 ± 0.07	0.21	0.34
ωK_S^0	0.28	0.02	0.1 ± 0.1	0.020	0.005	0.1 ± 0.1	0.31	0.51
$K^{+}K^{-}K_{S}^{0}$	0.08	0.03	0.05 ± 0.05	0.006	0.005	0.05 ± 0.05	0.15	0.26
$\pi^0\pi^0K_S^0$	0.71	0.08	_	0.038	0.045	_	_	_
$ ho K_S^0$	0.28	0.07	-0.13 ± 0.16	0.020	0.017	-0.13 ± 0.16	0.41	0.69
$J/\psi\pi^0$	0.21	0.04	_	0.016	0.005	_	_	_
$D^{*+}D^{*-}$	0.16	0.03	_	0.012	0.017	_	_	_
D^+D^-	0.36	0.05	_	0.027	0.008	_	_	_

Precision modes

 In the SuperB Impact paper (arXiv:1109.5028) we divided the most important channels into "Golden Modes" and "Precision Modes"

Observable/mode	Current	LHCb	$\mathrm{Super}B$	Belle II	LHCb upgrade	theory
	now	(2017)	(2021)	(2021)	(10 years of running)	now
		$5\mathrm{fb}^{-1}$	$75\mathrm{ab}^{-1}$	$50\mathrm{ab}^{-1}$	$50{\rm fb}^{-1}$	
α from $u\overline{u}d$	6.1°	$5^{\circ a}$	1°	1°	b	$1-2^{\circ}$
β from $c\overline{c}s$ (S)	0.8° (0.020)	0.5° (0.008)	0.1° (0.002)	0.3° (0.007)	0.2° (0.003)	clean
$S \text{ from } B_d \to J/\psi \pi^0$	0.21		0.014	0.021 (est.)		clean
$S \text{ from } B_s \to J/\psi K_s^0$?			?	clean
γ from $B \to DK$	11°	$\sim 4^{\circ}$	1°	1.5°	0.9°	clean
$ V_{cb} $ (inclusive) %	1.7		0.5%	0.6 (est.)		dominant
$ V_{cb} $ (exclusive) %	2.2		1.0%	1.2 (est.)		dominant
$ V_{ub} $ (inclusive) %	4.4		2.0%	3.0		dominant
$ V_{ub} $ (exclusive) %	7.0		3.0%	5.0		dominant

- TDCP asymmetries to measure α , β , γ
 - Sensitivity estimates extrapolations from b-factories
- Not currently studied in SuperB
 - would like to choose one of these channels as a benchmark for detector and background studies

Tools for B_{u,d} physics

- Hadronic tagging: used in B \rightarrow K^(*) $\vee \nu$ and B \rightarrow $\tau \nu$ analyses
 - maintained by Elisa Manoni
- Semileptonic tagging: currently not used by anybody, but looking for a client
 - maintained by Alejandro Perez
- Flavor tagging: imported from BaBar, but needs validation in SuperB fastsim

Analysis opportunities

- B→D(*)TV
- V_{ub}/Semileptonic decays
- B \rightarrow X_s γ , especially A_{CP}
- Precision mode for α , β or γ (benchmark)
- Inclusive $B \rightarrow K^{(*)}I^+I^-$ modes
- Any analysis using SL tags
- Gluonic penguins