

MACHINE DETECTOR INTERFACE

INTERACTION REGION

BACKGROUNDS

Talk Outline

Interaction Region design progresses

- ➡ Magnets
- Radiation Monitors
- Luminosity Monitors
- Background simulations
 - Hulti turn radiative Bhabha Multi
 - Shields optimizations
 - Latest simulations
- ➡ To Do list

IR DESIGN STATUS (MIKE) Parameters used in the IR designs

Parameter	HER	LER		
Energy (GeV)	6.70	4.18		
Current (A)	1.89	2.45		
Beta X* (mm	26	26		
Beta Y* (mm	0.2	0.253		
Emittance X (nm-rad)	2.00	2.46		
Emittance Y (pm-rad)	5.0	6.15		
Sigma X (µm)	7.21	8.87		
Sigma Y (nm)	36	36		
Crossing angle (mrad)	(+/- 3	30		

CABIBBO

aboratorio Nicola Cabibbo

LAB

INFN

SR power (Watt)

Mike Sullivan

TEST OF THE QDO IN GENOVA

COLD TESTS COMPLETED

- 4 runs (each one cooling the coil from 300 K down to 4.2 K)
- The excellent results are confirmed. Max current 2830 A

P.Fabbricatore Final doublet: Future activity pl4桥 SuperB Collaboration Sezione di Genova meeting @ La Biodola

Last meeting I stressed the question "Why the magnet does behave so well?". I remind that simple computations show that localized quench can damage the magnet.

In last runs a fast quench acquisition (1 kHz) was implemented. The measured normal zone electrical resistance growth is compatible with a quench of the whole magnet. \rightarrow No localised quench

P.Fabbricatore Final doublet: Future activity plath SuperB Collaboration Sezione di Genova meeting @ La Biodola

A problem to be addressed: radiation

According the simulation done by Alejandro some magnets of FF is exposed to high radiation. With 75 ab^{-1} , the dose is (at the best) 110 M Gy (safety factor 5 taken into account)

P.Fabbricatore Final doublet: Future activity plath SuperB Collaboration Sezione di Genova meeting @ La Biodola

A problem to be addressed: radiation

According the simulation done by Alejandro some magnets of FF is exposed to high radiation. With 75 ab^{-1} , the dose is (at the best) 110 M Gy (safety factor 5 taken into account)

FINAL DOUBLET DOSE (ALEJANDRO)

Aligned vs Not Aligned Magnetic elements

- Current magnetic some elements (QD0, QD0H, QF1 and QF1H) are not aligned with nominal trajectory
- Try a model in which all magnetic elements are aligned ⇒ expect reduction on the doses

Aligned vs Not Aligned: results

Rad-Bhabha (Not Aligned)

Rad-Bhabha (Aligned)

Hot spots dose on the doublets are significantly reduced for the aligned model w.r.t. the Notaligned one (a factor of ~2 reduction)

The anti-solenoids have hot spot dose a factor of ~3 increase but still in the limits radiation hardness

MULTI TURN RADIATIVE BHABHA

LER no collimators

x 10⁴

(2000 1500 1000

500

x 10³

IR losses (Hz) 200

500

0

2

 0^+_0

2

Å

4

6

Lifetime evaluation

LER Losses from Rad Bhabha process vs machine turns

2900

0.3737E+08

10

0.1914E+07

8 nt

nt

ALLCHAN

8

ALLCHAN

LER with collimators (same set of Touschek &beam-gas)

Elba, June 2012

14

Diamond Radiation Monitors

8 diamond detector for ring

detector size	8 X16 mm ²		
leakage current	8 nA		
Ionization current (Rad Bhabha only)	0.67 nA		
hits rate	130KHz		
Detector Transit time	20 ns		
Electronic Integration time	30 ns		
Electric resistance	$10^{11} \ \Omega cm$		
Energy threshold	150KeV		

Beam monitor characteristics $L = 1 \times 10^{36} \text{ cm}^{-2} \text{ s}^{-1}$

Andrea De Simone

Diamond detector 4mm x 4mm

Diamond Radiation Monitors

Tentative electronic diagram

RAD BHABHA LUMINOSITY MONITOR

E.P. for the IR & Bkg. teams

WORK PLAN AT LAL (PHILIP)

Fast luminosity monitor(s) being investigated for **SuperB**

- Further checks / comparisons of cross-section and generator
- MAD tracking in lattice to define best locations in LER and HER
- GEANT4 for realistic signal computation (detector layout and position)
- Requirement on beam pipe shape from HOMs (for photon detection)
- Vacuum chamber design and magnet shapes, synchrotron radiation
- Background from non-Lumi scaling beam losses: Touschek, beam gas C.
- sCVD diamond sensor characterization and implementation (for ATF2)
- Readout: for ATF2, "Parisroc2" asic (remote) \rightarrow OK also for SuperB ?
- Bunch by bunch luminosity monitoring (specifications, requirements)
- Useful to probe Touschek & beam gas C. losses with few add. sensors ?
- Prototype sensor test at Daphne for validation and training ?
- Workshop in autumn on luminosity monitoring and IP instrumentation ?

Shield studies: strategy

- Study reduction of Rad-bhabha flux of particles escaping the final focus:
 - Different W-shield thickness: 3.0 to 4.5 cm (step 0.5cm)
 - Different shield material: Depleted Uranium of 3cm thick (lower radiation length and higher density)

W 3.0 cm Shield studies: results W 4.5 cm Photon energy flux comparisons U 3.0 cm [mMatt]/(1cm) 0.01 0.006 0.004 W 0.014 0.01 -U: 0.012 0.01 0.008 0.008 0.006 0.004 0.002 0.002 -1200 -1000 -1600 -1400 -800 -600 1400 400 600 1000 1200 1600 1800 2000 2200 800 Z [mm] Z [mm] radiated energy diff w.r.t 3.0cm radiated energy diff w.r.t 3.0cm 0.8 0.8 ֈֈ՟՟֍ՠֈֈֈֈֈֈՠՠֈֈ֍ՠՠֈՠֈՠՠՠֈՠՠՠֈՠֈՠֈՠֈ 0.6 0.6

Losses

Shield studies: results — W 3.0 cm — W 4.5 cm

Neutron kinetic energy flux comparisons

– U 3.0 cm

EMC STUDIES (STEFANO G.)

Eugenio Paoloni

Elba, June .) 2012 the 3rd

Barrel Resolution vs Shield

RadBhaBha Only

• 1/6/2012

EMC FullSim Studies - Stefano Germani • 5

• 1/6/2012

EMC FullSim Studies - Stefano Germani • 6

Crystal 0 Index

Simulated radiation level

Simulated radiation level

Riccardo Cenci

25

SuperB Collaboration Meeting, Elba - Bkg Session, Jun 2, 2012

Simulated radiation level

•Nice big table, *only* for 2photons bkg : (

SubSystem	Location	rMin(cm)	rMax(cm)	zMin(cm)	zMax(cm)	TID(Gy)	NIEL(cm-2)	SEE(cm-2)
SVT	Layer0	1.292	1.292	-6	6	36059.5	1.20772e + 13	0.0257399
SVT	Layer1	3.3	3.3	-10	10	1191.75	$4.27953e{+}11$	0.0189185
SVT	Layer2	4	4	-15	15	603.577	$2.32608e{+}11$	0.0388765
SVT	Layer3	5.9	5.9	-20	20	209.308	$1.00633e{+}11$	0.0454258
SVT	Layer4	12.2	12.2	-30	30	42.4517	5.1101e + 10	0.0471571
SVT	Layer5	14.2	14.2	-30	35	25.257	$4.36508e{+10}$	0.0492751
SVT	FEELayer0	1.4	1.4	4.2	4.2	3359.8	$1.14919e{+}12$	0.157514
SVT	FEELayer1	3.3	3.3	1	1	548.919	$2.0831e{+}11$	0.29034
SVT	FEELayer2	4	4	1	1	546.259	2.18287e + 11	0.539203
\mathbf{SVT}	FEELayer3	5.9	5.9	1	1	236.526	$1.20343e{+}11$	0.609714
SVT	FEELayer4	12.2	12.2	1	1	70.0809	8.06467e + 10	0.63149
\mathbf{SVT}	FEELayer5	14.2	14.2	1	1	31.946	8.02268e + 10	1.00651
SVT	MCard	30	30	0.2	0.2	8.2523	$6.604 \mathrm{e}{+10}$	0.471702
DCH	FEEZone0	23.6	40	-111.9	-111.9	0.847235	3.14484e + 10	0.698707
DCH	FEEZone1	40	60	-111.9	-111.9	1.07063	$2.45461e{+10}$	0.506254
DCH	FEEZone2	60	81	-111.9	-111.9	0.946379	$1.90069e{+10}$	0.404555
TOF	FEE	55	92	200	200	0.423339	1.60694e + 10	2.69903
DRC	BarCenter	81.7	89.3	-10	10	0.858083	2.19122e + 10	3.12543
DRC	FEE	103	155	-377	-342	0.00749921	5.00567 e + 08	0.0553376
EMC	FwdFEE	70	110	216	236	0.0761059	1.22912e + 10	1.40298
EMC	BrlFEE	120	120	-155	216	0.0223998	3.65836e + 09	0.427492
EMC	$\operatorname{BrlCtrFEE}$	120	120	-10	10	0	2.96564e + 09	0.367001
IFR	FEEZone0Loc0	325.576	332.866	-281	-239	0.173197	2.35243e + 08	0.0263963
IFR	FEEZone0Loc1	360.555	400.5	-281	-239	0.106209	3.88004e + 08	0.0444569
IFR	${ m FEEZone0Loc2}$	300	356.09	-281	-239	0.120344	2.58914e + 08	0.0319534
IFR	FEEZone0Loc3	300.666	340.588	-281	-239	0.195358	2.8236e + 08	0.0388998
IFR	FEEZone0Loc4	332.866	325.576	-281	-239	0.173152	4.05831e + 08	0.0444569
IFR	FEEZone0Loc5	400.5	360.555	-281	-239	0.214878	3.12852e + 08	0.0319534
IFR	FEEZone0Loc6	356.09	300	-281	-239	0.235287	2.66329e + 08	0.0347319
IFR	FEEZone1Loc0	325.576	332.866	-21	21	0.0250389	1.82103e + 08	0.0222284
IFR	FEEZone1Loc1	360.555	400.5	-21	21	0.0411469	1.70724e + 08	0.0138928
IFR	FEEZone1Loc2	300	356.09	-21	21	0.0434939	1.71252e + 08	0.0194499
IFR	FEEZone1Loc3	300.666	340.588	-21	21	0.10929	$2.83561e{+}08$	0.0305641
IFR	FEEZone1Loc4	332.866	325.576	-21	21	0.054466	2.33949e + 08	0.0291748
IFR	FEEZone1Loc5	400.5	360.555	-21	21	0.0702368	$2.79871e{+}08$	0.0208392
IFR	FEEZone1Loc6	356.09	300	-21	21	0.0891178	2.51388e + 08	0.0222284
IFR	FEEZone2Loc0	325.576	332.866	239	281	0.0743074	3.02512e + 08	0.040289
IFR	FEEZone2Loc1	360.555	400.5	239	281	0.0854958	2.8198e + 08	0.025007
IFR	FEEZone2Loc2	300	356.09	239	281	0.12929	2.41521e + 08	0.0208392
IFR	FEEZone2Loc3	300.666	340.588	239	281	0.277088	4.19076e + 08	0.0430676
IFR	FEEZone2Loc4	332.866	325.576	239	281	0.145233	2.38019e + 08	0.0333426
IFR	FEEZone2Loc5	400.5	360.555	239	281	0.154433	2.47619e + 08	0.0305641
IFR	FEEZone2Loc6	356.09	300	239	281	0.168629	2.67683e + 08	0.0319534

26

Riccardo Cenci

SuperB Collaboration Meeting, Elba - Bkg Session, Jun 2, 2012

Energy flux per ring

Neutron energy flux reduced by 20% -30% with new shielding

Photon energy flux reduced by $\sim 4x$ with new shielding

- Dose on the QD0
- Synchrotron Radiation simulation: Mike, we miss you!
- Shield thickness: how we will decide the best thickness?
- Shield support mechanical design, vibration budget: Kirk, we miss you!
- Neutron cloud effect mitigation

- The double helical quadrupoles behaves better than expected :)
- Multi turn radiative Bhabha are not an issue :)
- 45 mm tungsten shields are sufficient to significantly reduce the photon flux in the detector :)
- Promising technologies for both the Radiation and the Luminosity Monitor had been presented and studied :)
- Depleted Uranium shield does not work :)
- Background studies are progressing :)
- We have still big issues in front of us and we are working hard on that.

