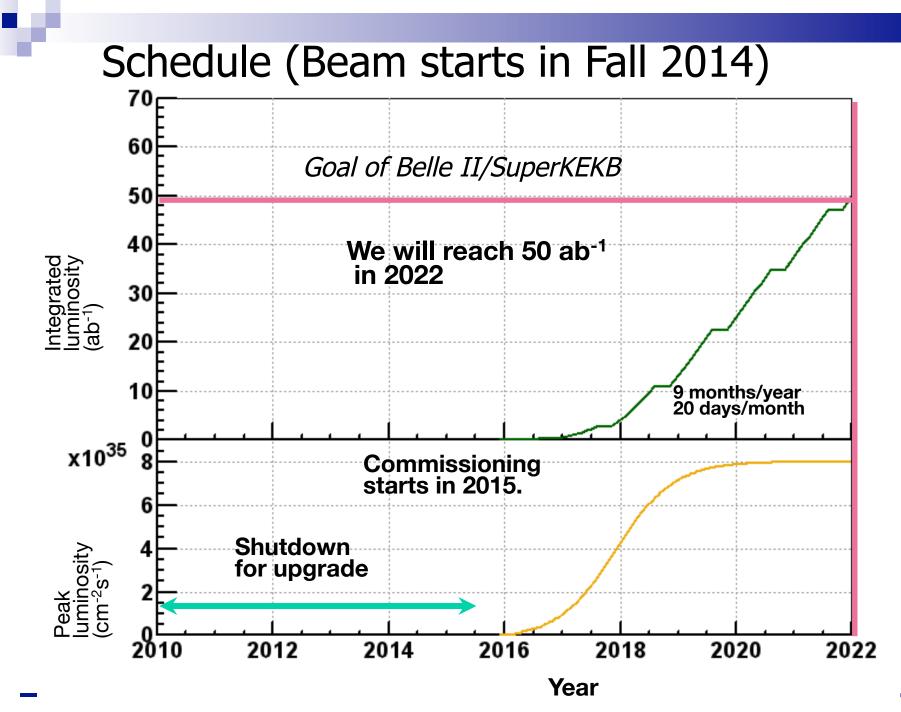
Status and Prospects of Super KEKB and Belle II

Zdenek Dolezal Charles University in Prague for Belle II


High Energy Accelerator Reseach Organization Meeting 1

Belle II Graphic by Rey.Hc

Contents

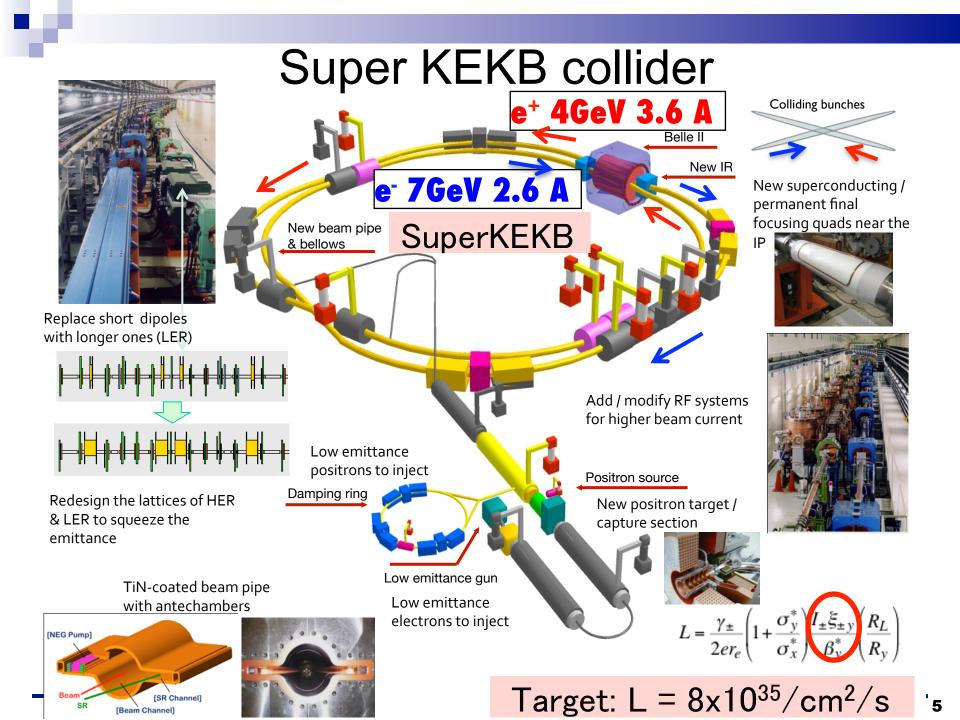
Belle II

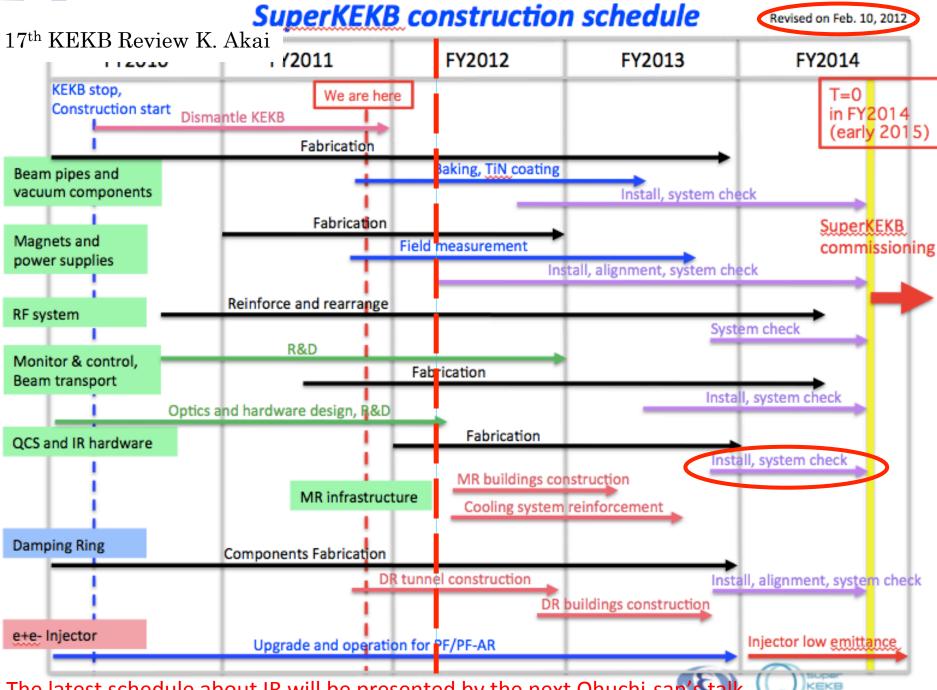
- Accellerator Progress
- Detector
- Computing
- Background
- Status and prospects of the project

Super KEKB in nano-beam scheme

- **To increase luminosity:**
- → squeeze beams to nanometer scale and enlarge crossing angle (minimize β_y^*)
- \rightarrow decrease beam emittance (keep current ξ_y)
- □ Squeezing beams in stronger magnetic field saturated by hourglass effect → intersect bunches only at highly focused region

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \frac{I_{\pm}\xi_{y\pm}}{\beta_{y\pm}^*} \frac{R_L}{R_{\xi_y}}$$

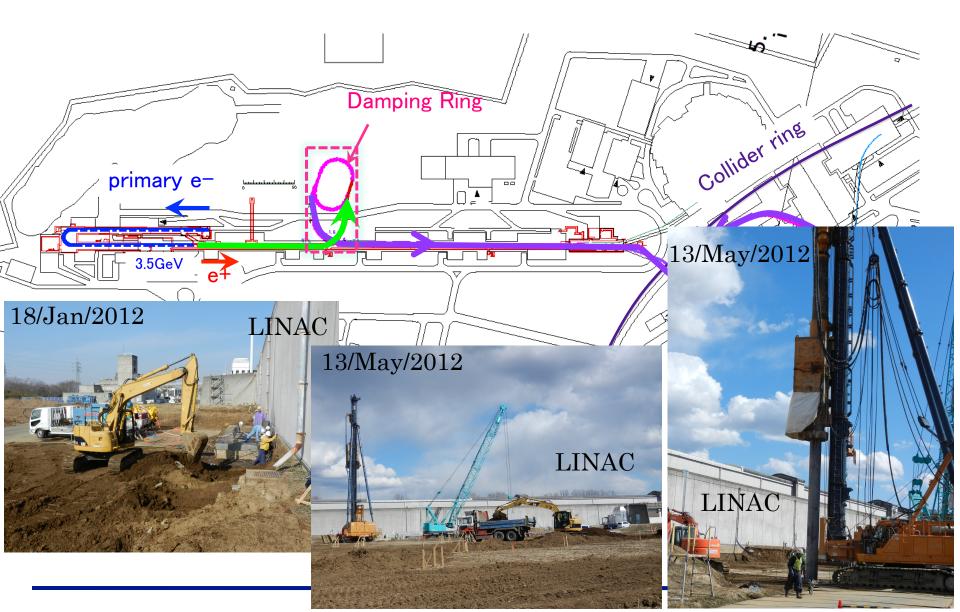

I: beam current β^* : trajectories envelope at IP $\xi_y \propto \sqrt{(\beta_y^*/\epsilon_y)}$ beam-beam parameter ϵ : beam emittance σ^* : beam size D. D. : geometrical reduction factors


 $R_L, R_{\xi y}$: geometrical reduction factors (crossing angle, hourglass effect)

 σ_x ~100μm, σ_y ~2μm σ_x ~10μm, σ_y ~60nm

Nano beam scheme: invented by Pantaleo Raimondi for the SuperB project.

	E (GeV) LER/HER	β* _y (mm) LER/HER	β* _x (cm) LER/HER	ε _x (nm) LER/HER	φ (mrad)	I (A) LER/HER	L (cm ⁻² s ⁻¹)
KEKB	3.5/8.0	5.9/5.9	120/120	18/24	11	1.6/1.2	2.1 x 10 ³⁴
SuperKEKB	4.0/7.0	0.27/0.41	3.2/2.4	3.1/2.4	41.5	3.6/2.6	80x10 ³⁴
Zdeněk Doležal		SuperB C	ollaboration N	leetina 1/6/20)12		



The latest schedule about IR will be presented by the next Ohuchi-san's talk

1st installation of the SuperKEKB magnet Feb.7th 2012

Construction of Damping ring started !

Accelerator status summary (K.Akai)

- The earthquake caused some delay and additional works for SuperKEKB construction, but we manage to recover to be in time for T=0.
- Design work and construction work are going on at the same time in consistent ways. But time limit for some critical designs will come soon.
- So far, budget is supplied as planned, except for the delay due to the earthquake.
- Shortage of human resources is getting better.
- Construction is well ongoing, prioritizing for T=0.

LER beam pipe production at BINP

Belle to Belle II Upgrade

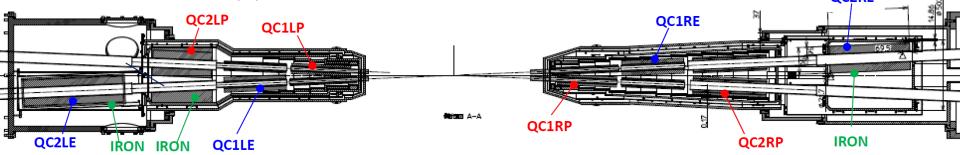
KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (endcaps)

EM Calorimeter: CsI(TI), waveform sampling (barrel) Pure CsI + waveform sampling (endcaps)

electrons (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

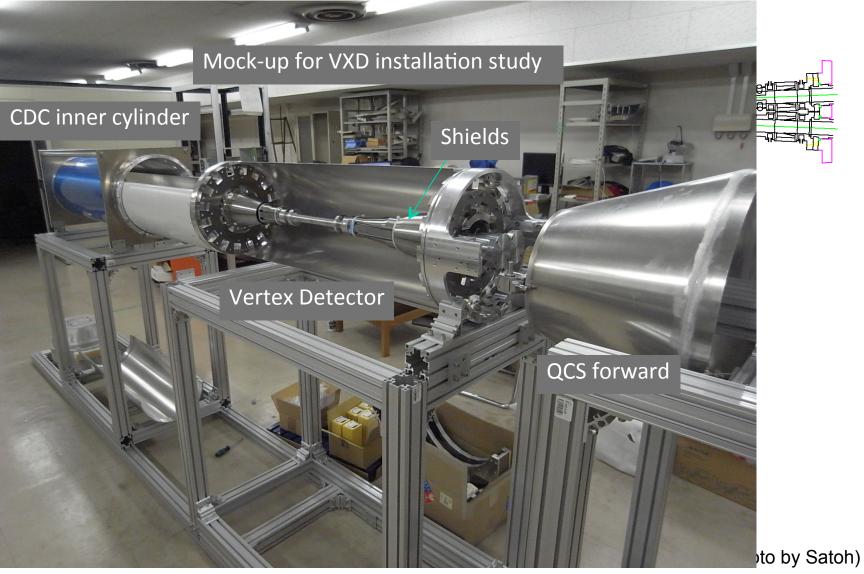

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positrons (4GeV)

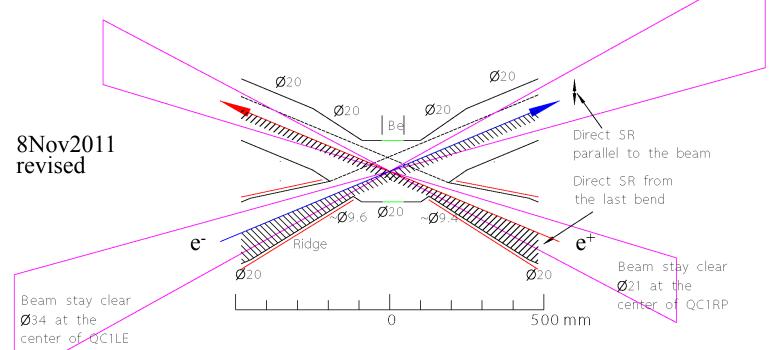
S.C. Magnets in SuperKEKB IR

Design changes in the magnets: introducing iron yokes to the quadrupoles and magnetic shields on the beam pipes



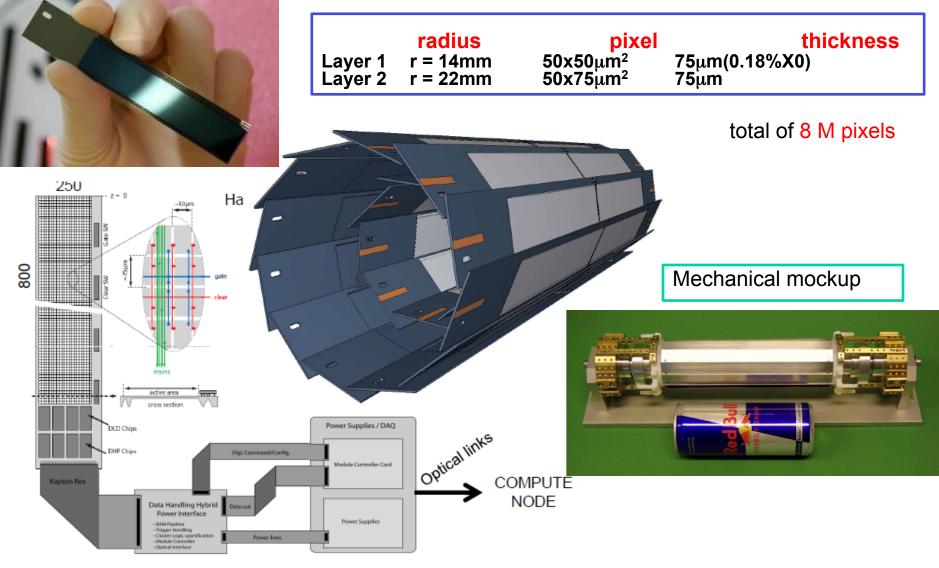
	Integral field gradient, (T/m)•m Solenoid field, T	Position from IP, mm	Magnet type	Corrector	Leak field cancel coil
QC2RE	12.91 [34.9 T/m × 0.370m]	2925	S.C. + Iron Yoke	a_1, b_1, a_2, b_4	
QC2RP	10.92 $[27.17 \times 0.4135]$	1925	S.C. + Iron Yoke	a_1, b_1, a_2, b_4	b ₃ , b ₄ , b ₅ , b ₆
QC1RE	24.99 [66.22×0.3774]	1410	S.C. + Iron Yoke	a_1, b_1, a_2, b_4	<u></u>
QC1RP	22.43 [66.52×0.3372]	935	S.C.	a_1, b_1, a_2, b_4	b ₃ , b ₄ , b ₅ , b ₆
QC1LP	22.91 [67.94×0.3372]	-935	S.C.	a_1, b_1, a_2, b_4	b ₃ , b ₄ , b ₅ , b ₆
QC1LE	26.67 [70.68×0.3774]	-1410	S.C. + Iron Yoke	a_1, b_1, a_2, b_4	<u> </u>
QC2LP	10.96 $[27.15 \times 0.4135]$	-1925	S.C. + Iron Yoke	a_1, b_1, a_2, b_4	
QC2LE	14.13 [20.2×0.700]	-2700	S.C. + Iron Yoke	a_1, b_1, a_2, b_4	
ESR	4.3 T (max. field)		S.C. Solenoid		
ESR-add	0.3 T	Each beam	S.C. Solenoid + Iron Yoke		
ESL	4.7 T (max. field)		S.C. Solenoid		

Super


KEKB

IP Chamber

IP Chamber **Design Features**


Minimize the creation and the trap of HOM.
The central part and the branch for the out-going beam constitute a bent pipe of d=20mm.

•The pipe for incoming beam starts from d=20 mm. Then d is gradually reduced to about 9 mm to stop direct SR.

•The inner surface of a pipe for incoming beam has ridges to prevent scattered light from hitting the central part.

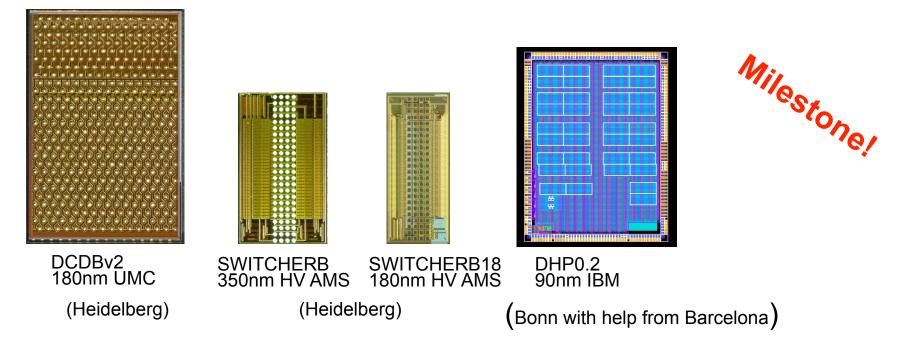
Pixel vertex detector: DEPFET

Power consumption in sensitive area: $0.1W/cm^2 =>$ air-cooling sufficient

SuperB Collaboration Meeting 1/6/2012

The ASICs are ready

The full-size close to final versions of the ASICs are designed, produced and tested.


In general the chips seem to work fine

DCDBv2 (some excess noise is to be understood, but still better than v1)

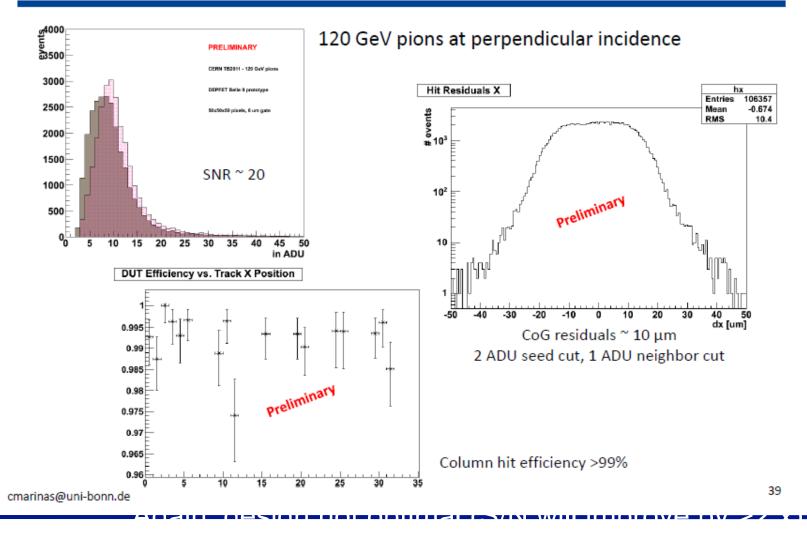
SWITCHERBv1 and SWITCHERB18 (trade off size <-> max. voltage swing)

DHP02 (in 90nm IBM technology) NEW (but needs to be redesigned for TSMC 65nm)

Moreover – the layout of the module (the periphery (ASIC) part) has been done as well (Christian Kreidl)

Support

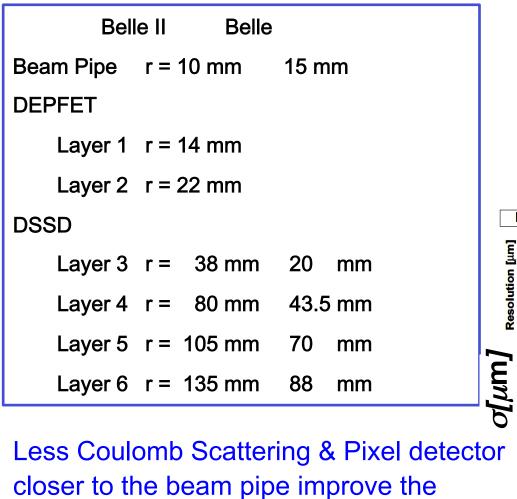
6

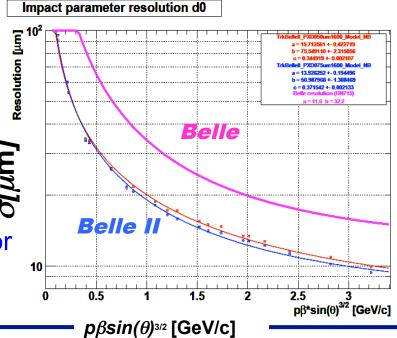

0

Beam pipe with PXD support
 End flanges for module mounting an
 Inner layer modules
 Outer layer modules

PXD Test Beam: Results

Signal, residuals, efficiency





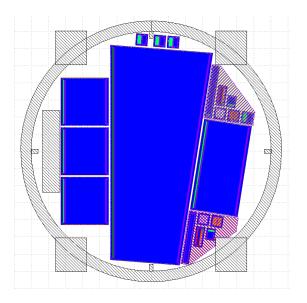
- Thin PXD6 matrices available and tested successfully in Lab and Beam Test.
- Yield initially low, reasons understood, process improved. Last wafers processed had >50% yield
- SOI procurement progressing, added a 2nd source, delivery of wafers imminent
- Have working prototypes of all ASICs (Milestone!), work within specs (readout speed!)
- DHP needs to be converted from IBM 90nm (phased out by Mosis) to TSCM 65nm (testchip already working)
- We can blind the DEPFET against injection noise (tested both at lab and beam)
- Steady and significant progréss of system issues:
 - CO2 and air cooling demonstrated.
 - driving of signal cables demonstrated.

SVD: double sided strips

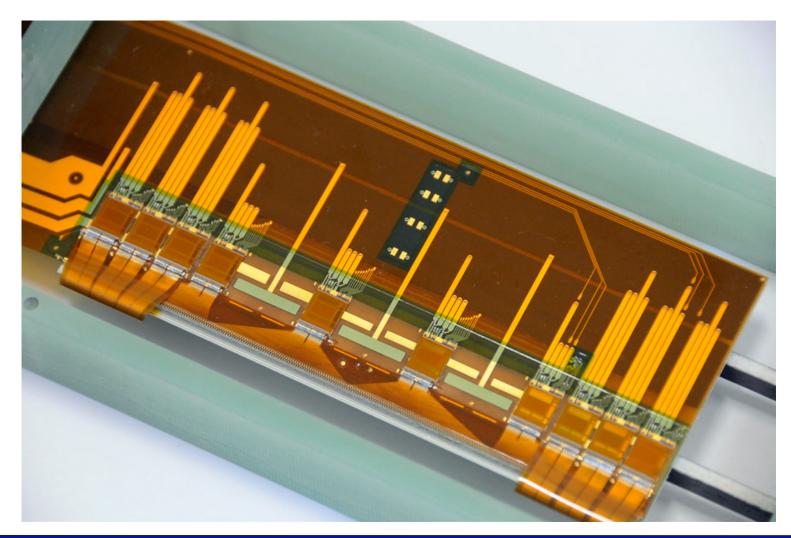
vertex resolution significantly.

SVD: DSSD

Micron DSSD sensor:

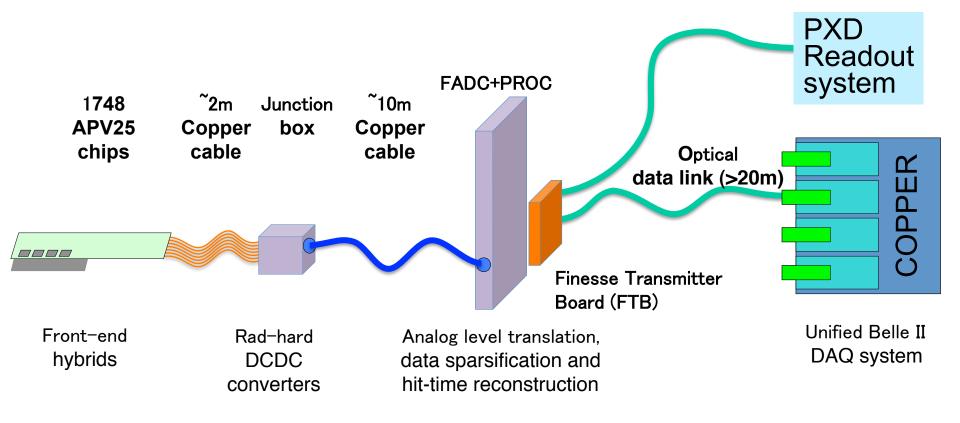

- After careful (and long) verification of design in Micron, the production started.
- Prototype sensors will arrive to Vienna in July.

HPK DSSD sensors


- □ About 40 DSSD will be delivered in March.
- HPK kindly agreed to supply a 2cmx2cm DSSD from each wafer.

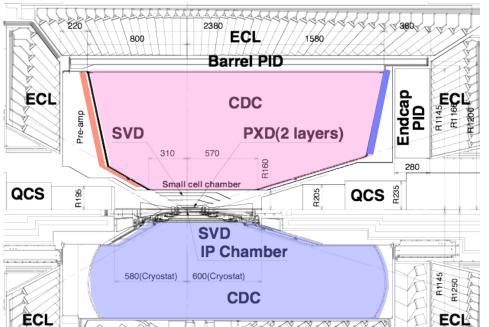
Baby sensors

- Quality control of product.
- □ Useful for basic parameter measurement.
- We do not have to ruin full size sensors for radiation damage test.



SVD: Origami Module with 6" HPK DSSD

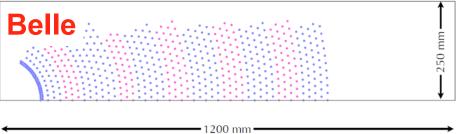
SVD: Readout Chain Overview


APV25 data is through 12 m long copper cable to FADCs.
Zero suppression and hit time finding by FADC firmware
FTB to COPPER readout system

SVD Summary

- Mechanics / structure solved
- Cooling: now working on the details of CO2 distribution and thermal transfer to APV chips
- Sensors: New wedge shaped sensors (for slanted part) now being fabricated at Micron, expected back in early July
- Origami: in June, a 2-sensor Origami ladder will be built at IPMU (Tokyo University) together with HEPHY and Tata people.
- Electronics readout: Continuously working on various parts, some circuits already prototyped and tested (analog and digital level translation), others in production (edge hybrids, Junction box boards)
- Software: simulation, online & offline all started
- Beam test & irradiation in October 2012
- Series ladder production will start in May 2013 (according to the schedule)

Central Drift Chamber



	Belle	Belle II		
inner most sense wire	r=88mm	r=168mm		
outer most sense wire	r=863mm	r=1111.4mm		
Number of layers	50	56		
Total sense wires	8400	14336		
Gas	He:C ₂ H ₆	He:C ₂ H ₆		
sense wire	$W(\Phi 30 \mum)$	$W(\Phi 30 \mum)$		
field wire	$AI(\Phi 120 \mu m)$	$AI(\Phi 120 \mu m)$		
Zdeněk Doležal	SuperB Collabo			

longer lever arm

 $\sigma_{P_t}/P_t = 0.19P_t \oplus 0.30/eta \ \sigma_{P_t}/P_t = 0.11P_t \oplus 0.30/eta$

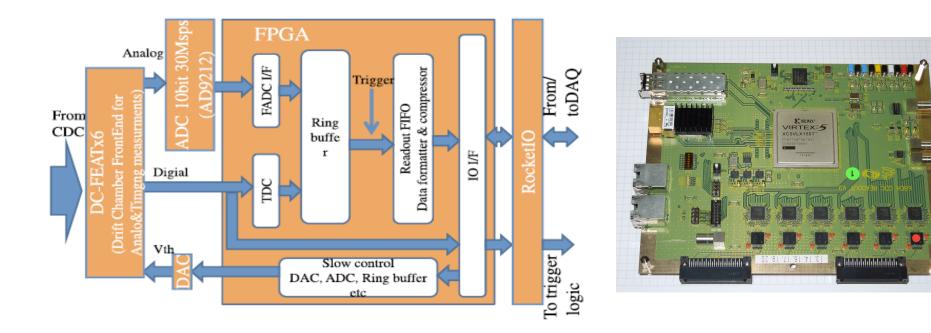
new readout system dead time 1-2µs → 200ns small cell smaller hit rate for each wire shorter maximum drift time

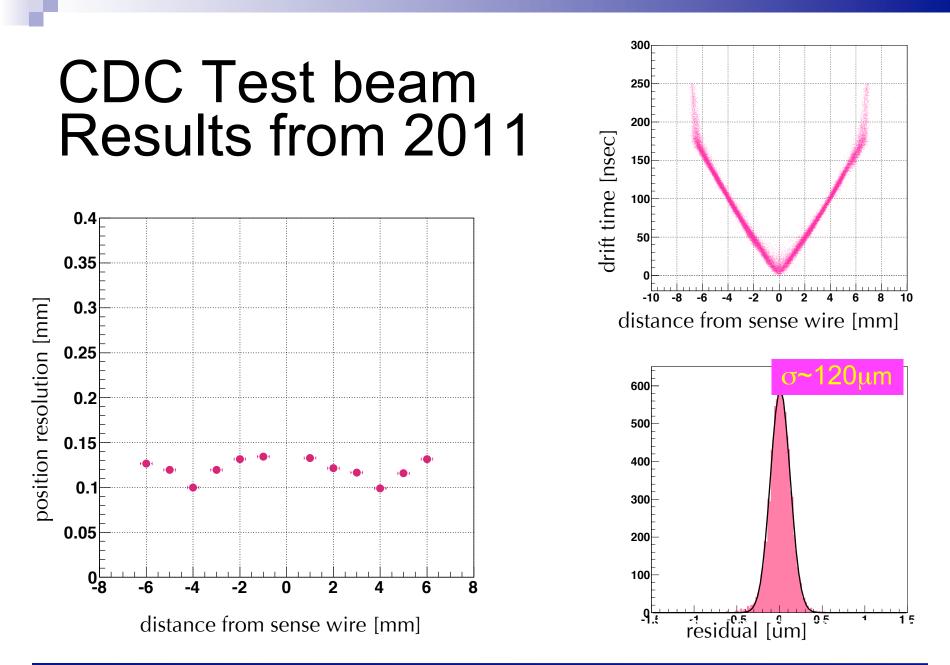
Belle II small cell normal cell

n	orn	nal	cell	
φ	0	0	0	0
φ	•	0	•	0
6	0		\bigcirc	\bigcirc

ration Meeting 1/6/2012

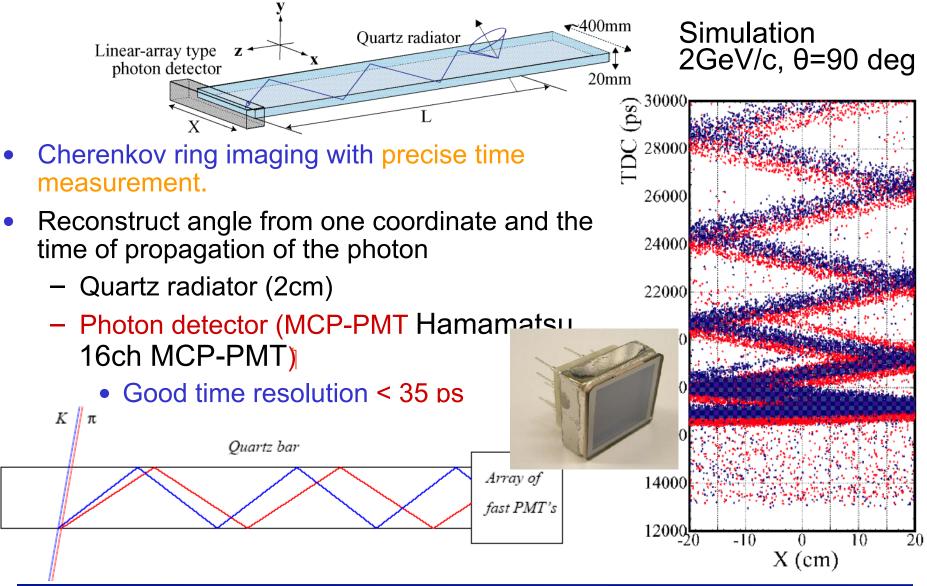
CDC endplate drilling


Shaping and drilling were done without serious troubles. There is no drill breaking.

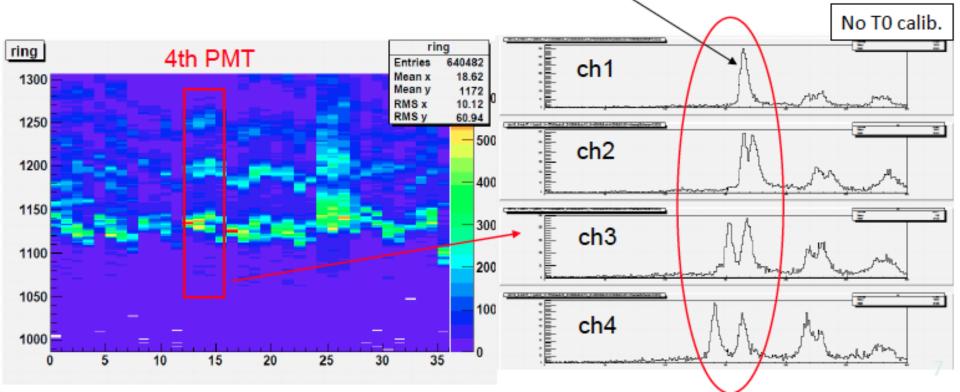


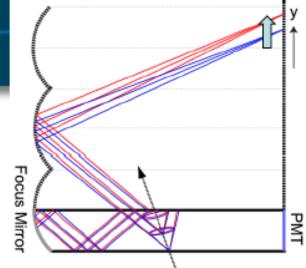
Central Drift Chamber Readout

- New electronics has been designed and tested
- The drift time is measured with an FPGA-based TDC
- A slow FADC (around 30MSa/s) measures the signal charge.



CDC Summary


- Fabrication of six endplates almost done successfully.
- Fabrication of outer cylinder started and it will be delivered by Sep 2012. Then, we can meet the installation schedule (May in 2015)
- Wire stringing will start in 2012
- New ASIC works fine.
 - □ Mass production already finished.
 - □ Quality check started in NTU
- New 48ch readout board (Ver.3) basically works fine.
 - ☐ More tests will be done in 2012.
 - Radiation hardness of optical transceivers (DAQ,TRG talks)
 - \Box Mass production will be done in 2013 (and 2014).


Barrel PID: Time of propagation (TOP) counter

Ring image

- Complicated ring image as expected
- Expected time distribution along y-channel
- Good time resolution : ~95ps
 - By simulation: ~103ps
 - Without focus system, resolution is ~170ps for 2900mm propagation.

Barrel PID Summary

- Quartz radiator
 - (Almost) full size quartz radiator is prepared.
 - Two quartz bars and mirror were glued successfully.
 - Support box is produced and tested.
- Readout block
 - New ASIC for high speed waveform readout is tested with MCP-PMTs and outputs single photon pulses.

Beam test

- Performed with 120GeV proton at FTBF in Dec.-Jan.
 - data analysis going on.

End-cap PID: Aerogel RICH

Proximity focusing RICH with aerogel radiator Test Beam setup (ARICH) 200mm Cherenkov photon Aerogel Aerogel radiator n~1.05 Hamamatsu HAPD + new ASIC Hamamatsu HAPD rich_2d_1 RICH Hit Map, w.r.t. track Q.E. ~33% (recent good ones) Entries 412449 Mean x -0.09929 Mean y -0.432 RMS x 43.24 100 50 ahist ahistmiki 64801 Entries Mean 0.3092 RMS 0.07419 6000 γ^2 / ndf 143.5 / 28 6129 ± 39 . consta 0.3067 ± 0.000 5000 01349 ± 0.0000 6.6 σ π/K at 4 GeV/c ! 4000 BG cons -192.6 + 20.5 BG slope 1715 + 69 4 # of tracks · 2700 3000 # Photons : 41339.7 +- 227.3 Photon/track: 15.31 +- 0.08 BG / track : 2.00 +- 0.03 2000 Clear Cherenkov image observed run048 1000

SuperB Collaboration Meeting 1/6/2012

intra-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

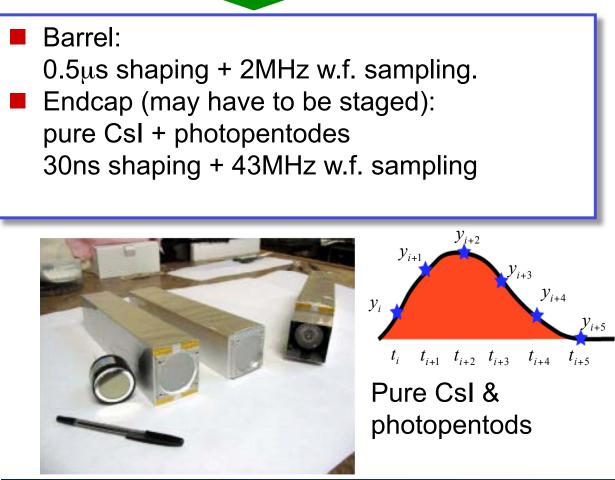
0<u></u>_

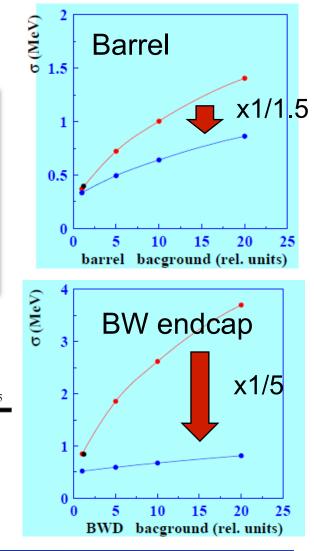
E-PID summary

Aerogel:

Ready to start production of normal aerogel radiator with refractive indices 1.045, 1.055. Production of large pin-drying aerogel tiles with higher refractive index still under study.

HAPD:


- Degradation of APD performance during gamma irradiation understood and new HAPD samples produced.
- Tests of new samples is ongoing and the decision on final HAPD parameters in September.


Electronics:

- Close to final prototype of FE board with SA02 ASICs successfully tested with small ARICH prototype in the beam tests.
- Samples of final version of ASICs (SA03) successfully tested and new FE board is in production.
- Tests of the merger board prototype are ongoing.

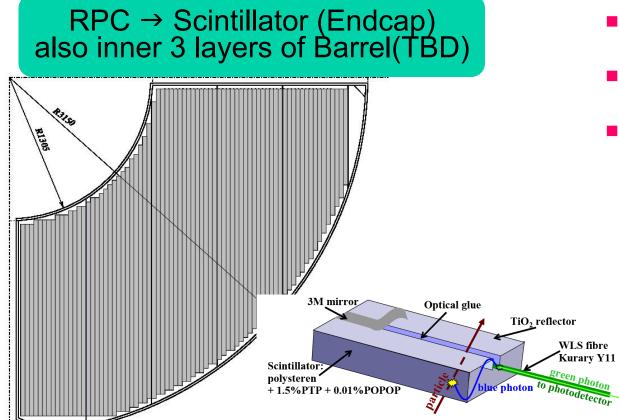
ECL Upgrade

- Increase of dark currents due to neutron flux
- Fake clusters & pile-up noise

Zdeněk Doležal

ECL Status

Barrel electronics modification:


- Barrel Shaper DSP modules mass production is started this year(100 of 450). The bidding procedure is going on.
- Endcap version of Shaper DSP module design is prepared.
- Collector module: second version has been produced. Belle2link will be tested in August.
- VME crate design is to be finished this year.

ECL Status (cont'd)

Crystal counter status:

- The test bench for test of the barrel counters with cosmic was prepared. It based on the
- 1 VME crate with 12 SHaper_DSP modules, collector and fam module
- and allows to test 184 counters by once.
- The test of the counters is going on. Half of the counters has been tested. Will be finished in July.
- R&D with pure CSI option for endcaps is going on.
- Pure CsI+PP option has been tested.
- Pure CsI+APD is tested.
- Radiation hardness of Pure CsI crystals is going on.

KLM: K_L& Muon detector

LAYOUT

- One layer: 75 strips (4 cm width)/sector
- 5 segments
 1 segment = 15strips
- Two orthogonal layer = superlayer
- F&B endcap KLM:
 - □ Total area ~1400 m²
 - □ 16800 strips
 - the longest strip 2.8 m; the shortest 0.6 m

WLS fiber in each strip

Hamamatsu MPPC at one fiber end

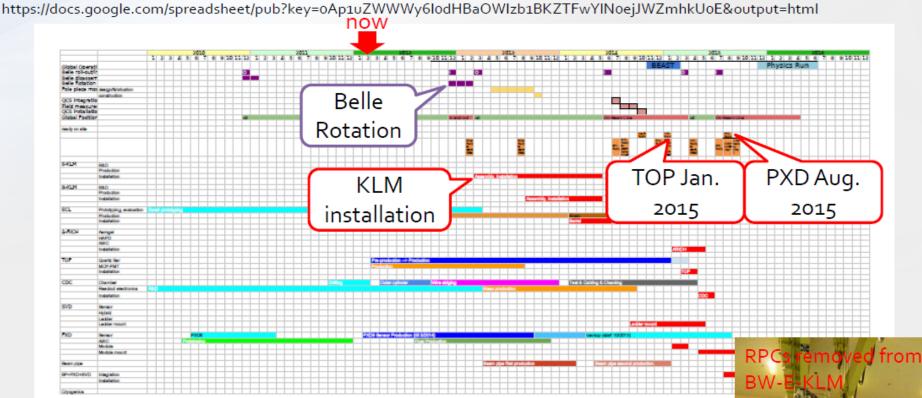
mirrored far fiber end

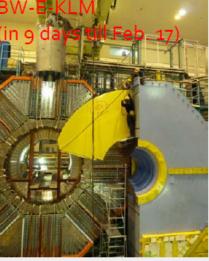
Endcap muon detecton is already limited by backgrounds. Endcap RPCs will not work at full luminosity and higher backgrounds. Inner barrel is *marginal.*

MPPC: Hamamatsu 1.3×1.3 mm 667 pixels (used in T2K Near Detector)

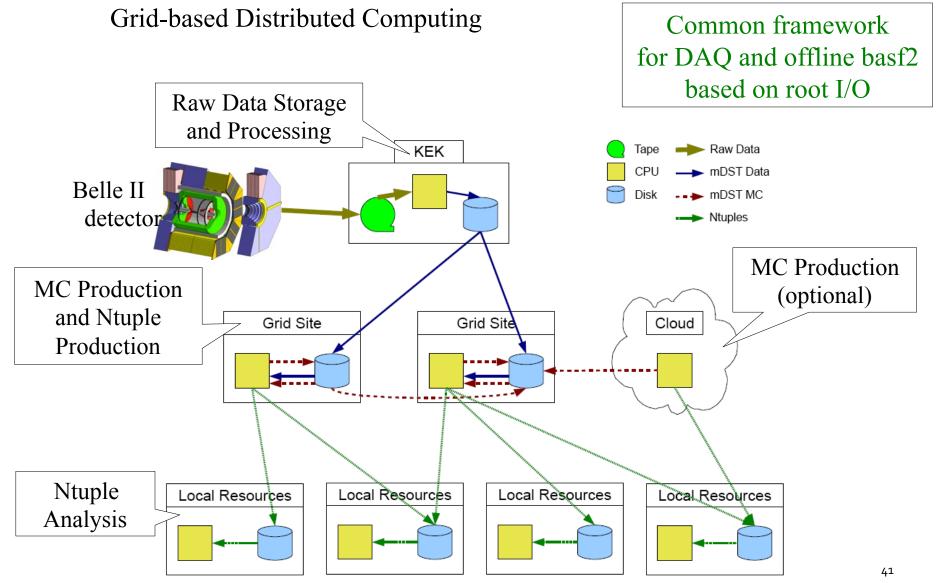
Test mass production @ ITEP

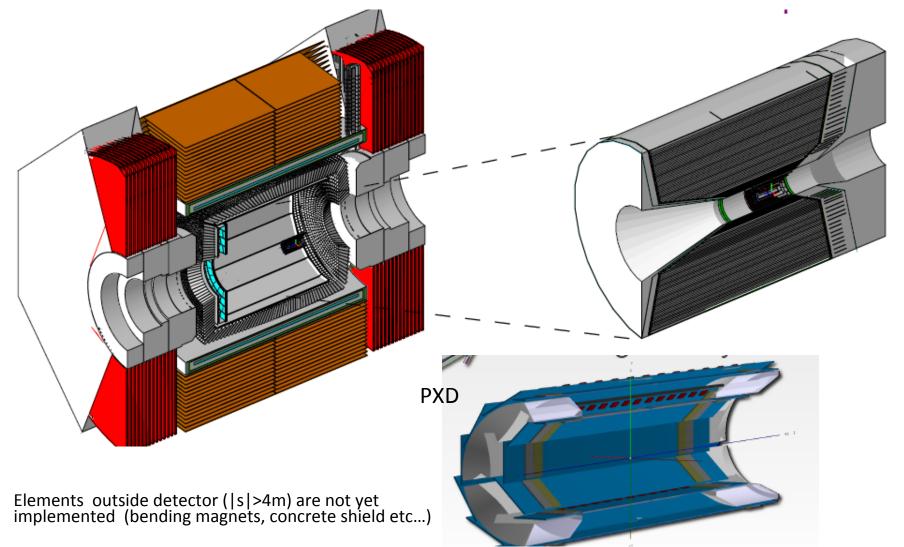
 ~150 long strips produced to check all operations
 × On line test of the quality of production: performance is more stable than with manual operations


× according to estimates ½ of the sector should be produced in one day: × preparation of fiber (100 at once) – 1 people × 80 strips (2-3 people) × cosmics test × 5 segments at 5 tables (2-3 people) × need 230 workdays to produce whole detector


KLM status

- Test module for endcap was built at KEK in July 2011.
- Radiation-hardness tests have been conducted in proton beam at ITEP for SiPMs, preamps, and preamp carrier cards. All will survive for at least a decade of Belle II operation at full luminosity.
- Light-collection efficiency is improved by 40% by protruding the wavelength-shifting fiber 200 microns closer to the SiPM
- Quality test stand has been developed at ITEP.
- Mass-production test procedures have been tested at ITEP.
- Most of raw material is now at ITEP or will be delivered soon.

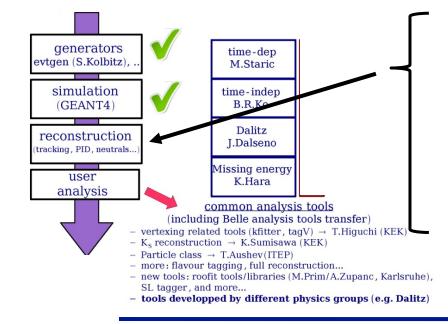

Belle II Construction Schedule


Detector rotation in the end of JFY2012 (Dec/Jan – Feb./Mar.) KLM installation starts right after that (Mar./Apr. –) TOP should be ready at KEK in Jan. 2015 PXD should be ready at KEK in Aug. 2015 (three on critical path)

Belle II Computing Model

Whole geometry ready in GEANT4

Hiroyuki Nakayama (KEK)2


Physics studies

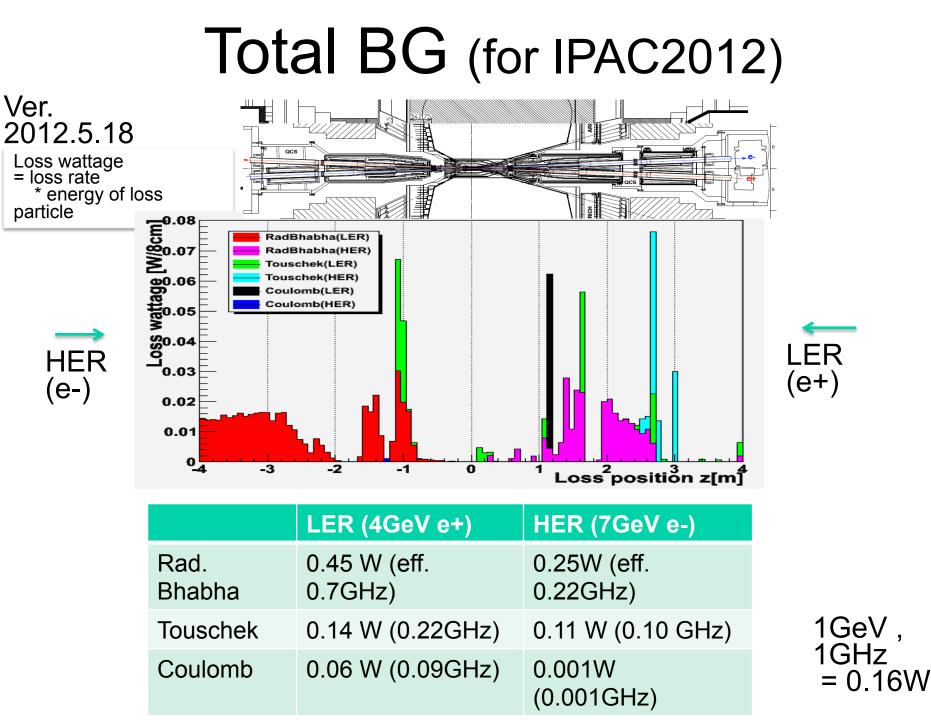
ProtoPhysics groups

t-independent methods, B.R. Ko t-dependent methods, M. Starič Dalitz methods, J.Dalseno *E_{miss}* methods, K. Hara Aim of ProtoPhysics groups:

"preparation, development and tests of Full simulation and reconstruction tools,

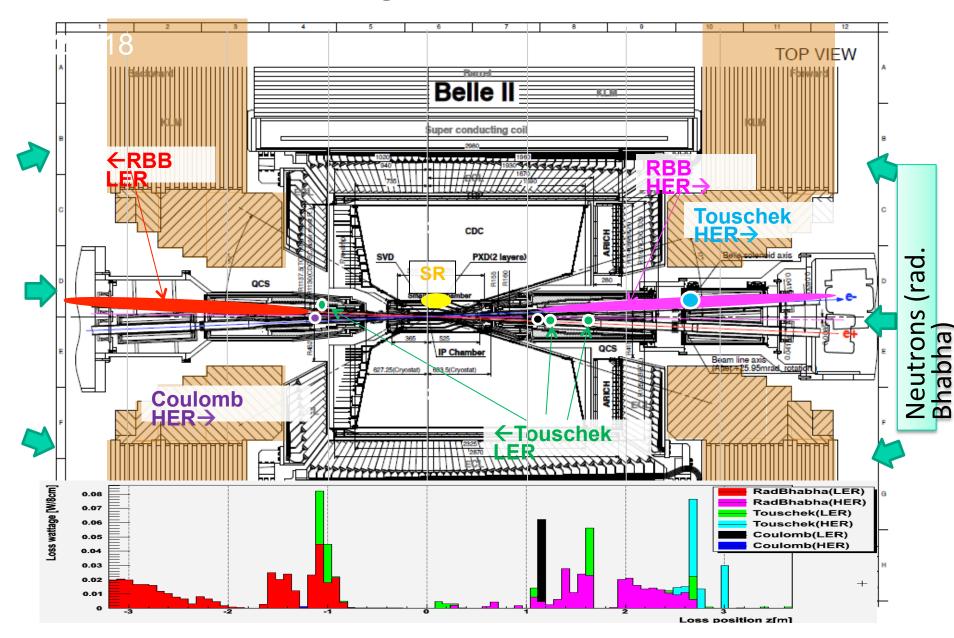
...choosing, preparing and studying benchmark physics modes for estimating the performance of the detector using simulation"

Simplified tracking (CDC on)ly) need PXD, SVD


TOP&ARICH reco (not with track fitter output yet)

ECL (need for fullrecon, Belle algorithm, no t info)
 KLM (track extrapol., μ id, no K_L)

preparing full analysis chain to be at Belle II


Background estimation status

- Touschek: expected to be severe in nano-beam scheme, but can be reduced by horizontal and vertical collimators.
- Beam-gas Coulomb: Also severe with thinner IR beam pipe and larger maximum by(~4000m), but can be reduced by narrow (few mm) vertical collimator, without losing beam stability if placed at small βy.
- Radiative Bhabha: e^{+/-} with large ΔE after RBB process can be lost inside the detector and become considerable BG
- Synchrotron Radiation: tolerable (negligible SR hit rate on Be pipe thanks to the collimation on incoming beam pipe)
- 2-photon: tolerable (discrepancy between SuperB's estimation disappeared during the discussion at Joint BG workshop)
- Beam-gas brems, beam-beam kick, etc...

Background picture

Impact on detector

GEANT4-based full-simulation performed Detector performance are studied

- PXD/SVD occupancy, CDC hit rate, PID performance, etc..
- □ Radiation dose, neutron rate
 - Readout boards, Si devices, ECL crystals, etc..
- Some sub-detectors require further mitigation
 - Thick tungsten shield inside final Q cryostat
 - To mitigate TOP PMT photocathode aging, CDC hit rate, etc..
 - Additional neutron shield
 - To protect CDC electronics board, ARICH HAPD, etc..

SuperKEKB/Belle II Funding Status

- Accelerator upgrade + 50% of the detector ca 320 M€ approved in March 2011
- Funding of the contribution to the remaining 50% of the detector ca 20 M€ in many other countries approved or on the way
- First MoU between German FAs and KEK signed in 2011, others to follow

The Belle II Collaboration

A very strong group of ~400 highly motivated scientists!

Next open general meetings: Bad Aibling (Bavaria) July 26-29 KEK November 12-15 2012

Zdeněk Doležal

Summary

- SuperKEKB/Belle II aims for (discovering and) understanding the New Physics.
- Target luminosity of SuperKEKB is 8x10³⁵/cm²/s, will provide 50ab⁻¹ by 2021-2022.
- Belle II gives similar or better performance than Belle even under higher beam background.
- Project has been approved by Japanese Government and started.
 KEKB/Belle operation has been terminated and construction started.
- Next collaboration meeting: Bavaria July 26-29, still open to everyone. New collaborators welcome!
- Accelerator upgrade well underway
- Detector: Moving from the design phase into production for many components
- Looking forward to a friendly competition with a second Superflavour

Zdeněk Doležal

50

2

Machine parameters

Y. Ohnishi

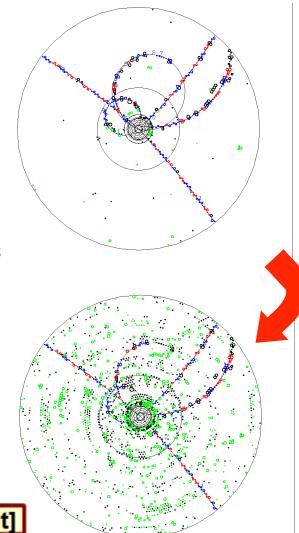
2011/july/20	LER	HER	unit	
E	4.000	7.007	GeV	
I	3.6	3.6 2.6		
Number of bunches	2,5	500		
Bunch Current	1.44	1.04	mA	
Circumference	3,016	5.315	m	
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/11.5(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
β_x^*/β_y^*	32/0.27	25/0.30	mm	
Crossing angle	8	3	mrad	
α _p	3.25×10 ⁻⁴	4.55×10 ⁻⁴		
σδ	8.08(7.73)x10 ⁻⁴	6.37(6.31)×10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σz	6.0(5.0)	5(4.9)	mm	():zero current
٧s	-0.0247	-0.0280		
$v_{\rm x}/v_{\rm y}$	44.53/44.57	45.53/43.57		
Uo	1.87	1.87 2.43		
$\tau_{x,y}/\tau_s$	43.1/21.6	58.0/29.0	msec	
ξ _× /ξ _ν	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x1	LO ³⁵	cm ⁻² s ⁻¹	

Feb. 26, 2012

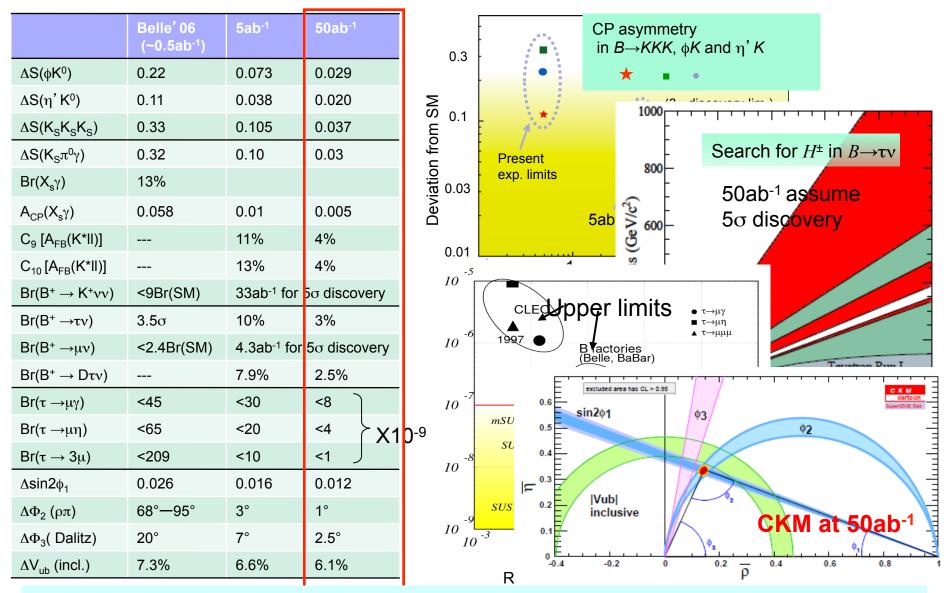
K. Akai (KEK), SuperKEKB Status, presented at the 6th Belle PAC

15

))Super Kekb

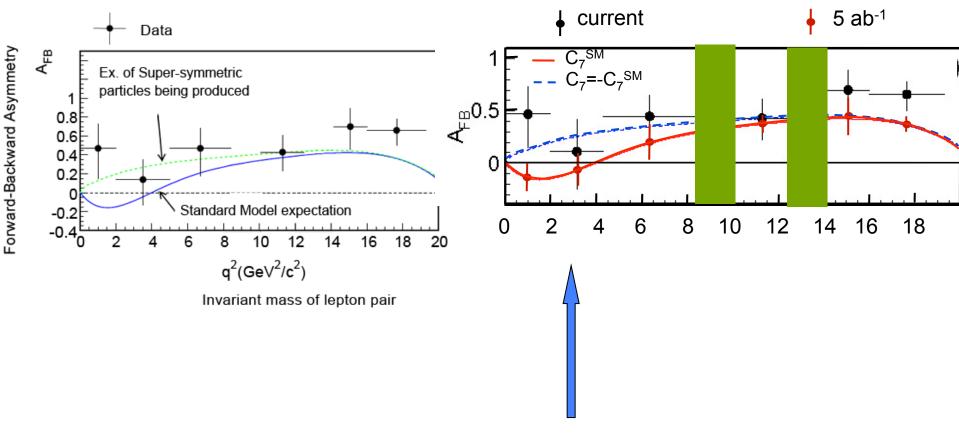

Requirements for the Belle II detector

Critical issues at L= 8 x 10^{35} /cm²/sec


- Higher background (×10-20)
 - radiation damage and occupancy
 - fake hits and pile-up noise in the EM
- Higher event rate (×10)
 - higher rate trigger, DAQ and computing
- Special features required
 - low $p \mu$ identification \leftarrow s $\mu\mu$ recon. eff.
 - hermeticity $\leftarrow v$ "reconstruction"

Result: significant upgrade

TDR published arXiv:1011.0352v1 [physics.ins-det]


Physics reach at a Super KEKB/Belle

Physics at Super B Factory [hep-ex/0406071]

Currently being updated.

$A_{FB}(B \rightarrow K^* I^+ I^-)[q^2]$ at a Super B Factory

Zero-crossing q² for A_{FB} will be determined with a 5% error with 50ab⁻¹.

Zdeněk Doležal Strong competitionaboration Meeting 1/6/2b12 and ATLAS/CMS 55

Comparison with the LHCb

e^+e^- has advantages in	LHCb has advantages in
CPV in $B \rightarrow \phi K_S$, $\eta' K_S$, CPV in $B \rightarrow K_S \pi^0 \gamma$ $B \rightarrow K \nu \nu$, $\tau \nu$, $D^{(*)} \tau \nu$	CPV in $B \rightarrow J/\psi K_S$ Most of <i>B</i> decays not including ν or γ
Inclusive $b \rightarrow s \mu \mu$, see $\tau \rightarrow \mu \gamma$ and other LFV $D^0 \overline{D^0}$ mixing	Time dependent measurements of B_S $B_{(s,d)} \rightarrow \mu\mu$ B_c and bottomed baryons

Complementary!!

Luminosity gain and upgrade items (preliminary)

Item	Gain	Purpose
beam pipe	x 1.5	high current, short bunch, electron cloud
IR($\beta^*_{x/y}$ =20cm/3 mm)	x 1.5	small beam size at IP
low emittance(12 nm) & $v_x \rightarrow 0.5$	x 1.3	mitigate nonlinear effects with beam-beam
crab crossing	x 2	mitigate nonlinear effects with beam-beam
RF/infrastructure	x 3	high current
DR/e ⁺ source	x 1.5	low β^* injection, improve e ⁺ injection
charge switch	x ?	electron cloud, lower e ⁺ current

Major KEKB components

	Item	Objec	t	Oku-yen ~1.0 M\$	Luminosity
	New beam pipes	Enable high Reduce e-		178 (incl. BPM, magnets, etc.)	x 1.5
	New IR	Small	β*	31	x 2
	e+ Damping Ring	Allow injection increase e+		40 incl. linac upgrade	if not, x 0.75
	More RF and cooling systems	High current Higher beam-beam param.		179 (incl. facilities)	x 3
	Crab Cavities			15	x (2 – 4)
L [1	ems are inter	related.	 Tunnel already exists. Most of the components (magnets, klystrons, etc.) will be re-used. 		

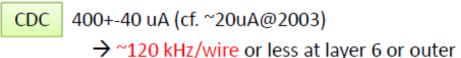
Upgrade from KEKB to SuperKEKB

smaller beam size, more current
 → x40 higher luminosity

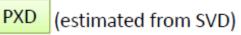
Machine parameter	HER (KEKB)	LER (KEKB)	HER (SuperKEKB)	LER (SuperKEKB)
Vertical beam size	0.94µm	0.94µm	59nm	59nm
Beam current(mA)	1188	1637	2600	3600
luminosity(cm ⁻² s ⁻¹)	2.1x10 ³⁴		8x10 ³⁵	

Introduction: background sources

- Touschek effect (∝IxE-3)
 - Intra-bunch scattering → energy increase & decrease
 - Significant in low energy ring (LER)
- Beam-gas scattering (∝Pxl)
 - Collision with remaining gas
 - Type 1: Coulomb scattering → direction change
 - Type 2: Bremsstrahlung → energy decrease
- Synchrotron Radiation (∝E²xB²)
 - Type 1: Upstream (SR hit Be beam pipe directly)
 - Type 2: Backscatter (SR hit downward beam pipe, then reflected back to IP)
- Radiative Bhabha, other QED process (∝L)
 - Type 1: radiated gamma + magnet Fe → neutron, main bkg source for KLM
 - Type 2: e+,e- lose energy →off-trajectry → hit downward beam pipe → shower
- Beam-beam effect
 - Injected particles with a large horizontal oscillation (due to injection error) may be lost


H.Nakayama(KEK)

BG estimation at SuperKEKB


CDC

Assumptions:

- Use τ_{Touschek} from optics simulation: 8.7min(LER), 15.3min(HER)
- Use same τ_{beam-gas} from KEKB machine study: <u>800min(LER)</u>, <u>3400min(HER)</u>
- Use same k_{Touchek}, k_{beam-gas} from KEKB machine study

- ECL 60+-5 GeV/event
 - \rightarrow wave form fitting (x1/7) $\rightarrow \underline{^{\circ 9} \text{ GeV/event}}$
- SVD 6000+-600 event/trigger
 - \rightarrow shorter integration time (2µs \rightarrow 75ns)
 - → ~400 event/trigger, <u>occupancy: 2.7%+-0.3%</u><10% (SVD2)

- → 3.2M pixels in 1st layer, shaping time: 20µs
- \rightarrow Occupancy = 1.5 \pm 0.1%

(not including low-pt tracks or <few keV gammas)

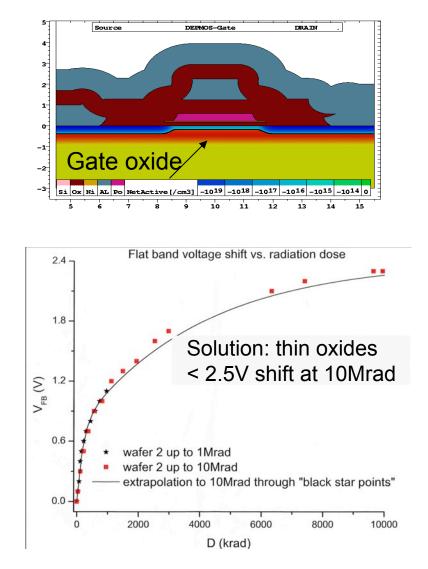
SR, Rad.Bhabha, beam-beam BG are not included

HER beam-gas

LER_beam-gas
HER_Touschek

LER Touschek

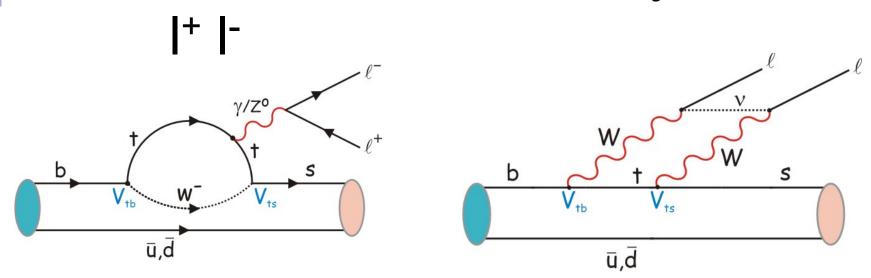
LER/total: 60~70%,


Touschek/total: >90%

PXD 1st: 14mm SVD2 1st : 30mm

DEPFET Radiation Damage

DEPFET based on a MOS structure problem with ionizing radiation: Creation of fixed (positive) charges in the oxide layer and at the interface Attracts electrons at the Si/SiO₂ interface Need more negative gate voltages to compensate

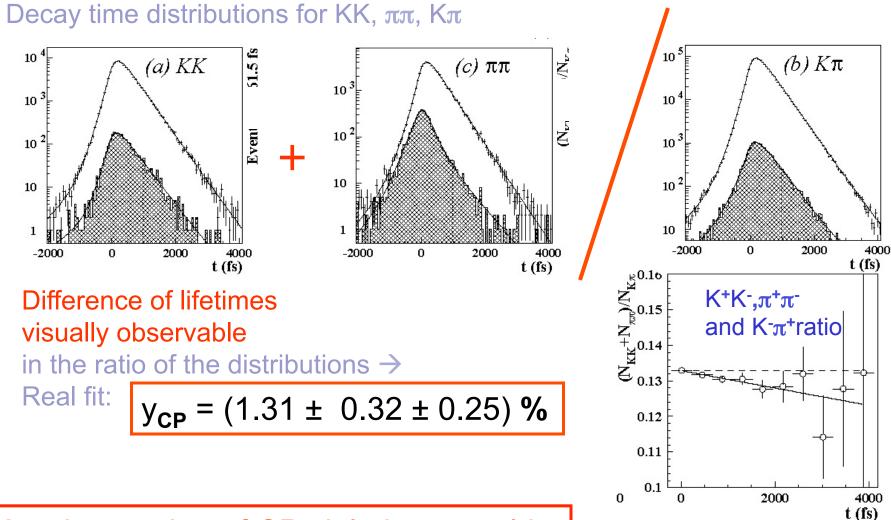

=> Shift of transistor threshold 16 14 12 10 -8 Shift [V] For standard DEPFETs the 6 threshold voltage shifts reach 14 4 V after 4 Mrad Too large for safe operation! 2 0 n 500 1000 1500 2000 2500 3000 3500 4000 Dose [kRad]

Belle II basic parameters (TDR)

Component	Type	Configuration	Readout	Performance
Beam pipe	Beryllium	Cylindrical, inner radius 10 mm,		
	double-wall	$10 \ \mu \mathrm{m}$ Au, 0.6 mm Be,		
		1 mm coolant (paraffin), 0.4 mm Be		
PXD	Silicon pixel	Sensor size: 15×100 (120) mm ²	10 M	impact parameter resolution
	(DEPFET)	pixel size: 50×50 (75) μm^2		$\sigma_{zo} \sim 20 \ \mu { m m}$
		2 layers: 8 (12) sensors		(PXD and SVD)
SVD	Double sided	Sensors: rectangular and trapezoidal	245 k	
	Silicon strip	Strip pitch: 50(p)/160(n) - 75(p)/240(n) μm		
		4 layers: 16/30/56/85 sensors		
CDC	Small cell	56 layers, 32 axial, 24 stereo	14 k	$\sigma_{r\phi} = 100 \ \mu m, \ \sigma_z = 2 \ mm$
	drift chamber	r = 16 - 112 cm		$\sigma_{p_t}/p_t = \sqrt{(0.2\% p_t)^2 + (0.3\%/\beta)^2}$
		$-83 \le z \le 159 \text{ cm}$		$\sigma_{p_t}/p_t = \sqrt{(0.1\% p_t)^2 + (0.3\%/\beta)^2}$ (with SVD)
				$\sigma_{dE/dx} = 5\%$ $N_{p.e.} \sim 20, \sigma_t = 40 \text{ ps}$
TOP	RICH with	16 segments in ϕ at $r \sim 120$ cm	8 k	$N_{p.e.} \sim 20, \sigma_t = 40 \mathrm{ps}$
	quartz radiator	275 cm long, $2 cm$ thick quartz bars		K/π separation :
		with 4x4 channel MCP PMTs		efficiency > 99% at $< 0.5\%$ pion
				fake prob. for $B \to \rho \gamma$ decays
ARICH	RICH with	4 cm thick focusing radiator	78 k	$N_{p.e.} \sim 13$
	aerogel radiator	and HAPD photodetectors		K/π separation at 4 GeV/c:
		for the forward end-cap		efficiency 96% at 1% pion fake prob.
ECL	CsI(Tl)	Barrel: $r = 125 - 162 \text{ cm}$	6624	$\frac{\sigma E}{E} = \frac{0.2\%}{E} \oplus \frac{1.6\%}{\sqrt{E}} \oplus 1.2\%$
	(Towered structure)	End-cap: $z =$	1152 (F)	$\sigma_{pos} = 0.5 \text{ cm}/\sqrt{E}$
	· /	-102 cm and +196 cm	960 (B)	(E in GeV)
KLM	barrel: RPCs	14 layers (5 cm Fe + 4 cm gap)	θ: 16 k, φ: 16 k	$\Delta \phi = \Delta \theta = 20$ mradian for K_L
		2 RPCs in each gap		$\sim 1~\%$ hadron fake for muons
	end-caps:	14 layers of $(7 - 10) \times 40 \text{ mm}^2 \text{ strips}$	17 k	$\Delta \phi = \Delta \theta = 10 \text{ mradian for } K_L$
	scintillator strips	read out with WLS and G-APDs		$\sigma_p/p = 18\%$ for 1 GeV/c K_L

Another FCNC decay: $B \rightarrow K^*$

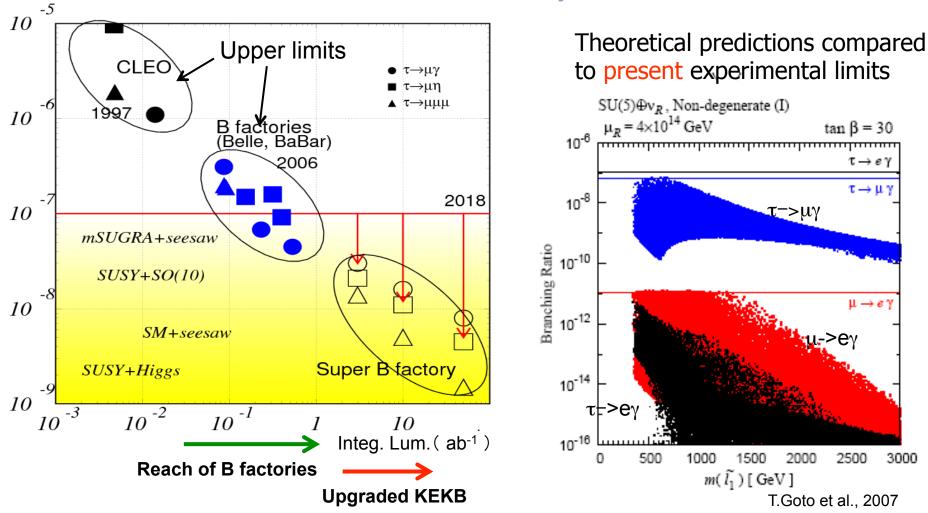
 $b \rightarrow s I^+I^-$ was first measured in $B \rightarrow K I^+I^-$ by Belle (2001).

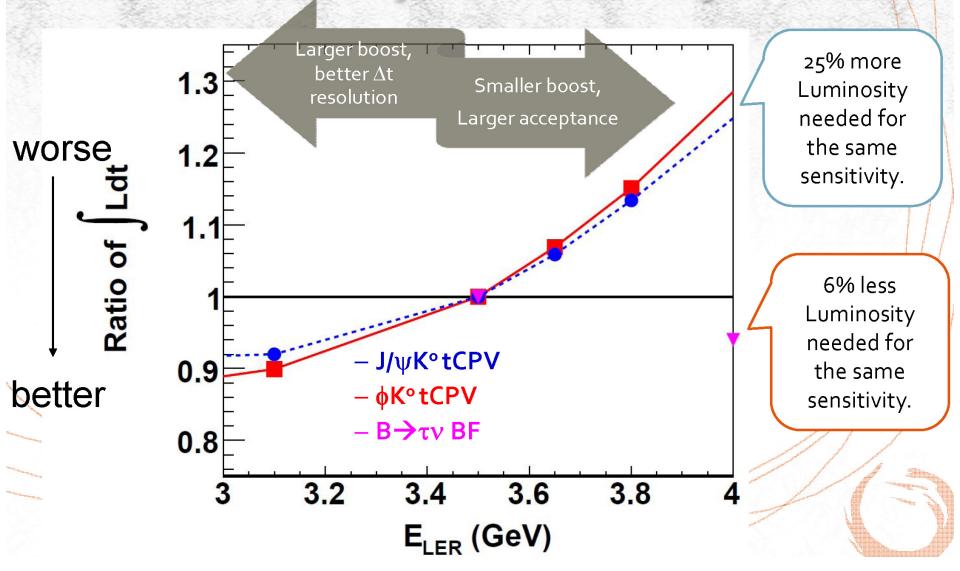

Important for further searches for the physics beyond SM

Particularly sensitive: backward-forward asymmetry in K^{*} I⁺I

$$A_{FB} \propto \Re \left[C_{10}^* (sC_9^{eff}(s) + r(s)C_7) \right]$$

C_i : Wilson coefficients, abs. value of C₇ from b→s γ s=lepton pair mass squared


D⁰ mixing in K⁺K⁻, π⁺π⁻


An observation of CP violations would be a clear sign of new physics

Precision measurements of τ decays

LF violating τ decay?

Beam Energy Asymmetry and Physics Sensitivity

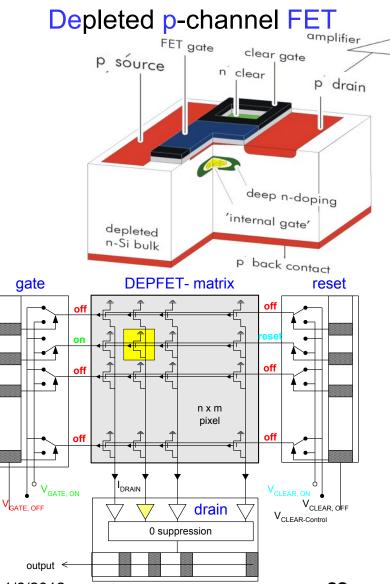
DEPFET Principle

p-channel FET on a completely depleted bulk
A deep n-implant creates a potential minimum for electrons under the gate

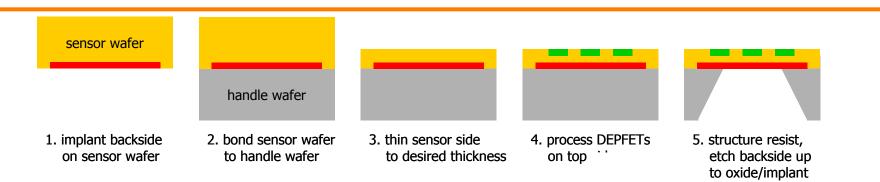
•("internal gate")

•Signal electrons accumulate in the internal gate and modulate the transistor current $(g_a \sim 400 \text{ pA/e}^-)$

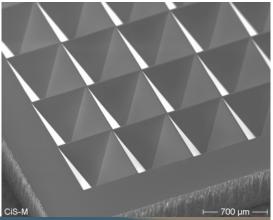
•Accumulated charge can be removed by a clear contact ("reset")

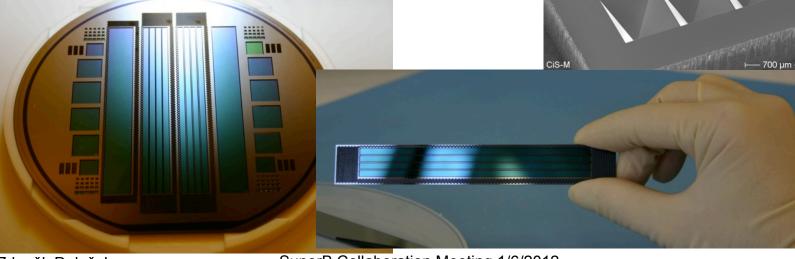

Invented in MPI Munich

Fully depleted:


 \rightarrow large signal, fast signal collection Low capacitance, internal amplification \rightarrow low noise

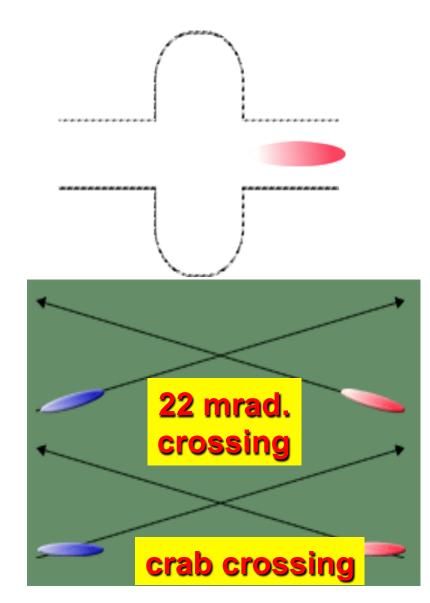
Transistor on only during readout: low power


Complete clear \rightarrow no reset noise



Thinning Technology

- Sensor wafer bonded on "handle" wafer.
- Rigid frame for handling and mechanical stiffness
- 50 µm thickness produced
- Samples of 10x1.3 cm² & frame of 1 & 3 mm width
- Electrical properties ok (diodes)


European groups of Belle-II

The European groups have major responsibilities in some essential detector systems:

- •Pixel vertex detector (DEPFET)
- Silicon strip vertex detector
- •Particle identification systems (endcap Aerogel RICH, barrel Time-of-Propagation counter)
- •Electromagnetic calorimeter
- Muon detector based on scintilator strips

They are also contributing substantially to the computing and software, as well as to the set-up of the physics program.

The key factor in KEKB performance: crab cavity

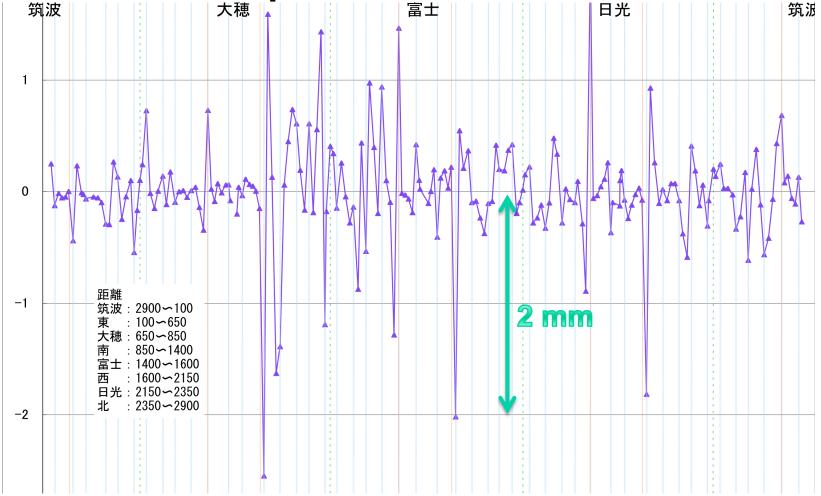
Installed in the KEKB tunnel (February 2007)

SuperB Collaboration Meeting 1/6

SuperKEKB parameters compared with SuperB

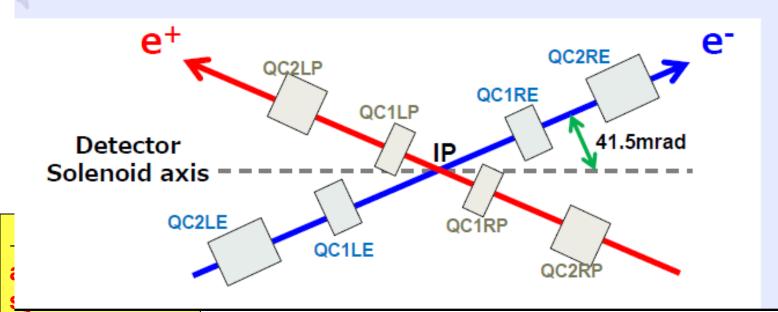
		SuperB (Baseline)		SuperKEKB	
Parameter	units	HER (e+)	LER (e-)	HER (e-)	LER (e+)
Circumference	m	1258.4		3016.3	
Energy	GeV	6.7	4.18	7	4
X angle (full)	mrad	66)	83	
β_x at IP	cm	2.6	3.2	2.4	3.2
β_y at IP	cm	0.0252	0.0206	0.041	0.027
ε _x	nm	2.0	2.41	2.4	3.1
Emittance ratio	%	0.25	0.25	0.35	0.40
σ_{z} (full)	mm	5	5	5	6
I	mA	1892	2410	2620	3600
σ_x at IP	μm	7.211	8.782	7.75	10.2
σ_{y} at IP	μm	0.035	0.035	0.059	0.059
ξ _x		0.0021	0.0033	0.0028	0.0028
ξ _y		0.0978	0.0978	0.0875	0.09
Luminosity	cm ⁻² s ⁻¹	1x10 ³⁶		0.8x10 ³⁶ Next Generation	

D5 power supply building

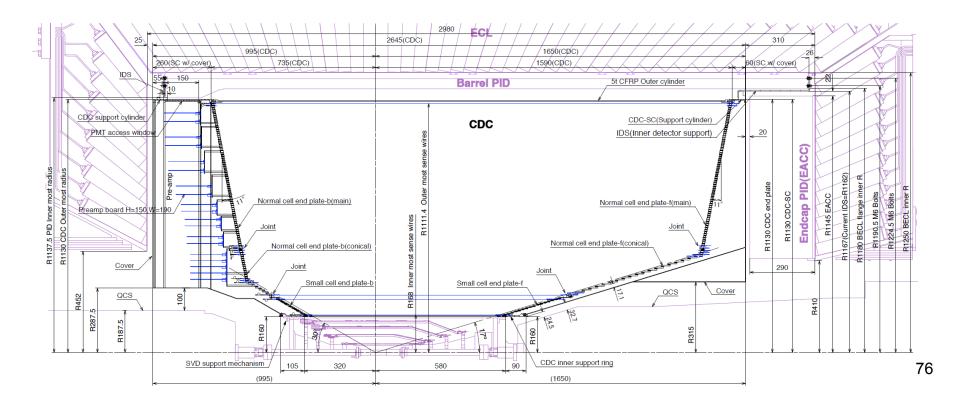

Panels and floor in the control room

K. Akai (KEK), SuperKEKB Status, presented at the 6th Belle PAC

Feb. 26, 2012


KEKB magnets displacement after the quake in March 2011

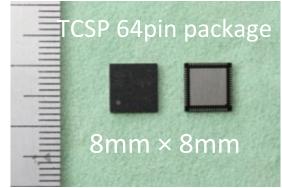
Belle to Belle II Upgrade

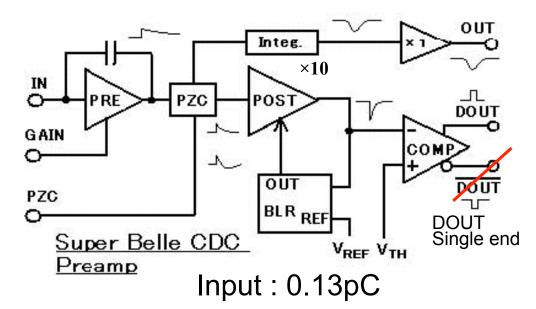

N.Ohuchi

- New final focusing system based on the nano-beam scheme has been designed.
 - Consists of 8 superconducting magnets
 - Final focusing Q-magnets for each beam
 - Crossing angle 83 mrad to bring the FF magnets closer to IP

Main Features

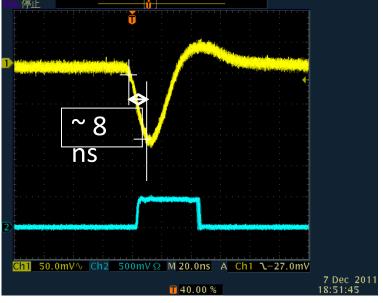
- Larger outer radius thanks to a compact BPID
- Larger inner radius to make SVD space more and to avoid high radiation region
- Conical endplates will be machined to meet final focusing magnets.
- A small cell chamber will be installed as same as the Belle CDC.
- New compact electronics boards are located near backward end plate.
- 3D charged trigger scheme will be adopted.


Square-shaped MCP-PMT: SL10

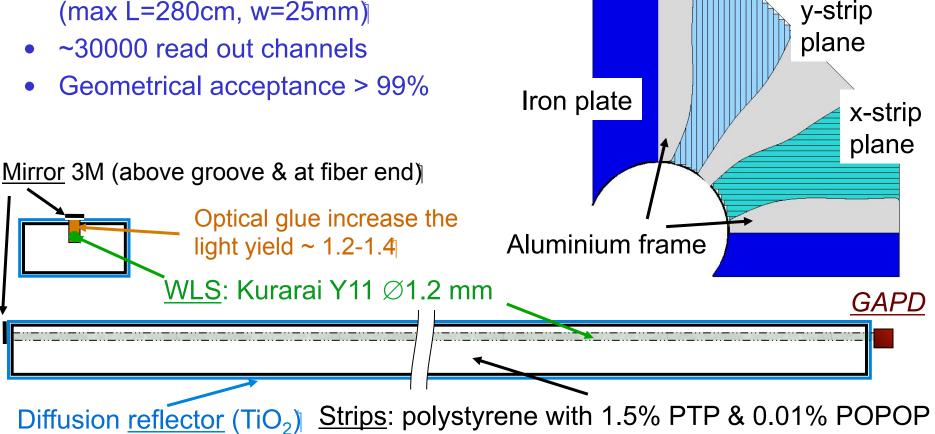

Ordinary Square		Catalog spec		
cylindrical MCP-PMT	` Channel	Photo-cathode		Multi-alkali / <u>Super bi-alkali</u>
		MCP Channel φ		10µm
27.5mm	φ ~ 10µm	MCP bias angle		13°
	~400µ	MCP thickness		400µm
(11mm 27.5mm	-m	MCP layers		2
ψιιιιι		Al protection	layer	On 2 nd MCP
•	MCP(Micro channel plate)		els	1×4/ <u>4×4</u>
Hamamatsu Photonics K.K.		Sensitive region		64%
	-0.4m	HV		~ 3000 – 3500 V
Typical signal shape 400ps 20mV Single photon irradiation	-10 0 10 2	^{30 40 50} (25ps/bin)	 Position Single p Fast rais Gain: >1 T.T.S.(si 	ffective area information hoton detection se time: ~400ps Lx10 ⁶ at B=1.5T ngle photon): t B=1.5T

ASIC

Level shift to match FADC input


Amp-Shaper-Discriminator (ASD) chip

Specifications

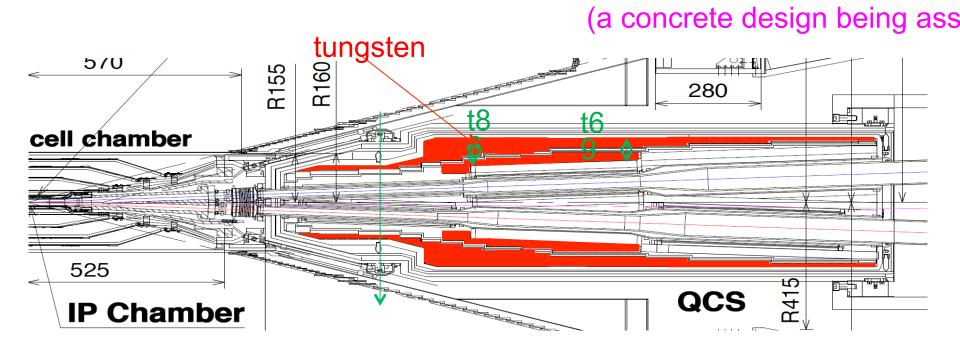

Parameter	Value
# of Chs.	8
Analog gain	-1.1V/pC
Peaking time	8 ns
Noise	4000 e @Cd=20 pF
Power	+5V, +3.3V
Power consumption	34mW/ch
Process	BiCMOS 0.8 μm

KLM upgrade

Scintillator-based KLM (endcap)

- Two independent (x and y) layers in one superlayer made of orthogonal strips with WLS read out
- Photo-detector = avalanche photodiode in Geiger mode (SiPM)
- ~120 strips in one 90° sector (max L=280cm, w=25mm)
- ~30000 read out channels
- Geometrical acceptance > 99%

Neutron rates on BKLM


Simulation]	l Layer		$ron flux / cm^2)$	Hit rate (Hz/cm ²)	Efficien	cy		$\begin{array}{c} {\rm Hit\ rate} \\ {\rm (Hz/cm^2)} \end{array}$	Efficiency
		0	2	407	17.3	0.13				1.00
		1	1	762	12.7	0.36				1.00
		2	1	221	8.8	0.55			2.3	0.88
		3		785	5.6	0.71			1.4	0.92
		4		504	3.6	0.81			1.0	0.94
Extrapolatio		5		293	2.1	0.89			0.6	0.96
n	_			ext.	replace L		place 0/01	twic	e rate	
	Loo	rate(Hz/c	cm ²)	7.5	7.5	7	7.5	1	15	
		eff.		0.38	1		1		1	
	L01	rate(Hz/c	cm ²)	4	2.7	2	2.7	5	5.4	
	LOI	eff.		0.67	0.78		1		1	
	Lo2	rate(Hz/c	cm ²)	2	1.3	C	0.9	1	.8	
		eff.		0.83	0.89	0	.93	0	.85	
					D.A	S	eplac	lato	r	

Estimated neutron rates on BKLM roughly matches the extrapolation from KEKB data; still acceptable after replacing 2 inner layers. Neutrons from radiative Bhabha to be checked.

2011/11/11

Latest final Q-magnet design

Neutron flux

1MeV equivalent rate

 $1 \text{ year} = 10^7 \text{ sec}$

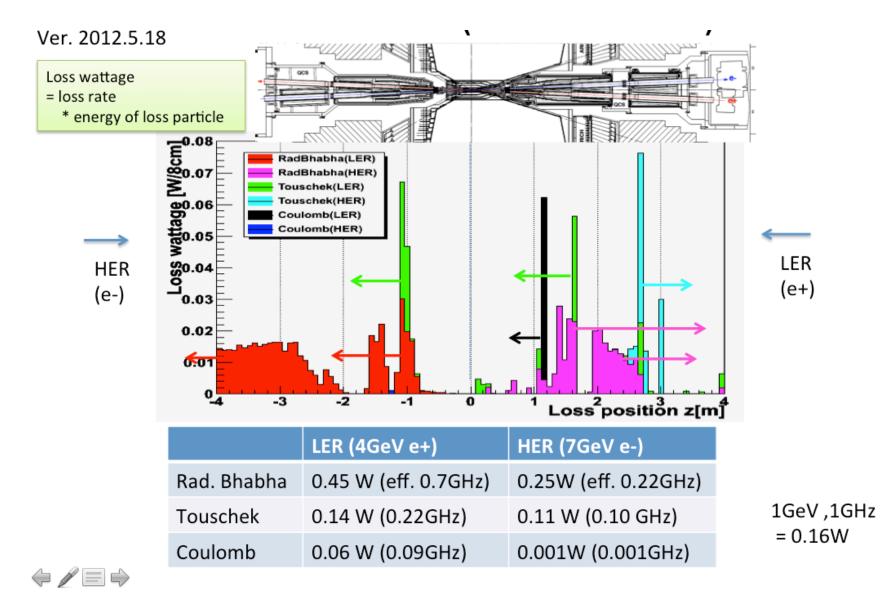
	Region	Simulation [x10 ¹¹ eqn/cm ² / year]	R&D assumption [x10 ¹¹ eqn/cm ² / year]	Current tolerance
PXD	DHP,DCD, Swithers	1	10	OK up to <u>100</u> x10 ¹¹ eqn/cm ²
SVD	Sensors, chips	10	_	Should be OK, irradiation test ongoing
CDC	Readout Boards	4	1	Tested up to <u>10</u> x10 ¹¹ eqn/cm2
ТОР	Readout electronics	0.35	1	Tested up to <u>10</u> x10 ¹¹ eqn/cm2 ASIC not tested yet
ARIC H	HAPD	2.5 (inner rings)	0.4	Tested up to <u>4</u> x10 ¹¹ eqn/cm2 Start to see degradation
ECL	Crystals	2.5	10	OK up to <u>100</u> x10 ¹¹ eqn/cm2 (by Kuzmin)
ECL	Diodes	1.8 (f-endcap)	1	OK up to <u>10</u> x10 ¹¹ eqn/cm2 (by Kuzmin, dark current increased
BKLM	SiPMs	0.04	-	,2

 $1 \text{ year} = 10^7 \text{ sec}$

Radiation dose

	Region	Simulation [Gy/year]	R&D assumption [Gy/year]	Current tolerance
PXD	Sensor	19k	>19k	Tested up to <u>100kGy</u> (=10Mrad) 200kGy would be also OK
SVD	APV	3k	10k	OK up to <u>100kGy</u> (by Peter)
CDC	Readout boards	80	100	Tested up to <u>1000Gy</u> New SFP survive w/o communication
ТОР	Readout electronic s	7	30	Tested up to <u>300Gy</u> for FPGA and optical transceiver/fiber, ASIC not tested yet
ARIC H	HAPDs	50	100	APD tested up to <u>1000Gy</u>
ECL	Crystals	41 (fwd-endcap)	10	OK up to <u>100Gy</u> (by Kuzmin) (TDR said 36Gy)
ECL	Diodes	35 (fwd-endcap)	70	OK up to 700Gy (by Kuzmin)
BKL M	SiPM	Safe (Piilonen)	-	-

Detector performance


	Simulation	Requirement
PXD occupancy	<u>0.64%</u> (2-photon) + <u>0.15%</u> (Touschek LER)	< 3%
SVD occupancy	~4% (z) / 7% (r-phi) assuming 5000e- threshold and 50ns shaping time	< ~10%
CDC hit rate	280kHz/wire	< 200kHz/wire
TOP K/pi separation	K/pi separation remains good	
TOP photo- cathode aging	Photoelectron flux: 20MHz/PMT	<1MHz/PMT
ECL	16 fake clusters in 100ns time window 11 MeV pile up noise in f-endcap	Belle1: 6 fake clusters Belle1: 0.8 MeV pile up
BKLM	Need to replace layer 0 and 1 with scintillator. It also recovers efficiency of layer 2 (0.66- >0.91), layer 3(0.78->0.94)	
EKLM	Strip occupancy: 20kHz	< 200KHz

Belle II Collaboration (Europe)

- Significant European participation + funding
- 19 institutes with ca 130 physicists (A, CZ, D, E, PL, RUS, SLO)
- Spokesperson P. Križan, Ljubljana
- CERN Recognized Experiment RE20

Total background

86