FTK system issues
part 2

Alberto Annovi

— Performance: %e,
+ Parallel/pipelined architecture 69@ .
« Custom VLSI pattern recognition //b’7<9
 Linear track fit in fast FPGAs now with DSP blocks ’co
+ FTK adds: variable resolution, 2 steps, pattern from constants /70@,0?&

— Reliability:
« Easy to sink/source test data (many boards can self-test)
« Modular design; universal, well-tested data link & fan-in/out
+ Extensive on-crate monitoring during beam running

+ Detailed CAD simulation before prototyping
— See poster by Mircea Bogdan

— Flexibility:
« System can operate with some (or all) inputs disabled
+ Building-block design: can add/replace processing steps
+ Modern FPGAs permit unforeseen algorithm changes

— Key: design system for easy testing/commissioning

Original talk: http://www.pg.infn.it/beauty2005/talks/beauty05-m.dellorso.pdf

June 2005 Mauro Dell'Orso - Beauty 2005 2

Modularity ...

e SVT had a single connector (except fibers from
silicon)

* We already have Slinks from ROD and to ROS

* Slink provides:

— LINK_UP handshake,
— error control
— possibility to exchange control words in both
directions:
* FREEZE on ERROR

* FREEZE on LVL1 tag
* Future possibilities

Can we use slinks every where?

e Special cases (what is planned?):
— DF = DF inter board/crate communication

— DF - AUX many data links one return channel
 Two destination AUX: use one or two return links?

— AUX - final card (exceeding 40MHz word rate)

* Need one extenstion (?):
— multiple data stream with one return stream

* Advantages:
— Write and debug one firmware for all boards

— Have common sw routines for initialization,
monitoring, ...

S-Link extension for FREEZE

Slink HW specs

— http://hsi.web.cern.ch/hsi/s-link/devices/hola/hw_spec.html
Will need to involve Slink experts
Forward channel easy:

— protocol can send control words between events

— Can we send control words in the middle of one event? Is this already a
feature?

Return channel:
— Can encode information in 4 return lines
— Used for FTK_IM = dual HOLA (XOFF enable/disable signal)
— Usable for also freeze but clumsy

Forward channel already mixes data and commands

Can we make the SLink symmetric?
— It would allow to send commands through the return channel
— NOT an easy extension!
— Would also make the Slink full-duplex when needed

Slink forward channel

n# IDLEs NCW Control Word 3 IDLEs < 4KB data CRCC CRC Checksum 3 IDLEs NCW Control Word n# IDLEs

Table 3. Transmission example

n «u

Now used for “begin of fragment”, “end of fragment” control words.
Interpreted by user logic.

Slink return channel

Transmit one of two possible words (16bits)

Bits Description
IDLE (<K28.5D5.6>
[15-0] or<D28.5D16.2>)

Table 4. IDLE frame in return channel

Bits

Description

[1.0]

RL[0]

[3.2]

RL[1]

[5.4]

RL[2]

[7.6]

RL[3]

. 4 bits out of Slink
FW module

[9..8]

XOFF# - Flow Control

[11..10]

LDC down

[13..12]

Remote reset

[15..14]

Reserved - Set as 0, ignore on
reception

Table 5. Commands in return channel

Timing

Timing information will be important
Minimum information

Arrival time before FIFO of first-last event word

FIFO extraction time of first-last event word

time when first-last word is sent out of board

4 number / input stream, 2 numbers / output stream

Can use dedicated FW registers, probably a RAM to accumulate recent events
(next slide)

Additional (optional) information

Write timing (clock counter) in the spybuffers for each word
Usually not needed: we could enable it when needed via FW register

Timing reference:

Either use LVL1 accept signal distributed to all boards
Or reconstruct delay between boards
In any case we need at least one LVL1 accept input for debugging

Timing spy buffer

* Input data arrival time before FIFO

RAM address |IVL1ID | counter | Lastbit |

0x1234567 5000 O (first word)
» .
1 0x1234567 5970 1 (last word) First event
2 0x1234568 6200 0
== Second event
3 0x1234568 7100 1

* Two spies per input channel (before/after FIFO)
* One spy per output channel

* Typical size 16 events = 32 words
— Each word 32 LVL1+32 counter+1 bit (or 64 bits with 31 bit counter)

* Need to monitor backpressure
— ldeas?

LVL1 accept

ROD to FTK_IM

First-last

AUX to AM (hits)

Timing graph example

-

* Need to correlate different streams
* Look at processing time in normal
conditions

* or error conditions

* e.g. data to ROS with 2ms

tower 2
DF to AUX card . : .
L@_W_@ﬂ‘_ © car latency? Who is causing this?

\ Tower 27 at some point ...

>~

v

AM to AUX (roads)
tower 2 DF to final card (hits)
tower n

Eirst-last AUX to final (tracks)

Final to FLIC (tracks)

FLIC to ROSes (tracks)

Synchronism

Where streams merge (DF, AUX, final card, FLIC) we can find data out-of

sync. What to do?

Define valid LVL1 ID (reference stream or majority logic, or simply next ID)
— “Valid LVL1 ID” is the ID of the event being processed by the board

— Should raise an error in case “valid LVL1 ID” is ambiguous
* E.g.two streams report 0x01000100 and two streams report 0x01000101
* Possible fix use the earliest one as “valid LVL1 ID”

One stream has LVL1 ID in the future
— lgnore it (assume empty events) until it aligns
— Dangerous in case of bit errors..
One stream has LVL1 ID in the past
— Discard data until valid LVL1 ID is found
— lgnore stream in the mean while?
— Or wait for it until a time out?
Self recovery options or trigger stopless removal/recovery

| suggest this logic should be a common VHDL code

Firmware repository

All firmware (code & bitstreams) should be stored in a CERN SVN repository
— Also during development: it helps
— | create this SVN repository: svn+ssh://ftkfw@svn.cern.ch/reps/atlasftkfw
— Ask me for permission
— Do you have a preference for a different repository?
— Let’s pick one and move everything there

SVN repository structure
— atlasftkfw/BOARD_NAME/FPGA_NAME

It is not trivial to “version control” a Xilinx/Altera project

This is what | did for the FTK_IM fpga:

1. Make an empty SVN directory

Create the project inside it (I tried with Xilinx)

Start adding to SVN all *vhd files

Add to SVN the main project file, and “needed files” (which ones?)
Check out the project in a different dir and try to compile

Remove from SVN temporary files

Add to SVN files missing and needed for compilation

Go back to 5 and iterate. It should converge in a few iterations

O N A WN

board/firmware documentation

* Minimum documentation for each board is
— Specification of all interface signal/buses/connectors

— Specification of all externally controllable registers/
memories (e.g. VME address space)

— Short description of functionality
— Do we need more information

* | propose to store a latex and pdf file into each
SVN board directory

— Atlasftkfw/BOARD_NAME/doc

* | would keep FPGA fw documentation optional,
but code readable and commented

Version control

Each board should have these registers:

— FW Version register: major 31:16 & minor 15:0

— Major version will change when software changes as well
— Minor version change are internal changes

— Board serial number (we will need this)

e Suggestion: use a small flash to write & store it during board test
* Also write it on the PCB to be read without power

— PCB version register: to keep track of prototypes

* |deally this number is hardcoded to one FPGA (e.g. use 3 pins
connected to VCC and GND in the PCB)

|deally all FPGAs (or at least those with VME/ATCA access)
— Should have a FW version register + FW date register

Common firmware

* Should make a FTK library of common
firmware elements
— SPY buffers
— Synchronization logic
— What else?

Online software

Three goals:

1. HW diagnostic (see Paola’s talk last week)
— We need board level simulation

— FTKSim should be organized similarly to the HW
 aset of board-simulation functions called in sequence
 DF simulation in the wrapper is going in this direction

2. Configuration for data taking
3. Monitoring

Configuration for run

Run control function needed to configure FTK boards
Configuration data to be loaded inside FTK

— Online software will include FTKSim
* Afrozen copy of FTKSim will be imported in the online area

— Will need to define a function in FTKSim for each memory to be
configured providing the data

For the VS, but likely also for the final FTK:
— each crate is a rcd application running in the CPU
— each board is a rcd plugin (RCD = Rod Crate Daq)

— RCD manual: https://edms.cern.ch/document/577958/1
* Errata: StartTrigger/StopTrigger methods only for master trigger

Online code:
— Now here: svn.cern.ch/reps/vipix/ftk/trunk/ftk_v2
— Will move to TDAQ repository soon

Run control functions

X! TightVNC: pc-tdg-port-08:1 (ftk)
[®] ATLAS TDAQ SOFTWARE - Partition FTK 2 |

i File Commands Access Control Settings Logging Level Help °® Set u p ()

1 Commit & Reload | [§&%® Load Panels |~

RUN CONTROL STATE Il 1 Run Control ‘ Segments &Wsrr Dat: — G ets i nfo fro m O KS

Run Control Commands ¢ | CONNECTES*" RootController

SHUTDOWN | EOOT] 2~/ "CONNECTED | FTK-SEGMENT:pc-ftk - Ca”ed aISO at

[I
il -RCD- o . ”
CTERMINATE | [ALz [FT-RCD-Cratel commit&reload
| CONNECTED | FTK-
[UNCONFIG | | CONFIG NN FTK-ROS
I STOP ! START] ﬁ ()
L conngure
[HOLDTRG | [RESUMETRG |

— Loads RAMs/registers

{||[Lumi Block 0 f% O Show Online Segment Find: | 2 p re p are FO r R un ()

Crm— e ———— Runcomm , — Segmems & Resoums z Dmm _ C urre nt I y sen d SN |t

o-l'setup ° prObe()
¢ 4l FTK-SEGMENT |enabled _ Ca”ed per|0d|ca”y

9 @) FTK-RCD-Cratel
— Fills IS information

Beam Stable ¢ ’ Warm Start { Warm Stop ‘

Run Information & Settings

@} Edro1
€} Amb1

Vertical slice

plugins —

o- @A ROBIN-FTKRobin-1

nts & Resources

h

Online monitoring goals

1. Verify data quality
— Efficiency & noise rejection
— Use high-level observables: daily Z->Il peak?
2. Verify hardware integrity
— Compare bit-by-bit with simulation
3. Fast verification
— Histograms with relevant quantities: # hits, roads, fits, tracks
— Tower occupancy/efficiency ...
4. Timing
— it is as important as data quality

— Monitor LVL1accept to end-of-processing
— Monitor LVL1accpet to start/end-of-processing at each board

This is an important activity that deserves a
responsible institution as much as building a board.

Stopless removal/recovery

ldentified trigger conditions for VS

when FTK output busy (detected in FLIC/
EDRO)

when no data to ROS (detected by ROS)
wrong data format to ROS (detected by ROS)

additional FTK internal monitoring
— detect problems before they reach ROS
— React faster

Stopless removal/recovery

My understanding of it

Online applications probe the status of the FTK boards
and ROS at O(1s) intervals

If a problem is detected a message is sent to
runControl shifter

runControl shifter activates the stopless removal/
recovery

— automatic or requires manual acknowledge?

— Subroutines are called

e Put the boards in offline mode
— no data to ROS
— disable backpressure to RODs

* Restore working configuration

Offline test stand

In early SVT days ...

There was a vertical slice (half a crate) always

processing data being compared with simulation
(low rate)

provides hot spare always tested and working
ready for swap
The offline test stand will be need

— Keep it in mind while developing test firmware/
software

— Again hw/sw modularity will help

