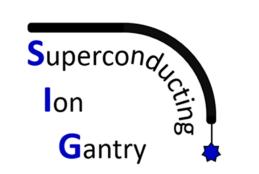


Stefania FARINON INFN Genova stefania.farinon@ge.infn.it

Lucio ROSSI Milano University and INFN LASA lucio.rossi@mi.infn.it

THESE SLIDES ARE MOSTLY TAKEN FROM PREVIOUS PRESENTATIONS BY L.ROSSI

SC magnets for high energy physics



SC magnets for the Muon Collider

SC magnets for medical applications

INFN General information

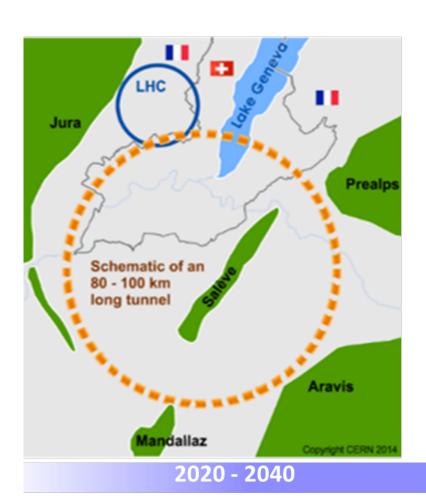
- The thesis locations can be:
 - Milano, at the LASA Laboratory of University and INFN
 - **Genova,** at the Physics Department
- To get more information you can contact (but many more people are involved):

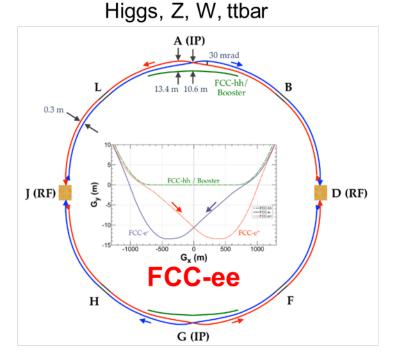
Stefania Farinon
<u>stefania.farinon@ge.infn.it</u>

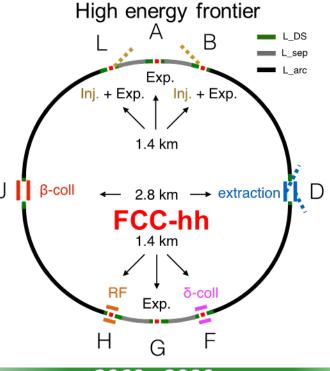
Lucio Rossi
<u>lucio.rossi@mi.infn.it</u>

Massimo Sorbi massimo.sorbi@mi.infn.it

Marco Statera <u>marco.statera@mi.infn.it</u>

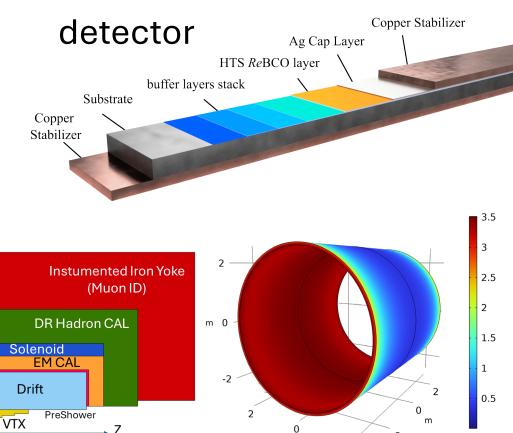

- A related course will be offered:
 - Design of superconducting magnets (S.Farinon)


SC magnets for high energy physics

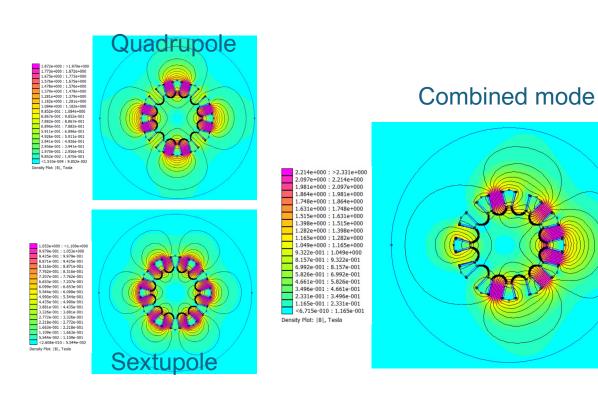

INFN The FCC integrated program

Phase 1 : FCC-ee collider electron - positon

Phase 2 : FCC-hh collider proton - proton


2040 - 2055

2060 - 2090

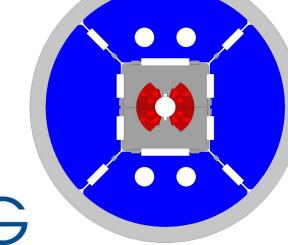

INFN FCC-ee magnets

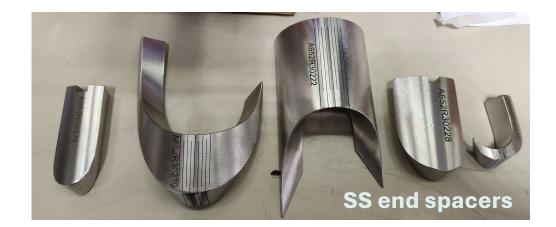
• 3T HTS solenoid for the IDEA

 HTS superferric combined function quadrupole and sextupole magnet

INFN FCC-hh magnets

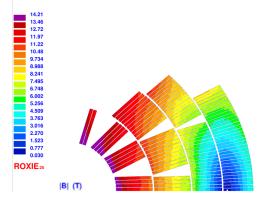
- **FALCON**


- The FalconD project involves the development and construction of a short model Nb₃Sn dipole with the following specifications:
 - Single aperture with an inner bore of 50 mm.
 - 2-layer cos-theta coil, providing a bore field of 12 T at 1.9 K.
 - Mechanical assembly using bladder & key technology.
 - The total coil length is 1.5 m.



INFN HFM-Italia program

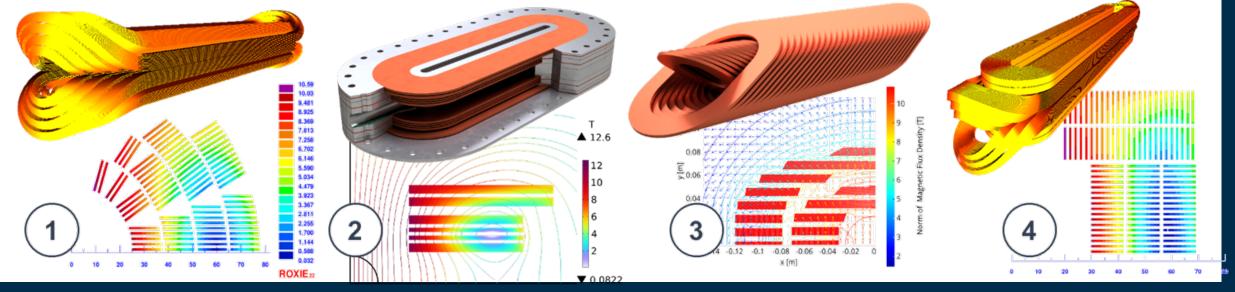
- Recently, CERN and INFN signed a new collaboration agreement aimed at designing (including all the necessary R&D), building, and cold-testing
 - a 14 T Nb₃Sn dipole for the FCC-hh (6-year program)
 - a 10 T HTS dipole (3-year program)
- Development and fabrication performed in the new IRIS facilities at LASA, the SML (Superconducting Magnet Lab)



- We started working on 2 options:
 - Full-Nb₃Sn

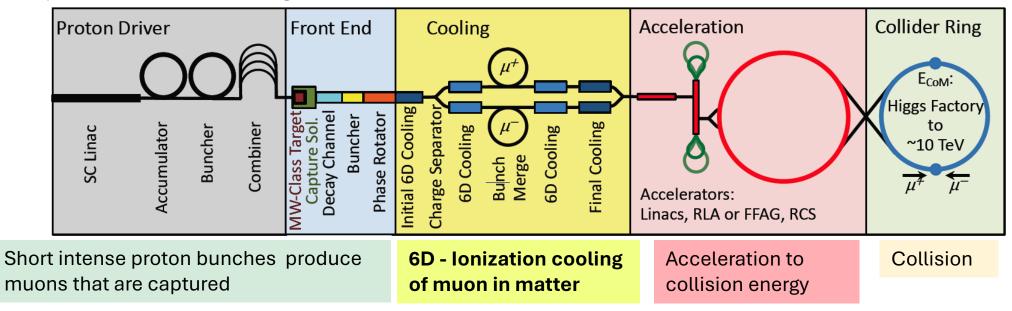
■ Hybrid Nb₃Sn /NbTi

	Full Nb ₃ Sn					
	HF 1.9K	HF 4.2K	LF 1.9K	LF 4.2K		
Achieved bore field [T]		1	4			
Current [A]	9800					
Peak field [T]	14	.21	11.28			
Current density [A/mm ²]	28	80	400			
Supercond. current density [A/mm ²]	9:	50	1400			
Copper current density [A/mm ²]	792		1167			
Loadline fraction [%]	80	87.5	73	80		
Temperature margin [K]	4.4	2.2	5.6	3.3		
Enthalpy margin [mJ/cm ³]	12.4	8.9	19.3	16		
b ₃ / b ₅ / b ₇ / b ₉ at nominal [unit]	0.47 / -5.81 / 3.57 / 1.33					
Equivalent width [mm]	55.4					
N° of turns (per pole)	3	9	69			
N° blocks (per pole)	· ·	7	3			
Aperture [mm]	50					
Maximum azimuthal stress [MPa]	83					
Maximum radial stress [MPa]	97					


	HF (1.9 K)	LF (1.9 K)
Achieved bore field [T]	1	4
Current [A]	118	800
Peak field [T]	14.3	8.98
Current density [A/mm ²]	337	351
Superconducting current density [A/mm ²]	988	899
Copper current density [A/mm ²]	1098	999
Load-line fraction [%]	81	80.9
Temperature margin [K]	4.3	2.05
Enthalpy margin [mJ/cm ³]	12.5	2.5
b ₃ / b ₅ / b ₇ / b ₉ [unit]	-0.009 / -1.09	8.44 / 2.69
Equivalent width [mm]	5	9
Number of turns (per quadrant)	43	42
Number of blocks (per quadrant)	6	2
Aperture [mm]	5	0

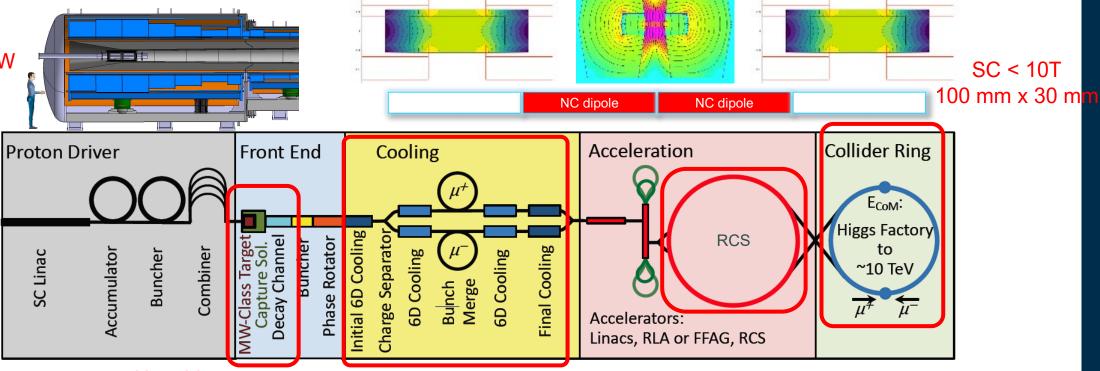
INFN 10 T HTS dipole demonstrator

Common		B centre	Aperture diameter ¹ T _{op}		Straight section		Tape Iality²	Max. Unit Length	Target J _{Cu}	
Con	10 T		50 mm 20 K		700 mm	FFJ 2021		200 m	800 A/mm ²	
Su	#	Coil geometry	,	ape (km) equivalent	I _{op} (A)	l×n	i= I/I _c (%)	∆T (K) margin	Loadline Margin (%)	Field q. (10 ⁻⁴) ³
Configurations	1	Cos-Theta		3.9	9230	1.5 MA	68.5	10	22	<1
	2	Racetrack		7.3	3330	3.4 MA	67	10	22	<20
Con	3	Pancake CCT		5.5	1440	2.1 MA	69	10	23	100
	4	Hybrid		4.5	9170	1.8 MA	58	10	18	<10

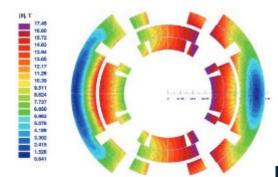

SC magnets for the Muon Collider

- The Muon Collider represents a rising hope for an energy-frontier collider, offering both high energy and high precision.
- Its design is entirely dictated by the muon lifetime, which is just 2.2 µs at rest, and the critical need for rapid and efficient cooling!

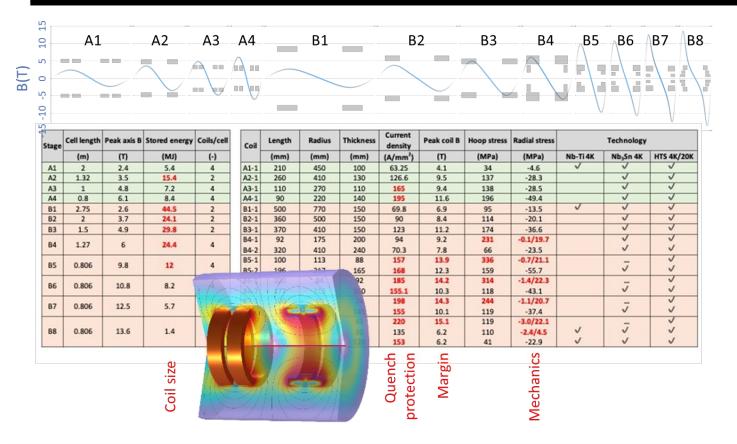
• Fast and efficient cooling of muons is essential to transform a "cloud of particles" into a cold, focused beam. The cooling cell is the most critical component of the accelerator—without cooling, there are no muons to collide. The cooling process works by absorbing energy in all directions and then restoring energy in a single direction. This requires: Efficient absorbers, Large-acceptance RF cavities, Strong, very large-acceptance superconducting magnets for focusing


INFN Muon collider magnets

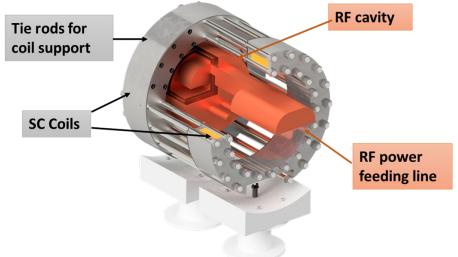
NC ±1.8 T, 400 Hz 100 mm x 30 mm

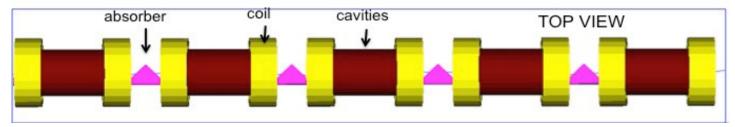

SC < 10T

20 T, 200 mm Radiation heat load $\approx 5...10 \text{ kW}$ Radiation dose: 80 MGy

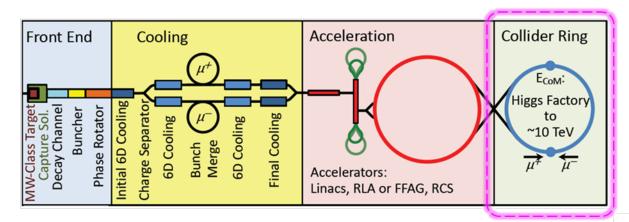

> 40 T, 60 mm

16 T peak, 160 mm Radiation heat load ≈ 5 W/m Radiation dose ≈ 20...40 MGy




(INFN 6D Cooling Cells (HTS @ 20 K)

Facility under design at LASA lab 7 T splice coil in HTS, cryogen-free, for RF cavity test



INFN Collider Magnets Requirements

15

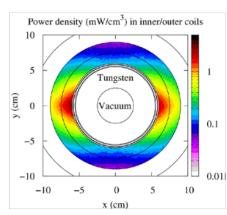
Field: 16 T peak (IR 20 T)

Length: 10...15 m (x 700)

Space between magnets: 300 mm

Radiation heat load: 5 W/m Cumulative dose: 20...40 MGv

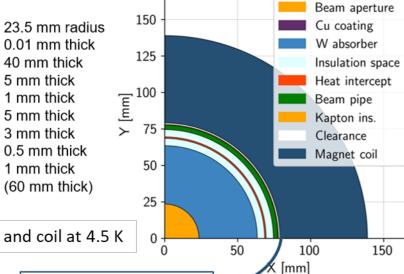
5 mm thick


1 mm thick

5 mm thick

3 mm thick

1 mm thick


Cold bore + Kapton insulation Tungsten shield Collars 0 Inner and outer coils Beam vacuum

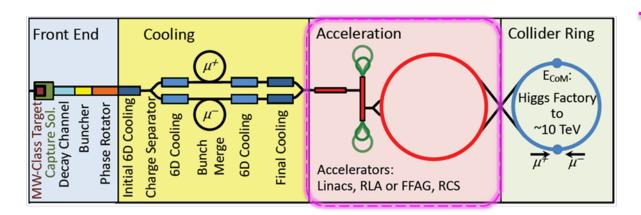
Aperture

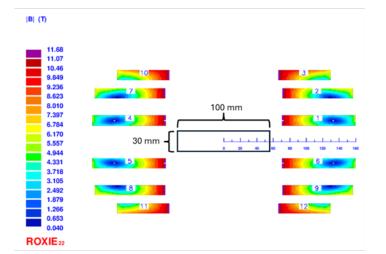
- Beam aperture (5σ) · Cu layer beam screen
- Tungsten absorber
- Insulation space
- Heat intercept
- Insulation space
- Beam pipe
- Kapton insulation
- Clearance
- Coil pack*
- *thickness TBD, placeholder

Courtesy of Patricia Borges de Sous https://indico.cern.ch/event/1250075/contributions/53575

Assuming 10 TeV machine and coil at 4.5 K

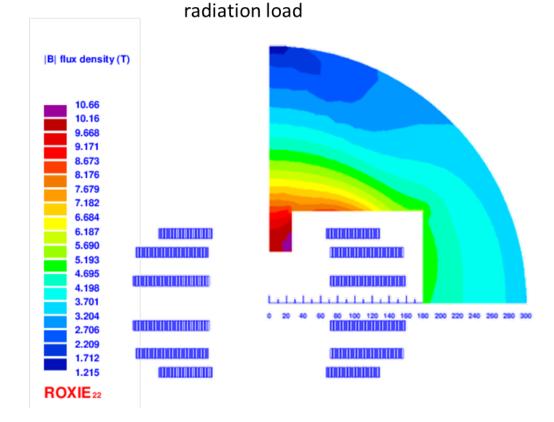
Coil aperture 158 mm

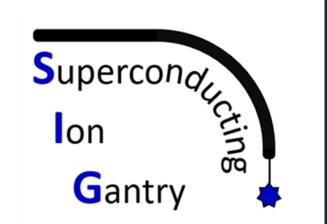

! Need for large fields in large apertures → discussion on parameter limits



INFN Accelerator magnets

16



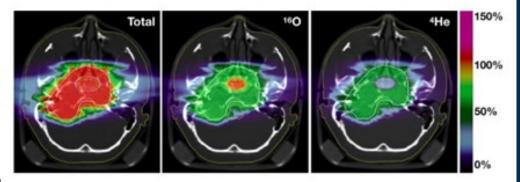

 $B_0 = 10 \, T$

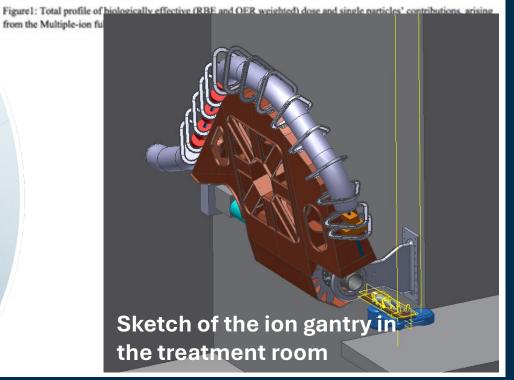
Field homogeneity @ 25mm = 0.425%

Field: 10 T

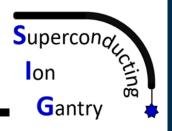
Aperture: large aspect ratio 100 mm×30 mm no conductor on the midplane due to

SC magnets for medical applications

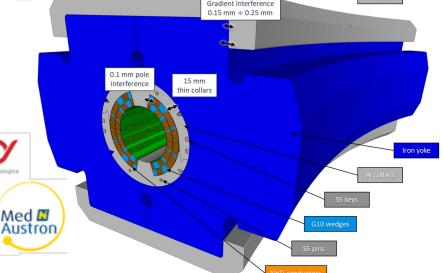



INFN What's next for particle therapy?

- Multiple ions delivered with light-weighted Gantry
- Rotatable gantry allows non-coplanar irradiation, enhancing effectiveness
- Treatment rooms equipped with patient imaging
- Dose Delivery and Range Verification Systems able to adapt online the dose delivered







- Design, construction and test of a curved superconducting demonstrator magnet (SDM-c) for ion gantries
- Main demo. magnet params
 - NbTi superconducting Rutherford cable
 - Cos-θ coils
 - Pure dipolar field: 4 T
 - Bore diameter: 80 mm
 - Small curvature radius: 1.65 m (Challenge #1)
 - Angular sector: 30°
 - High field ramp-rate: 0.15 T/s 0.4 T/s (Challenge)
 - Compatible with conduction cooling (no LHe) but no optimization (Challenge #3)

Med 🚨

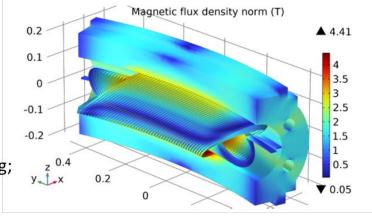
NFN EuroSIG

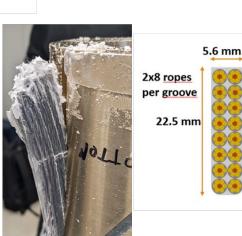
HITRIplus WP8 - Superconducting magnet design

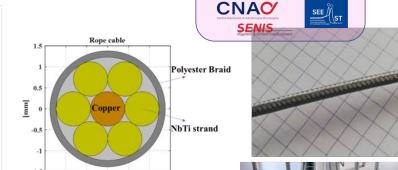
<u>Construction and test of a small demonstrator</u> for feedback useful for accelerator as well as gantry final magnet design.

The decision to explore a <u>curved CCT layout magnet based on NbTi</u> (Low losses

Short test former


strand) and conductor (rope 6+1 strands);


Main Parameters of demonstrator:

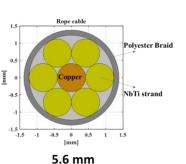

- 4 T pure dipole, Top of 4.7 K;
- Bore diameter: 80 mm;
- Curvature radius: 1.65 m;
- Angular sector: 30°;
- High field ramp-rate: 0.4 T/s;
- Compatible with conduction cooling;
- Wax impregnation test;
- Priority is to construct the curved

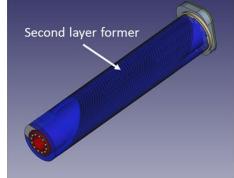
former (AlBr);

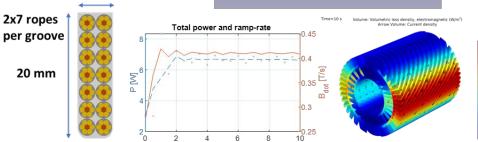
The challenge is the heat extraction generated by superconductor and former (AC losses) without LHe cooling

I.FAST WP8 – Innovative superconducting magnets

SCANDITRONIX

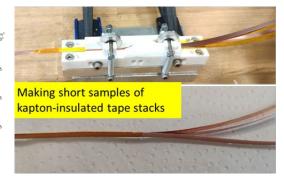

Exploring <u>Canted Cosine Theta with HTS superconductor (main</u> goal), preceded by a combined function CCT based on LTS

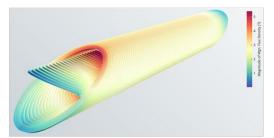

Construction of the two demonstrators: winding and magnet assembly, magnet test and validation:

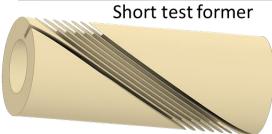

Combined CCT based on LTS (rope 6 NbTi + 1 copper strand as HITRIplus):

- 4 T dipole + 5 T/m quadrupole (important feature to test it for CCT);
- Demonstrator for testing the combined feature of CCT and thermal study of

AC losses (0.4 T/s);




CCT based on HTS (REBCO tape 4 mm wide):


- 4 T dipole with a new Top of 20 K (> 10 K of margin);
- Frenet-Serret frame used for the conductor (avoid hard way bending);
- Straight geometry just to start the study (HTS is already difficult enough);
- Two design options: 2-tapes (980 A) and 4-tapes cable (1990 A);
- Quench protection is demanded (Cu stabilizer added for this);

Thanks for the attention