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2/24

Wat are fringe fields, and why are they important?



3/24

Fringe fields

▶ Field smoothly changing from 0 to its design value to fulfil Maxwell equations

Example for the ELENA dipole

“The ELENA Project at CERN”, W. Oelert (2017)
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The impact of fringe fields on beam dynamics

▶ Fringe fields introduce well known (e.g. edge focusing) and less well known
effects in the beam dynamics (e.g. high order non-linearities, orbit effect)

▶ In several cases, these less well known effects are negligible (e.g. in the LHC), but
for small machines literature suggests they may be more impactful

▶ My PhD develops and compares methods to quantify the effects:
▶ Simplified tracking maps available in popular codes
▶ Perturbation analysis (RDT)
▶ Direct tracking through magnetic field

▶ Those methods can be applied with or without knowing the actual field map of
the magnets
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The HeLICS synchrotron

▶ HeLICS (Helium Light-Ion Compact Synchrotron)
synchrotron facility
▶ Clinical treatment center and scientific research

infrastructure
▶ treatment with protons
▶ research and future treatment with helium ions
▶ research with heavier ions (oxygen, carbon..)

▶ The HeLICS synchrotron
▶ Triangular synchrotron with circumference of 33 m
▶ 60◦ combined function dipole / quadrupole

magnets with 30◦ edge angles Courtesy of NIMMS collaboration (CERN)

“Optics design of a compact helium synchrotron for advanced cancer therapy”, H. Huttunen et al. (2024)



6/24

Difficulties of the HeLICS combined-function dipoles
Why do we need to progress on fringe fields?

▶ Direct tracking through magnetic field
▶ Machine is still in design phase: need for methods

without magnet fieldmap

▶ Simplified tracking maps
▶ Effects from dipole- and quadrupole components

cannot just be added, they don’t “commute”
▶ Maps for curved combined-function dipoles are not

avaiblabe in the literature
▶ While deriving these maps might be possible, the

30◦ edge angles complicate the situation
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Direct tracking through magnetic field
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Direct tracking

▶ General magnetic coefficients as derivatives of the
on-axis field

an(s) = ∂n−1
x Bx (x , y , s)

∣∣
x=y=0

bn(s) = ∂n−1
x By (x , y , s)

∣∣
x=y=0

bs(s) = Bs(x , y , s)|x=y=0

▶ an are called normal multipole coefficients
▶ bn are called skew multipole coefficients

⊙

R0(s)

s

x̂

ŝ(s)

ŷ(s)

Q(t)

▶ Requiring to satisfy Maxwell equations allows to determine the magnetic field
everywhere and construct fieldmaps based on a set of functions

▶ I wrote an integrator to integrate the equations of motion based on this expansion
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▶ Requiring to satisfy Maxwell equations allows to determine the magnetic field
everywhere and construct fieldmaps based on a set of functions
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Strengths:

▶ Exact effect of a fringe field

▶ New method to interpolate fieldmap
using meaningful functions for beam
dynamics

Limitations:

▶ Computationally expensive

▶ Does not allow to identify how to
improve the fieldmap
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▶ Exact effect of a fringe field

▶ New method to interpolate fieldmap
using meaningful functions for beam
dynamics
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▶ Computationally expensive

▶ Does not allow to identify how to
improve the fieldmap

=⇒ Will be used to benchmark results Available in my package XSuite/bpmeth

New

Implementatio
n for XSu

ite

“Xsuite: An Integrated Beam Physics Simulation Framework”, G. Iadarola et al. (2024)
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Direct tracking
General magnetic coefficients of the ELENA magnet

▶ General magnetic field expansion
allows to model both designed (based
on magnetic simulation) and
measured fieldmaps

▶ When finished magnet design is not
available, reasonable assumptions
based on similar magnets can be
used. Example for HeLICS
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Simplified tracking maps
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Simplified tracking maps

Dipole

Drift Bend Drift

▶ Simplified tracking map used at CERN (XSuite, PTC, MAD-NG): E. Forest, 2005

“Xsuite: An Integrated Beam Physics Simulation Framework”, G. Iadarola et al. (2024)
“Introduction to the Polymorphic Tracking Code”, E. Forest, F. Schmidt and E. McIntosh (2002)

“MAD-NG, a standalone multiplatform tool for linear and non-linear optics design and optimisation”, L. Deniau

(2024)
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(2024)



12/24

Fringe field map for the dipole in PTC, XSuite, MAD-NG

Strenghts:

▶ Symplectic: suited for long-term
tracking

▶ Only one parameter: the fringe field
integral

K =

∫ +∞

−∞

b(s)(b0 − b(s))

gb20
ds

The fringe field integral:

▶ Dimensionless parameter

▶ Linear in the range of the fringe field

▶ Independent of the total strength of the magnet

▶ Ranges between 0 (hard edge) and ∞
How to obtain its value?

▶ From the magnetic field map

▶ If not available: good guess based on similar models

“Fringe Effects in MAD PART I, Second Order Fringe in MAD-X for the Module PTC”, E. Forest (2005)
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Fringe field map for the dipole in PTC, XSuite, MAD-NG

Strenghts:
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tracking
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∫ +∞

−∞
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Limitations:
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coordinates follow from
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▶ Does not include the closed orbit
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Perturbation analysis
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Perturbation analysis: what are resonance driving terms?

▶ Unperturbed optics: the linear lattice

=⇒ only dipoles, quadrupoles, expanded drifts

▶ All other effects as perturbation

▶ To quantify deformation of phase space, coupling between two planes, detuning
with amplitude

▶ Identify specific imperfection sources from experimental data or compare the
impact of different imperfections
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Strenghts:

▶ Allows to identify the effects of fringe
fields in a perturbative way from the
general magnetic field expansion

Limitations:

▶ No direct relation between the values
of the RDTs and their effect on
stability

=⇒ I determined the resonance driving terms for fringe fields

New
First ti

me using RDTs

with fringe fields
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Measurements with ELENA
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Extra Low Energy Antiproton Ring (ELENA)

▶ 30 m circumference

▶ Decelerates antiprotons from AD at CERN

▶ Typical small machine that can be used to compare theory and experiment by
performing measurements

CERN

“The ELENA Project at CERN”, W. Oelert (2017)
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Tune measurements
▶ ELENA is dominated by fringe fields: possible to turn off all quadrupoles in the

machine

▶ Reproducible horizontal and vertical tune measurements

▶ Influence of hysteresis throughout cycle

▶ Best results achieved with direct tracking through fieldmap, but remaining
discrepancy unexplained

Qx Qy

Design parameters 1.7897 1.7724
Currently used model 1.8366 1.7295
Simplified map with fitted parameters 1.8379 1.7420
Direct tracking with fieldmap 1.8393 1.7399
Measurement in machine x.8453 ± 0.0005 (stat) x.7386 ± 0.0002 (stat)

New

Slight
improvem

ent in
tune by

optimizing fringe field integra
l
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First results for the HeLICS machine
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Impact on the HeLICS lattice of the dipole component: closed orbit effect

▶ Estimated closed orbit effect from resonance driving terms is under control

New

Fringe
field closed

orbit d
istortio

n

for the
HeLICS

lattice
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Impact on the HeLICS lattice of the dipole component: beta beating

▶ Estimated beta-beating using simplified tracking in XSuite with ELENA fringe
field integral is under control

Solid lines: without fringe fields. Dashed lines: with fringe fields

New

Fringe
field beta beating

for the
HeLICS

lattice
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Conclusions
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Conclusions

▶ Gained an understanding of the available fringe field maps in the literature

▶ Wrote package bpmeth compatible with XSuite to directly track through
fieldmaps, also when magnet design is not available

▶ Theoretically derived resonance driving terms

▶ Measured impact of fringe field on linear optics in ELENA machine

▶ Estimated the impact of fringe fields on the linear optics on the HeLICS machine
- a machine in the design phase
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Open issues

▶ Focus on non-linear behaviour of fringe fields in ELENA
▶ Large discrepancies observed in chromaticity of ELENA between different models
▶ Measurements of chromaticity in ELENA will allow to draw conclusions about the

models
▶ Compare conclusions with measured and design fieldmap to estimate unavoidable

uncertainty

▶ Conclusions of measurements in ELENA will allow to study the non-linear effects
in the HeLICS machine
▶ Investigate effects of combined function magnet fringe fields on beam dynamics
▶ Sextupole-like effects might be important for resonant extraction

▶ Focus on the resonance driving terms
▶ Comparison between the theoretical values and lumped tracking map
▶ Identify which RDTs are important for the HeLICS machine compared to other sources
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Publications and presentations

▶ S. Van der Schueren et al., ”Magnetic field modelling and symplectic integration
of magnetic fields on curved reference frames for improved synchrotron design:
first steps”, in Proc. IPAC’24, Nashville, TN, May 2024, pp. 1649-1652.
doi:10.18429/JACoW-IPAC2024-TUPS09.
https://accelconf.web.cern.ch/ipac2024/doi/jacow-ipac2024-tups09/

▶ Symplectic maps for fringe fields, internal meeting on Fringe fields, 30th of
September 2024. https://indico.cern.ch/event/1462429/

▶ Maps for dipole fringe fields, ABP-LNO Section Meeting, 1st of November 2024.
https://indico.cern.ch/event/1468109/

▶ Resonant driving terms for dipole fringe fields, ABP-CAP Section Meeting, 7th of
February 2025. https://indico.cern.ch/event/1504506/

▶ Impact of fringe fields on beam dynamics, NIMMS Collaboration Meeting #105,
9th of May 2025. https://indico.cern.ch/event/1544534/

▶ NIMMS studies, ABP-CAP Section Meeting, 4th of July 2025.
https://indico.cern.ch/event/1533185/

https://accelconf.web.cern.ch/ipac2024/doi/jacow-ipac2024-tups09/
https://indico.cern.ch/event/1462429/
https://indico.cern.ch/event/1468109/
https://indico.cern.ch/event/1504506/
https://indico.cern.ch/event/1544534/
https://indico.cern.ch/event/1533185/
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Additional content
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Magnetic field expansion
The magnetic scalar potential ϕ(x, y, s) as general expansion in y

ϕ(x , y , s) =
∞∑
i=0

ϕi (x , s)
y i

i!

Laplace equation ∇2ϕ = 0

ϕi+2 = −
1

1 + hx

(
∂x ((1 + hx)∂xϕi ) + ∂s

(
1

1 + hx
∂sϕi

))

S. D. Fartoukh, 1997; C. Wang and L. Teng, 2001
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Magnetic field expansion
Expansion of the initial functions ϕ0(x, s) and ϕ1(x, s)

▶ Two initial functions ϕ0(x , s) and ϕ1(x , s) can be independently chosen

ϕ0(x , s) = −a0(s)−
∞∑
n=1

an(s)
xn

n!

ϕ1(x , s) = −
∞∑
n=1

bn(s)
xn−1

(n − 1)!

▶ Apply the formula to determine ϕ2

ϕ2(x , s) = −
1

1 + hx

(
∂x ((1 + hx)∂xϕ0) + ∂s

(
1

1 + hx
∂sϕ0

))
= h

1+hx

∑∞
n=1 an

xn−1

(n−1)!
+
∑∞

n=1 an
xn−2

(n−2)!
− h′x

(1+hx)3

∑∞
n=0 a

′
n(s)

xn

n!
+ 1

(1+hx)2

∑∞
n=0 a

′′
n (s)

xn

n!

▶ Successively determine next ϕi and calculate ϕ

S. D. Fartoukh, 1997; C. Wang and L. Teng, 2001
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Magnetic field expansion
Relation with the magnetic field B⃗ = −∇⃗ϕ

Bx (x , y = 0, s) = −∂xϕ0(x , s) =
∞∑
n=1

an(s)
xn−1

(n − 1)!

By (x , y = 0, s) = −ϕ1(x , s) =
∞∑
n=1

bn(s)
xn−1

(n − 1)!

Bs(x = 0, y = 0, s) = −
1

1 + hx
∂sϕ0(x , s)

∣∣∣∣
x=0

= bs(s)

an(s) = ∂n−1
x Bx (x , y , s)

∣∣
x=y=0

bn(s) = ∂n−1
x By (x , y , s)

∣∣
x=y=0

S. D. Fartoukh, 1997; C. Wang and L. Teng, 2001
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Magnetic field expansion
First terms

1 x y x2 xy y2

Bx a1 a2 b2
a3
2

b3
−a3−h(a2−a1h−2b′s )+bsh

′−a′′1
2

By b1 b2 −b′s − a1h − a2
b3
2

−a3 − h(a2 − a1h − 2b′s) + bsh′ − a′′1 − b3+hb2+b′′1
2

Bs bs −bsh + a′1 b′1 bsh2 − a′1h +
a′2
2

−hb′1 + b′2 − a1h
′+ha′1+b′′s +a′2

2

h = 0, ∂s = 0
Limit to a straight reference

frame with s-independent fields

1 x y x2 xy y2

Bx a1 a2 b2
a3
2

b3 − a3
2

By b1 b2 −a2
b3
2

−a3 − b3
2

Bs bs 0 0 0 0 0

The coefficients an, bn fall back to the usual multipole expansion for straight
magnets with transverse-only fields

S. D. Fartoukh, 1997; C. Wang and L. Teng, 2001
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Perturbation analysis: what are resonance driving terms?

Resonance driving terms fpqrt

▶ Order n = p + q + r + t, typically comes from a 2n-pole

▶ p, q are related to the horizontal plane

▶ r , t are related to the vertical plane

▶ For example: f3000 originates from a sextupole, and describes a deformation of
phase space in the horizontal plane

f3000
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Resonance driving terms with dipole fringe fields
In a straight reference frame orthogonal to the edge

▶ f1000(s), f0100(s) =⇒ Closed orbit distortion

▶ f10kl and f01kl with k + l = 2n
▶ n = 1: f1020, f1011, f1002, f0120, f0111, f0102 =⇒ “Sextupole-like” effect: chromaticity
▶ n = 2: f1040, f1031, f1022, f1013, f1004, f0140, f0131, f0122, f0113, f0104
▶ ...

▶ f00kl with k + l = 2(m + n)
▶ m, n = 1: f0040, f0031, f0013, f0004, =⇒ “Octupole-like”: second-order chromaticity

h0022 =⇒ detuning with amplitude
▶ ...

▶ Edge angle and curvature will contribute to additional RDTs
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me using RDTs
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Resonance driving terms with dipole fringe fields
Applied to the ELENA machine

▶ For example: closed orbit distortion from dipole component

δx(s) = −
√
βx (s)

2
2i(f0100(s)− f1000(s))

▶ Applied to fringe fields:

f1000(s) =

∫ s+L

s
ds′b1(s

′)

√
βx (s′)

2

e i∆µx (s,s
′)

1− e2πiQx

f0100(s) =

∫ s+L

s
ds′b1(s

′)

√
βx (s′)

2

e−i∆µx (s,s
′)

1− e−2πiQx
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Closed orbit distortion: some intuition

▶ Dipole field changes gradually instead of a
hard edge

▶ Does not cancel between entrance and exit
fringe

▶ Not included in Forest fringe field map (PTC,
MAD-NG, XSuite)

Closed orbit effect in ELENA dipole with rescaled field such that
x = 0, px = 0 → x = 0, px = 0

(neglecting quadrupole component from edge angles)

ρ

ρ

Fringe field region

Fringe field region
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Fringe field map for the dipole in PTC, XSuite, MAD-NG - Etienne Forest

▶ Derive the kick caused by an inverse drift - fringe - inverse bend on the particle
▶ Lowest order ∆px = 0
▶ First order contribution ∆py

∆py,1 = −
x′

1 + y ′2 b0y

▶ Second order contribution ∆py

∆py,2 =

∫ +∞

−∞
b(s)(b0 − b(s))ds

(
(1 + δ)2 − p2

y

p3
s

+
p2
x

p2
s

(1 + δ)2 − p2
x

p3
s

)
y

gb20K

▶ Construct a generating function that results in this kick

F = pxxf + pyyf − δℓf −
1

2
ψ(px , py , δ)yf

2

ψ = b0 tan

[
arctan

(
x ′

1 + y ′2

)
− gb0K

(
1 +

p2x
p2s

(
2 +

p2y

p2s

))
ps

]

▶ A map that is derived from a generating function is by definition symplectic

Forest, Leemann, Schmidt - 2006
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Fringe field map for the dipole in PTC, XSuite, MAD-NG - Etienne Forest
To be applied at the magnet edge

xf = x +
1

2

∂ψ

∂px
yf

2 px,f = px

yf =
2y

1 +
√

1− 2 ∂ψ
∂py

y
py,f = py − ψyf −

b20
9Kg(1 + δ)

y3
f

ℓf = ℓ−
1

2

∂ψ

∂δ
yf

2 δf = δ

with

ψ = b0 tan

[
arctan

(
x ′

1 + y ′2

)
− gb0K

(
1 +

p2x
p2s

(
2 +

p2y

p2s

))
ps

]

First order effect: quadrupole =⇒ beta-beating

Second order effect: sextupole-like =⇒ chromaticity
Dipole with edge angle: quadrupole =⇒ beta-beating

Third order effect: octupole-like =⇒ second-order chromaticity

Forest, Leemann, Schmidt - 2006
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Fringe field maps with edge angles and curvature: rotation - fringe - wedge

or absence of dipole field

Dr
ift

Dynamical rotation
Transforming the particles to the edge frame

Fringe field maps

Wedge
Rotation including presence
or absence of magnetic field

Combined function dipole
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Fringe field map for multipoles in PTC, XSuite, MAD-NG

▶ Hard edge multipole fringes: generating function

F (x, pf) = x · pf ∓R
cn,body r

ne inϕ

4(n + 1)D

(
rpfr + i

n + 2

n
rpfϕ

)
▶ The Lee-Whiting quadrupole fringe

px = pf
x ±

b2

12(1 + δ)
(3(x2 + y2) pf

x − 6xy pf
y )

py = pf
y ±

b2

12(1 + δ)
(6xy pf

x − 3(x2 + y2) pf
y )

=⇒ Octupolar effect
=⇒ Reduces to sextupolar effect if there is an edge angle

▶ Quadrupole SAD soft fringe

▶ Missing: beta-beating originating from the finite extent of the fringe field
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