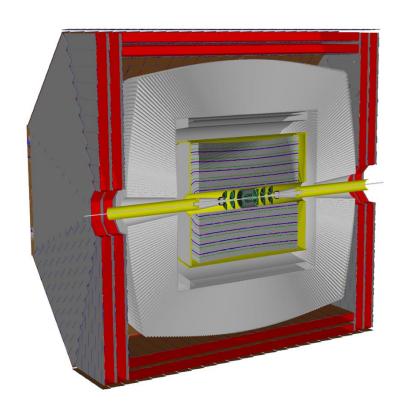
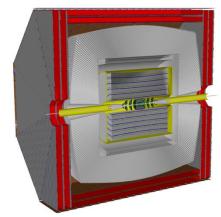
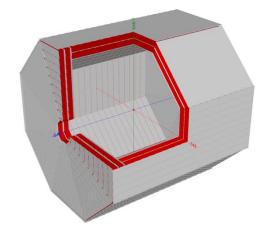
Mahmoud Al-Thakeel

FULL SIMULATION OF IDEA MUON SYSTEM: PERFORMANCE STUDIES AND LLPS DETECTION


FCC Software & Physics group Meeting, 15th October 2025





Quick recap on IDEA Muon system in Full-Simulation:

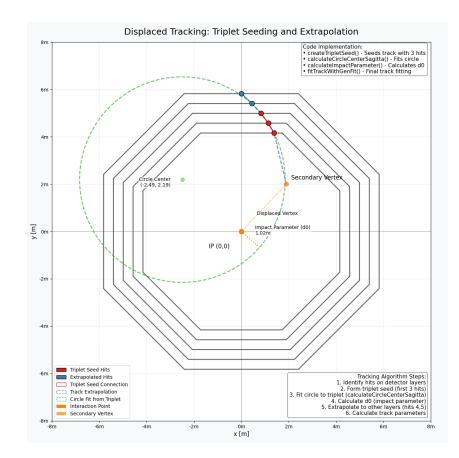
- ➤ **Geometric modeling**: Complete barrel and endcap µRWELL chamber description with realistic gas gaps, and readout strips. Designed in 3 polyhedron(octagon) stations composed of arrays of 50 x 50 cm². (The design is flexible for future modification of parameters)
- **Geometry coverage**: The Muon system extends in theta $8^{\circ} < |\theta|$ <172°, pseudorapidity $|\eta|$ < 2.56 and with complete ϕ coverage.
- > Sensitive detector integration: Full digitization chain of space resolution and µRWELL efficiency.
- Magnetic field interface: Integration with the 2T solenoid field inside the solenoid volume and -1.7T outside the solenoid for accurate track reconstruction. Full detailed field map is needed for more accurate implementation.
- **Reconstruction**: reconstruction algorithms for tracking and vertexing have been designed for muon-system and especially displaced-vertex cases.

Reconstruction Algorithm for Displaced tracks:

Implementation of a new tracking algorithm adopted for IDEA Muon system and displaced tracks, Key features of the algorithm:

Triplet Seeding Approach

The code implements a triplet-based seeding strategy:

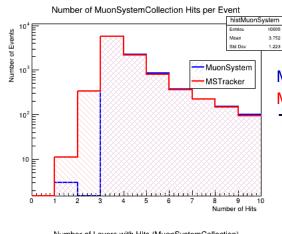

- Hits are grouped by their layer IDs
- The algorithm then forms triplets by selecting hits from three different layers
- Systematically iterating through all possible combinations (3 nested loops)
- For each potential triplet, it calls createTripletSeed to evaluate if the hits form a valid track seed

Triplet Validation: Distance check and Angle consistency

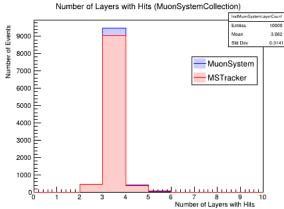
Circle fitting: Attempts to fit a circle through the projected hit positions in the x-y plane using sagitta method

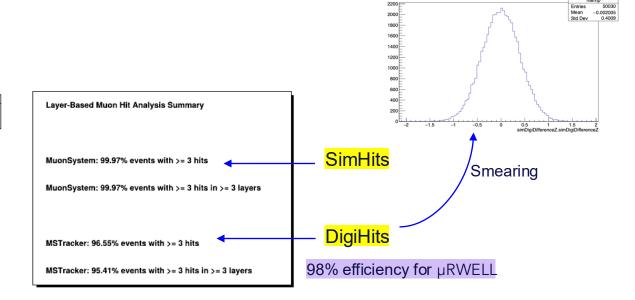
Calculates track parameters:

- **Momentum (pT)**: Using the relation pT = $0.3 \times B \times R$ (where B is magnetic field in Tesla and R is radius in meters)
- II. Phi angle: From circle center and hit positions
- **III. Charge sign**: Based on clockwise/counterclockwise determination
- IV. Z component: Linear fit along the track path to get theta/eta
- V. Impact parameters: Using calculateImpactParameter which models field transitions



simDigiDifferenceZ.simDigiDifferenceZ


Muon system Digitization:



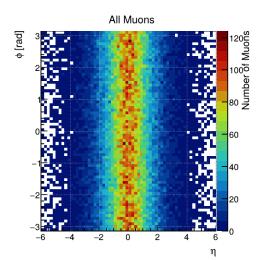
MuonSystem collection (SimHits)

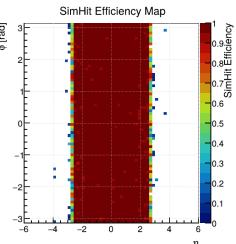
MSTracker collection (DigiHits)

To have a track we need at least 3 digi hits in 3 different layers

uniformly distributed

angle and energy range

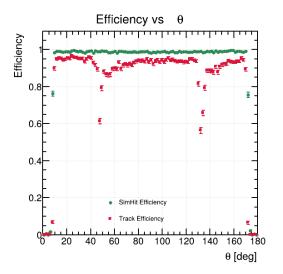

(0:200 GeV)

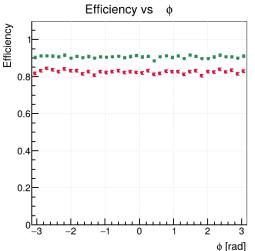

Muon system Performance:

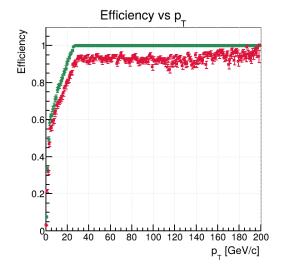
Detection Efficiency and Geometric Acceptance

- The standard design of the IDEA muon-system is **3 layers** of µRWELL chambers each of area 50×50 cm², and the current µRWELL candidate is 400 µm in space resolution Test by **100k** Muon gun,
- (SimHit: The detector has at least one hit from the passing particle)
- Track efficiency drops at some regions due to several factors:
 - Lack of having at least 3 hits in at least 3 different layers.
 - Transition region between barrel and endcap.
 - The absence or very low values of magnetic field at some regions, especially in the endcap.

SimHit Efficiency Map Track Efficiency Map Track Efficiency 0.5 0.4 0.3 0.2 0.1

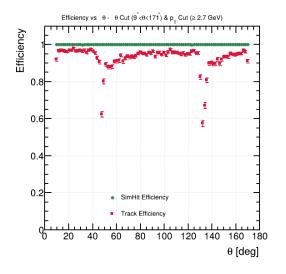


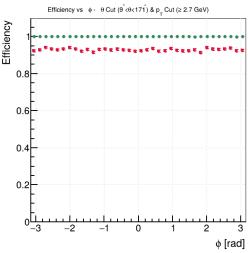


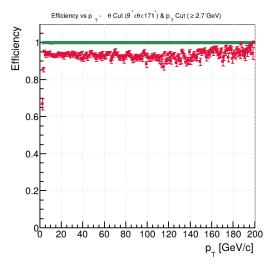


Kinematic Performance Characteristics

- kinematic dependencies of reconstruction efficiency:
- Key performance metrics from 82,548 reconstructed muons out of 100,000 muons:
 - SimHit detection efficiency: 90.7% with excellent angular uniformity
 - Track reconstruction efficiency: 82.5%
 - Angular coverage: Optimal performance for barrel and endcap region, but the track efficiency drops at the transition regions between the barrel and the endcap around 45° and 135° in θ .
- > All the above studies have been done without applying cuts for geometric coverage nor momentum threshold.






Performance Enhancement Through Selection Cuts

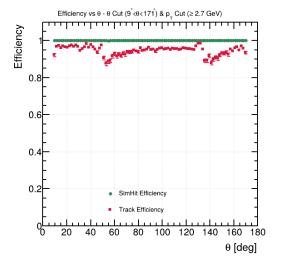
- **Geometric acceptance cut**: $9 < \theta < 171$ corresponding to the muon system's η coverage.
- **Momentum threshold cut**: $P_T \ge 2.7$ GeV to ensure muons reach the muon system through the magnetic field.
- > Overall, the combined cuts yield remarkable performance improvements:
 - Event selection: 87.9% of events pass combined quality criteria
 - SimHit efficiency: Increased from 90.7% to 100.0%
 - Track efficiency: Improved from 82.5% to 92.8%

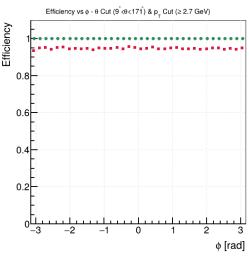
Track reconstruction processes barrel and endcap regions independently

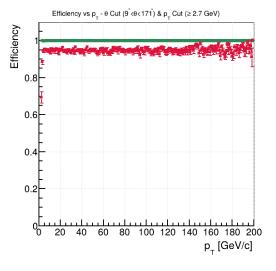
Performance Enhancement due to combined-region reco

Track efficiency: Improved from 92.8% to 94.5%

Remember: DigiHits efficiency ~ 95%

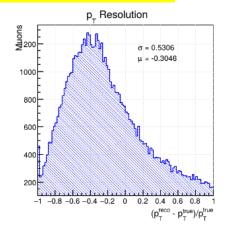

DigiHits quality candidates (≥3h,≥3l): 82,787

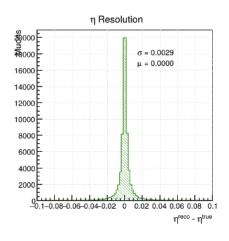

DigiHits quality with tracks: 82,764

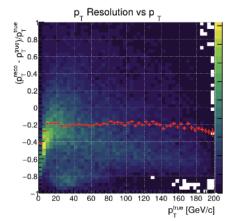

Quality Track efficiency = # Reco tracks/# Quality candidates (≥3 hits, ≥3 layers) ~ 99.97%

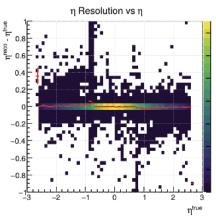
Overall, the standard design of IDEA muon-system of 3 Layers and 98% of µRWELL, will have a maximum efficiency of around 95%

Track reconstruction processes barrel and endcap regions together

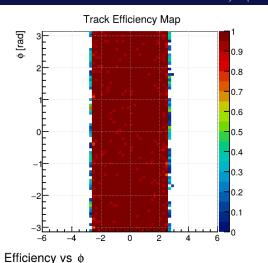


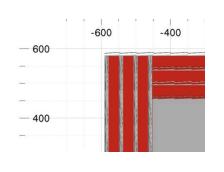

- The P_T residual distribution exhibits a broad spread with a significant negative bias ($\mu = -0.3$), indicating systematic challenges in momentum reconstruction that require calibration improvements.
 - Track fitting require improvement, for the moment it doesn't include material effects. But this can't guarantee big impact on P_T resolution, since there are other factors, like space resolution and lever-arm.

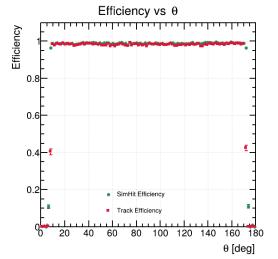

$$\left(rac{\sigma_{p_T}}{p_T}
ight)^2 = \left(rac{p_T}{0.3BL^2}\,\sigma_{
m spatial}\,\sqrt{rac{720}{N+4}}
ight)^2 \left(rac{0.016}{BL}\,\sqrt{rac{X}{X_0}}
ight)^2$$

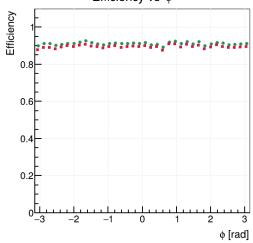

In contrast, the η residual displays narrow Gaussian peaks centered near zero (σ_{η} = 0.0107), reflecting excellent angular resolution capabilities.

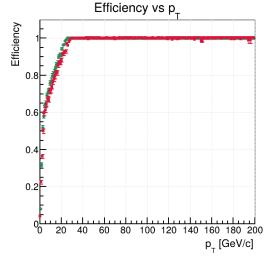
Resolution Performance


FCC

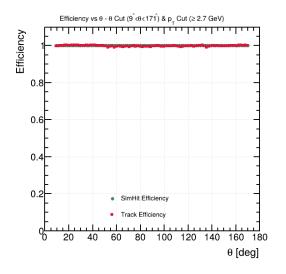

4-Layers Muon system Performance:

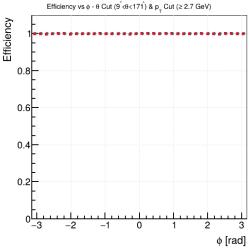

- > SimHit detection efficiency: 91.2%
- > Track reconstruction efficiency: 89.3%

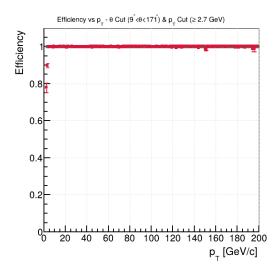

Without applying selection cuts.


> Transition regions effect (efficiency drop) disappear.

4-Layers Reco with acceptance cuts

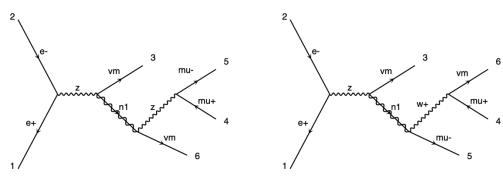

> Track efficiency: 99.7% after applying selection cuts in 4 layers


DigiHits quality candidates (≥3h,≥3l): 89,104


DigiHits quality with tracks: 89,102

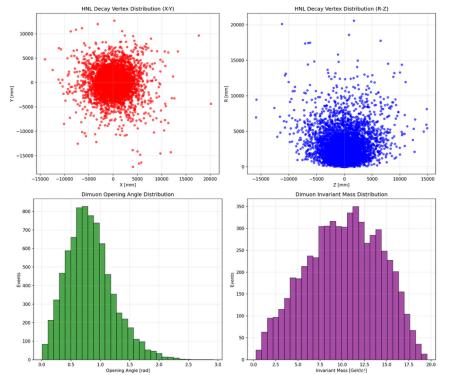
Quality Track efficiency = # Reco tracks/# Quality candidates (≥3 hits, ≥3 layers) ~ 100%

Overall, 4-Layers IDEA muon-system of 98% of µRWELL efficiency can reach an efficiency of 100%



Long-Lived Particles Detection: HNL Physics Case

- One of the main goals of having a precise muon system is to be able to standalone detect Long-Lived Particles (LLPs)
- The interaction between Heavy Neutral Leptons and Standard Model neutrinos is governed by the mixing matrix elements, particularly the parameter $U_{\mu N}$. This mixing determines how likely it is for N1 to be produced in processes involving muons and, subsequently, how it decays back into SM particles.
- For the generation of events, we use MadGraph5_aMC@NLO together with Pythia8, employing the model SM_HeavyN_CKM_AllMasses_LO. In this model, we can set the mixing parameters and HNL masses independently. As an example, we consider the following configuration:
 - m_{N1} = 20 GeV, representing a relatively light HNL.
 - $m_{N2} = m_{N3} = 10$ TeV, effectively decoupling the heavier HNLs from the phenomenology.
 - $V_eN1 = 0$ and $V_\tau N1 = 0$, meaning N1 mixes only with muons.
 - $V_u N1 = 1.0 \times 10^{-5}$, which is small enough to give a long-lived signature.
 - W_{N1} = auto to automatically compute the total decay width of N1.

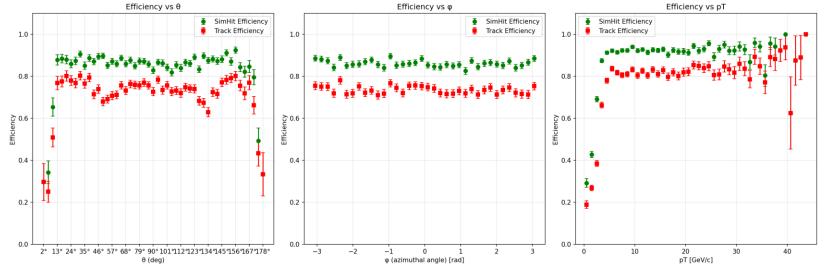


HNL Generator-Level Physics Characteristics

 Uniform azimuthal distribution of decay vertices with exponential radial decrease, directly reflecting the HNL lifetime characteristics (cτ distribution)

> Generator-level vertices span from millimeters to tens of meters, setting the physics requirements for displaced

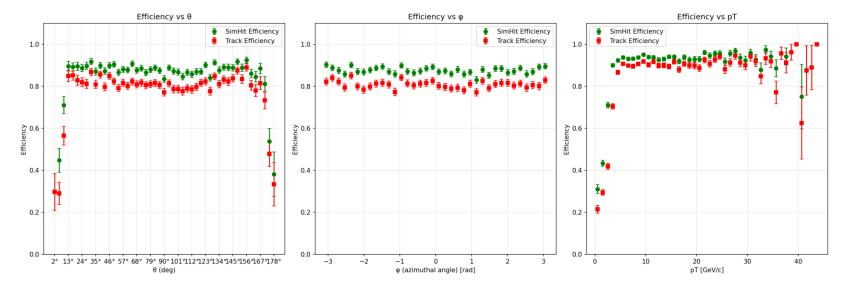
vertex detection



Detection Efficiency Performance

- The detector maintains high SimHit efficiency (> 85%) across most acceptance regions, with track efficiency showing more kinematic dependence, particularly at low P_T and extreme polar angles.
- SimHit efficiency achieves excellent performance above $P_T \sim 5$ GeV/c, reaching plateau values near 95%. Track efficiency shows similar behavior with a plateau near 82% above $P_T \sim 5$ GeV/c. Below 5 GeV/c, muons have difficulty reaching the muon system.

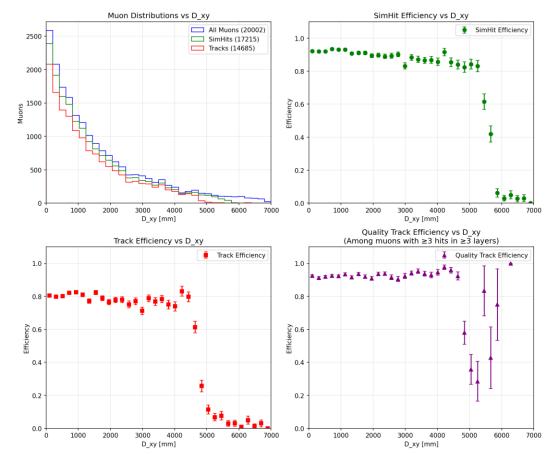
3-Layers



Detection Efficiency Performance

- SimHit efficiency go up to 87.5%
- > Track efficiency shows plateau near 90% above $P_T \sim 5$ GeV/c.

4-Layers


- ➤ The total sample includes 20,002 muons, with 17,215 producing at least one SimHit (86.1% SimHit efficiency) and 14,685 successfully reconstructed as tracks (73.4% overall track efficiency)
- ➤ Stable performance (~75-85%) for displacements up to 4.5 meters
- > Sharp drop-off beyond 4.5 meters as tracks approach detector boundaries.
- ➤ The quality track efficiency analysis shows a plateau around 92.2%.

3-Layers

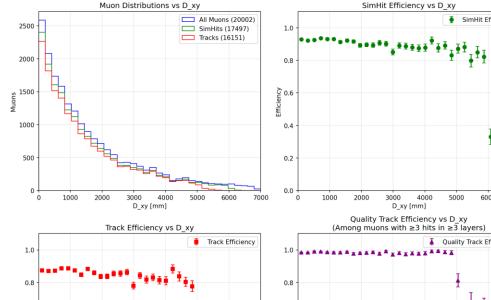
No selection cuts applied.

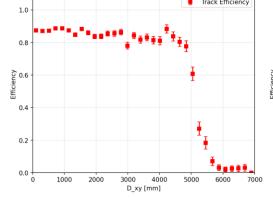
No geometry acceptance applied.

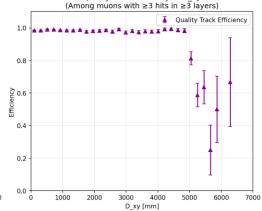
Efficiency vs Displacement

SimHit Efficiency

6000


LLPs Detection:


- > Around 1500 more muons have been reconstructed.
- > Track efficiency goes up to 80.7%
- > Quality track efficiency goes up to 98.2%


No selection cuts applied. No geometry acceptance applied.

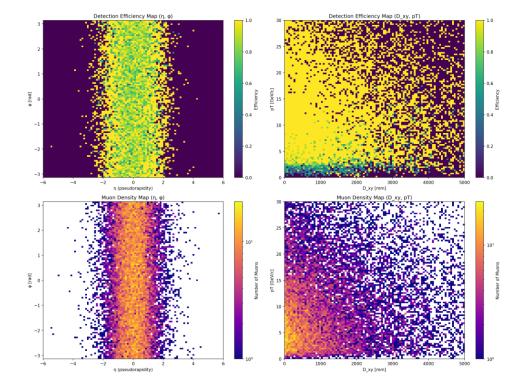
4-Layers

Efficiency vs Displacement

3000

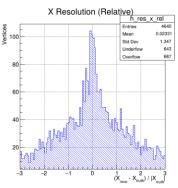
D_xy [mm]

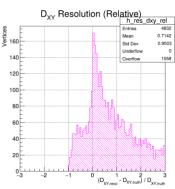
4000

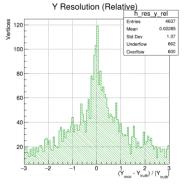


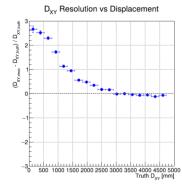
Efficiency vs Displacement

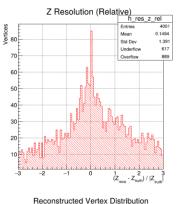
- \triangleright Excellent performance for high- P_T muons across all displacement ranges, with degradation only at very low momentum.
- \triangleright Central region ($|\eta|$ < 2) demonstrates excellent detection coverage for all displacement ranges

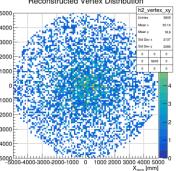



FCC


- ➤ (R < 2.1 m) The volume inside the solenoid. The reconstruction shows degraded resolution close to the interaction point, with bad relative resolution. This poor performance stems from the different track segment inside the solenoid that standalone muon system can't reconstruct.
- ➤ (R > 2.1 m) Beyond the solenoid boundary, vertex resolution reaches optimal performance with relative resolution values centered around zero


3-Layers


Vertex Reconstruction



Summary:

- > Detector Setup: Full μRWELL barrel + endcap modeled with realistic geometry, gas gaps, and readout strips; $\theta \in [8^{\circ}, 172^{\circ}], |\eta| < 2.56$; integrated with 2 T magnetic field inside the solenoid and -1.7T outside the solenoid.
- > Tracking Algorithm: Based on Triplet-based seeding then extrapolation + simple fitting; has above 98% efficiency.
- > Vertexing Algorithm: Designed for displaced-vertex reconstruction in Long-Lived Particle (LLP) topologies. Vertex resolution optimal beyond solenoid (R > 2.1 m); degraded near interaction point due to standalone reconstruction limitations
- > Performance (3 Layers):
 - Track efficiency $\approx 83 \rightarrow 95\%$ (after selection cuts)
 - Transition-region inefficiency (barrel-endcap) mitigated by joint reconstruction.
- **Performance (4 Layers):** Efficiency $\rightarrow \sim 100\%$; transition-region loss eliminated.
- > LLP (HNL) Case:

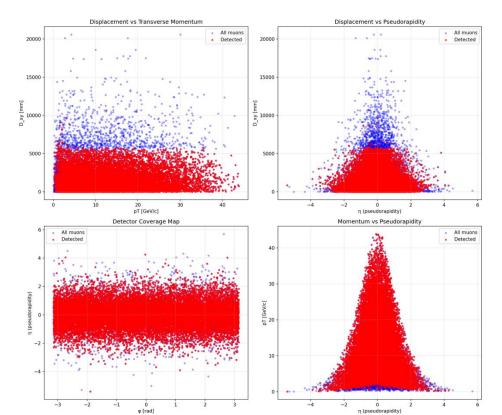
Benchmark: $m_{n1} = 20 \text{ GeV}$, $V_{\mu}N_{1} = 10^{-5}$.

Track efficiency \approx 75-90% (plateau > 5 GeV).

Stable up to 4.5 m displacement; quality-track ≈ 98.2%.

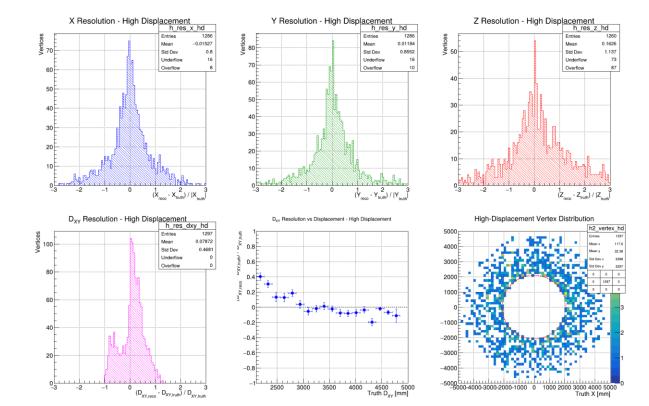
THANK YOU FOR YOUR ATTENTION.

Backup:



Efficiency vs Displacement

Multi-dimensional correlation analysis for HNL events.



Vertex Reconstruction

> High displaced vertex reconstruction.

