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Renormalization - Wilson's Lesson

Any QFT is an Effective Field Theory

Theory at A —  Theory at A/2 —
S, — S

AJ2 -

Inclusion of fluctuations, physical running scale A — A/2 = A/4 — A/8 — ...

Piling up of fluctuations — Evolution of parameters (couplings/masses)
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Renormalization - Higgs mass (Standard Model)

Standard Model - EFT valid up to a high scale A (Mp, Mgyr, ...)

)

A physical cut-off - SM effective Lagrangian L,

processes for momenta p < A

Above A the SM has to be replaced by its UV completion
Naturalness/Hierarchy (NH) problem

1. Unsuppressed quantum fluctuations — mf_, o A2 (Big Hierarchy)

“quadratic sensitivity” to A

If A too large — m?%(A) “unnaturally” large

— problem of “hierarchy” with the Fermi scale pg, where my(pg) ~ 125 GeV

... But also ...

2. Heavy particles (BSM) coupled to Higgs — m? o< M> (Little Hierarchy)
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Higgs Mass - Hierarchy/Naturalness Problem

Old days attitude
Great importance to (Big) Hierarchy Problem i.e. to A? sensitivity of m?,

Supersymmetry possible and very popular “solution”

More recent attitude
Since no sign of Supersymmetry up to now

Lot of activity on non-supersymmetric models

. scale invariant models (Meissner, Nicolai, Shaposhnikov, ...) ... newly proposed symmetries
(Lindner, ...) ... non-perturbative instanton effects (Shaposhnikov, ...) ...

Important to understand what is the general attitude in all these cases:
Quadratic sensitivity of mf_, to A not a problem ... technical issue ... just go on and

subtract this quadratic divergence ... Moreover, if dimensional regularization used ...
(Big) Hierarchy Problem downgraded to a technical issue (not an issue at all!)

. But ... remember ... Wilson’s lesson ...



Renormalization Pure Gravit:
00000

What about dimensional regularization?

Very good technique to go “directly” to the renormalized theory i.e. to
the “critical region” in the parameter space (*)

Fine-tuning automatically encoded in the calculations, although in a
hidden manner

Needless to say, DR cannot provide a solution to the problem
(despite claims to the contrary)

(*) C. Branchina, V. Branchina, F. Contino and N. Darvishi, Dimensional regularization, Wilsonian
RG, and the naturalness and hierarchy problem, Phys. Rev. D 106 (2022) no.6, 065007,
arXiv:2204.10582
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Lesson

According to Wilson's lesson - and contrary to what is sometimes stated -

we cannot ignore the (Big) Hierarchy Problem

® The mass m?, at the scale A is “naturally” expected to be m?,(A) ~ A?

® What takes the SM to the critical regime m?, < A% (renormalized theory)?

Physical mechanism usually invoked to cope with (Big) Hierarchy:
Supersymmetry
This talk: gravity leads the theory to the critical regime m?, < A2

® no SUSY (physical cancellation mechanism)
® No technical cancellation (dim.reg., ¢-function regularization)
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Pure Gravity: recap
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Pure Gravity - One-loop
Einstein-Hilbert Action :  Sgray = 16% f d*x V& (=R +2A)
One-loop correction 5Sg1r’dv

e % = lim /[Dy —35® L 55@) = ) + Sy + Synost
£—0

Fradkin-Vilkovisky measure

[2u] = L [6260) (£9) (I 00 (I1, 0300 (I1, 0]

A Ace 1 3G A | 3A?
= —= = — og
Pac 8rGl! 887G T Ace

only logarithmic corrections to pyac
No Naturalness Problem in pure gravity ; No need for Bare Acc ~ I\/I,z,
We may naturally have Ace < M,2,
/\clcl ~ Nee
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Pure gravity - RG

oA 3G M (K2—2A) 9G, 3G K2 — A,
ok - a0 3Gk > 2 ' kak: 3Gk > 2
T 14 3% (K- 2A) T 14 3 (k2 - 2A)
rather than
2] G [ 4 5 34k% + 48 A, ) ) 2 34k% + 48 A,
A [k +6A (K + Ak —Akf} ke Go= =G 20
[ NO sign of physical UV-attractive fixed point (AS) ]

- identification of the physical running scale properly done
- truly diffeomorphism invariant measure (FV) used
- No Asymptotic Safety scenario

i.e. No UV-attractive Fixed point (as in QCD)

Gravity is an Effective Field Theory (only Gaussian fixed point as in QED and ¢*)
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The Higgs mass
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Scalar theory non minimally coupled to gravity

_ 1
T 167G

3

d*x V& (—R +2Ac) + /d“x VE E 8" 0,0 0,6 + SRS’ + V(¢)}

Taking the metric g‘(fz of a sphere of radius a

V= G = [ a0 S 0000 5 T+ vio)

G
One-loop correction §S*/ (p=®+mn ; expand S up to n?)
7551
[Du(n)]
where [DM] Fradkin-Vilkovisky measure (arXiv:2506.05100)

5= %/d“x Ve [- 0.+ % v'@]n s [Pu] - H [(g<a)°°<x>)% (s (")m)% dn(x )}

X
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Dimensionless operators

gfg =3 g Where components of g, are dimensionless and a-independent

(g(a)oo(x))l/z (g(a)(x)) 14 _ R (EOO( )) 1/2 (~( )) 1/4

Convenient redefinition: ;7\5 an
1 ~ ~ ~ ~
52:5 d4x\/;T]I:—D—&-IZE-&-aZV”((D):I'r/

76 dimensionless spin-0 Laplace-Beltrami operator 7A|j =220,
Since dn(x) = afldiy\(x)
[Du(n)} can be written as [’Du(n)] = AHX [ ;7\ x)]

1/2 f~ \1/4
where a-independent terms such as H ( 00(X)) / ( (x )) / are included in the factor A



Higgs mass.

Renormalization Pure Gravity
O00@000000000000

00000 [e]e]e}

Dimensionless operators

Eigenvalues \, of —[J and degeneracies D,

1 3} 1 3
)\n:n2+3n H Dnzg(n-l,-i) _E<n+§)

Quantum correction to the action from Gaussian integration

e %5 = / [Du(n)} 2 = =590+ % log [det (—ﬁ +12¢ 4 2 v”(¢))] +c

Had we missed (g(") Oo(x))l/2 (g(é’)(x))l/4 = a-dependence of the
determinant altered = determinant dimensionful = arbitrary scale ; needed
to make argument of Log dimensionless
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Calculation of logdet (—ﬁ +12¢ + 22V"(9))

As for the pure gravity case

® Product of eigenvalues

® Proper time
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1 - Product of eigenvalues

Finite number N (>> 1) of eigenvalues \,. Largest eigenvalue: Ay ~ N? (N — 2 for convenience)

N—2

55 = 23 [Datog (A0 + 126 + FV(9)] 4
n=0

N = numerical UV cutoff

Expanding for N > 1

55 in terms of the numerical UV cutoff N:

oz N2 12 V(&)
O;

6511 _ N o<
panz ¢ 22 384n2

" 2
8—7372;#[7 (V (¢)) (N2+2(1765)IogN2)]

+£4 (71+2IogN2) o~ (13772§+3|ogN2) dl2ea—3e— 2 ) ign?1c
48 72 180
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Consider ®%- theory : V(®) = Z-&° 4 1o

@[] + 55V

One-loop effective action M/ =

ﬁa“{f ! {17(;'" (N2+2(176§)IogN2)}E

ri—
3 167G 24
et o]+ 5 (v )] e
1— log N 1 N2+2(1—68)logN? )| = o
871G e 8N T3 |1 gggme VT F2(1 -6 log 2
m? A A 3\
—|1- S| N?| @2 {17—| N2]¢4}
T3 [ 3.2 8 } tallT

N4 2 N 2 2 2
+E(—1+2IogN ) —5(13—72§+3|og/v )+ (25(1—35)—§> log N
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2 - Proper time

Since (—ﬁ + 12¢ + a*V"/(#)) dimensionless == regularize the determinant with

dimensionless proper-time 7 (lower cut N >> 1). (An and D, eigenvalues and degeneracies)
~ - f+°o 4z k(r) < 7T(>\,,+125+a2v”(¢))
det(—0 + 126 4+ 22V (®)) = e J1/N T . OK(r) = E D, e
n=0

Perform first integration over 7 and then sum over n with EML

[ S0 f(n) = [ axf(x) + L) o 570 2ok (P2 () — FED(m)) + Rap

n=n;
pis an integer ; By, are Bernoulli numbers ; Ry, is the rest
B _ _ —1)2p+1  pn
Rp = 3007 pa T (0 00) = £ D)) = g [ ax P00 Bap(x = 1)

Bn(x) Bernoulli polynomials ; [x] integer part of x ; ) j-th derivative of f}

Expanding the resulting expression of 65 for N > 1
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sot = [ L), 200

-2 Y jogN+ = N2 +2(1 — 6¢) log N2
3 pam2 BN T 5 38471'2( +2(1 - 66)log V)

N 1—6f ,
— - N
24 6 +<

25(1735)7%) log N* +C

Taking V(®) = T2 + 20* = (= 5@ 1 45Y) is

r”:B—;rza“{f 16;(;[17(;7'"2(N2+2(176£)IogN2)]§+ Nec [1, Gm' |ogNz}

247 S ot
’ g [1 " 384)7\725 (N2 +2(1 - 6¢) log N2)} %cbz
' %2 [1 3272 log Nz} **+ % [1 - 332i\r2 log N2:| ot }
. % - _665 v (25(1 —38) - %) log N

Apart from irrelevant a- and ®-independent terms, the two results for I/ coincide



Renormalization Pure Gravity Higgs mass.
00000 [e]e]e} 000000000 e000000

One-loop corrections to G G,£ m? and \

Comparing ' with 5(3)[(1)] we read the corrections to A—g é, £, m? and X in terms of N

112 [1- i: (N2+2(1—6§)IogN2)]

GY G
Nt Ao >
= — | N

Gl G [ 87rAcc og ]

2 2 2
my =m [1 ~ 3o IogN]

3

AV = ,\[1 oo |ogN2]

el=ef1+ ﬁ(mhz(l —66)log I?) |

Now connect N with A (~ Mp or string scale Ms) A= =N,/ %

as
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... Let’s read how the couplings get modified ...

AY Ace Gm* 3A? 1 1 Gm? /3N 372
e Tee fq 2T o =1 2 (2 201 — 66) log ——
8rGU 87rG[ 87 A & Aue ] Gl G[ 24m (/\m +2(1 — 6¢) log 7 )]

A 3A2 3\ 3A2
2 2 1/
= m?[1— [ oAV =a|1- I
miy= ' | 272 8 Aw] { 322 8 AJ
A 3A2 3A2
1/
=¢|1 2 1 2(1 - 6¢)log —
¢ 5[ +3847r2£(/\cc +2( $)log /\)}

Quartic self-coupling - only mild logarithmic correction (coincides with flat space-time result)
Scalar mass 8m? ~ log A rather than ~ A%: no quadratic divergence
Usual result §m? ~ A?: enormus fine-tuning

Present result  we may well have m*(A) < A?
No (Big) Naturalness Problem for the scalar mass

If SM embedded in SUSY, GUT, ..., fields of heavy mass M coupled to Higgs = ém? o M?.
Physical mechanism that disposes of these contributions and makes mf, ~ (125 GeV)? needed !!

. work in progress ...

Still this is an important physical result, obtained within the Wilsonian framework, where physical
cutoff built-in: Absence of quadratic divergence not due to “technical tricks” (dimensional, zeta
function regularization, ...) nor to physical cancellations (SUSY, ...)
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still reading the couplings ...

AL A Gm' 3N 1 1 G m? 3N 3A%
==l1- [ o —==l1- 2= 2(1 - 6£)1
GV~ G [ 8l © A ] GV G[ 24n (/\CC +2(1 = 6¢) log )]
P 3A2 3\ 3A%
2 2 1/
=m?[1 [ coAV=a|1- [
iy = ' [1 - 557 g /\J [ 3272 8 /\J

g f— (3A2+2(1 6¢) 1 3/\2)
= Presarard Goren — 0|

38472 &\ Ae £ Ace
Non-minimal coupling £ : besides a mild logarithmic correction (present in previous literature)
£ receives a quadratically divergent contribution

UV sensitivity of m? and € inverted : m? ~ logA ; £ ~ A%

Phenomenological remarks

Higgs boson mass confronted with measured ma ~ (125 GeV)2 = quadratic sensitivity to A gives
rise to severe naturalness problem. Much less is known on the experimental value of &.
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still reading the couplings ...

3A? 1 1 Gm? /3N 3A?
D === |1-—=— 2(1 —6¢)1
€ A ] GV~ G [ 24 (/\cu +2(1 = 6¢) log 7 )]
3A2 3\ 3A2
] coaY=a|1- log
Ace 3272 Ace
3A2

3A2
~ +2(1— 65)IogA—CC)]

Radiative correction ~ log A : no quartic/quadratic divergence

Note : log A correction multiplied by m* == for SM masses m ~ pg still left with (at least) 50
orders of magnitude discrepancy with measured vacuum energy. Absence of A* and A? corrections
sheds some light on the CC problem, and makes it less severe

Inverse Newton constant - Quadratically UV-sensitive contribution as usual
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Comparison with the literature

Calculation usually performed within the heat kernel expansion. Quadratically divergent
contribution to the mass typically found (obviously dimensional regularization excluded from these
considerations: trick to cancel powerlike divergences)

Let us go back to ri. temporarily connect N and A through

N N
A = — ratherthan A= —
a ags
8m? 1 1-6¢ G m? 12
rv — 4{ [1 GA? — 2(1—68)1 2N2 ]—
3 ° 167G - 12n 24r (201 - 66)tog (a*A%)) 2
A m?G Gm*
cc /\ | 2/\2 :|
8| [ 87r/\cc + 47 Nee 871’/\cc o8 (a )
I3 { ( 2,2 )] 12,
> 2(1—6¢)1 A o
+3 +38425 (1 6¢)log (°A%) )| 5
m AN2 A 212 5 A 3\ 2] aa
0 [ st s W) [ s () ot

+ (2§ (1—3¢) — %) log (a?A?)
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ds
2 2
g Gm 12 A
I’“:—a“{f[177(N2+2(176§)I0gN):| —+[17 |og/v2]i
3 T 167G a2 8mAce 87w G
2
m 3x A
log NZ} A log N2 | = o* }

2 2 3272 4

A 2 2\ | € 2 [
+ ——— (N +2(1 — 6&)log N 9 1—
[ 384«25( ( <) log )] 2 a2

4 —
M 6£N2+(2£(1—3£)—3)|ogN2
24 0
A
“ . Red —» m? Blue—>16—G
us

Legenda: Green —
8w G

2 2
8 1-6¢ Gm 1 12
FII:—aA{f [1+ 2—7(2(1765)@(;‘2/\2))}7—
3 127 247 167G a2
2
m*“G A
+ [1 M — A% log (52/\2) ] A
87 Ace 47 hee 87 Ace 87G
€12
(2(1 — 6€) log (32/\2) ) 2 e2
384« 2 a2
2 2
AN Y m N A
+ [1 + ——— — —— log (32/\2) } — 9?2 + |1 - log (32/\2) Zo* }
3272 m2 3272 2 3272 4
29
+ (25 (1 - 3¢) ) log (az/\z)
180
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Speculations / Conclusions

Curved vs flat spacetime

Radiative corrections to mf_, / flat spacetime /quadratic sensitivity ... However ...

Evidence for positive vacuum energy 8’::% > 0 : Flat spacetime not suitable

cosmological description

Radiative corrections should be computed on curved background
Flat spacetime as limit ... different from flat ab initio ...
Our calculations indicate that usual methods may fail ...

Quadratic divergence in £ instead of m? cannot be detected in flat spacetime
computations, since in this case R¢p? =0
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More on Wilson's lesson

Great progress in our understanding of (renormalisation in) QFTs
Connection between Renormalization in QFT and Theory of Critical Phenomena

Critical Phenomena: Critical regime (ferromagnet: transition to ferromagnetic phase)
reached when the correlation length £ among statistical fluctuations becomes >>
inter-atomic distance a

Ferromagnet: £ >> a when T approaches the critical temperature T.. For T
close to T, we have &~ |T — T¢|™¥, with v critical exponent

Connection QFTs/critical phenomena: my — % , N — %

m,2_,(/\) < A? nothing but Higgs system in the critical regime (renormalized regime)

While we know what drives the Ferromagnetic system towards the critical regime
namely the tuning of T towards T,

We do not know why Higgs system — ‘“critical regime” mf_, < N? (% << %)

i.e. what triggers the Higgs system — renormalized theory

Renormalization of a QFT is not a matter of “cancellation of divergences”
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RG flow

Critical
surface

Trajectories under
RG transformation

Ky

Renormalized theory - defined around a fixed point (close to critical
surface)

When RG flow close to critical surface we have m?, < A? (% << 1

The question is: what drives the RG flow close to the critical surface?
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EML formula and PT
o

The Global Picture

/\ QCD

GUT \ IR’
CM /
( >

EW jé
\ IR

TOE QED

All  operators present from
the beginning - UV - then
intergrate out degrees of
freedom

Classification relevant / irrel-
evant / marginal operators
different in different regions of
the parameter space

Pauli term: 1EUW,F/“/1/)

4-Fermion inter.: ipapn)
SM operators dim > 4

*)

Proper time RG
[}

(*) J. Alexandre, V. Branchina and J. Polonyi, Global renormalization group, Phys. Rev. D 58

(1998), 016002, arXiv:hep-th/9712147
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Big Hierarchy

1. A popular approach - Assumes that UV completion of SM provides at A[?, ?, 7]
m2,(A) < A? (1)
Sometimes viewed as a “quantum gravity miracle” [?] : realizes a conspiracy among

the SM couplings at the scale A (Example: Veltman condition). In such a scenario:

(i) Naturalness Problem “solved” from physics “outside” the SM realm : left-over of
its UV completion

(ii) Hierarchy Problem solved “inside” the SM, by considering the perturbative RG
equation for m?,(p) (v < 1 : perturbative anomalous mass dimension)

#d%mm) = m2 () )

m?,(ug) and m?(A) ~ same order: no problem of hierarchy.

This way of framing the problem relies on two ingredients :

(a) quantum gravity miracle

(b) Above: the correct RG equation for m? (1) in the whole range [1f, A]
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Big Hierarchy

2. Self-Tuning approach - Assumes again equation
d , 5
—m =9 m

W an H(k) =~ my(k)

as the correct RG equation for m?,(1) in the whole range [1ir, A] and assumes that
gravity could provide a non-perturbative value for v (~ 2). In this case, the large
hierarchy between the Fermi scale g and the UV scale A can be

accommodated[?, 7, ?, 7,7, 27, ?, ?]: NH problem would disappear

Approaches 1 and 2 do not adderess correctly the problem

The ultimate reason is that any Effective Field Theory, including the
Standard Model, is necessarily defined in the Wilsonian framework
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3. Some authors suggest/hope/assume that dimensional regularization is endowed
with special properties that make it the correct “physical” way to calculate the
radiative corrections in quantum field theory. The Big Hierarcchy problem then seems
to be absent from the beginning
Z2rz2?272272,27,2.2,7,2,,,,,2,,, 7. 7).
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These approaches do not solve the Big Hierarchy problem

The ultimate reason is that any Effective Field Theory, including the
Standard Model, is necessarily defined in the Wilsonian framework

... More on Wilson's lesson ...
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(i) parameters (masses/couplings) g;(A) in the effective Lagrangian £g,\3,
result from integrating out higher energy modes k > A related to the UV
completion of the SM

(ii) the same parameters g;(1) at a lower scale p < A result from

integrating out the modes of the fields that appear in Eg’,\&, in the range
(12, A].
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RG Equation for my (subtracted)

Equation ,u%m,%,(u) =~ m?(p). This equation is obtained when the “critical value”
m?2,(p) is subtracted to m?(u). In other words, m?,(11) in (2) is not the Wilsonian
mass m?(p). It is rather: m?,(p) = m?(u) — m2, (). Equation (2) then incorporates

the fine-tuning, and cannot be invoked to solve the NH problem.
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Calculation with EML in proper time regularization

(7D(S) — a) dimensionless = determinants regularized in terms of a dimensionless
proper-time 7 (lower cut: number N >> 1)

+oo
= 3 o0

n=s+i

det;(—0) —a) =e fl/’VZ T

+oo gr K(S)(T)

After integration over 7, sum over n performed with EML sum formula

o o P
Z f(n) = / dx f(x) + w + Z (fi‘;i (f(zkfl)(nf) _ f(Zk—l)(nl_)) + Rep

n=n; i k=1

p is an integer, B, are Bernoulli numbers, Ry, is the rest given by

. (-1t

B _ _ "
Rop = 0 (fm Y(ns) — £ 1)("f)) = 7/ dx £ () Boo (x — [x])

(2k)! (2p)!

Ba(x) are the Bernoulli polynomials, [x] the integer part of x, and f() the i-th derivative of f with

respect to its argument
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Proper time RG

Wilsonian RG strategy implemented introducing an IR regulator k in the one-loop result

+o0 1/Kk2
/ ds — ds ,
1 / Agut 1 /Asut

taking the derivative with respect to k, and finally realizing the RG improvement of the one-loop
result

Equivalently introducing a smooth function f(s) that interpolate between fi(s) ~ 0 for s > k2
and fi(s) = 1fors € k"> = RG equation for the action

+oo

~ 1 ds _5@ _ss®
8t5k[ga§]:—§Tr/ ?atfk(s) e 5% _2e " shost
0

where S [h; g] = S[z + F] + Sglh: &

Background metric g, = gl(f,l, Einstein-Hilbert truncation for S, = Sf(z) contains dimensionful
Laplace-Beltrami operators —[J for the sphere of radius a (and different spins 0, 1, 2) whose

. T 0 n?
eigenvalues A\, go like A\, ~ ol

The term 9:fi(s) effectively selects the eigenmodes of —[J whose corresponding eigenvalues lie in

~
a narrow range (“infinitesimal shell”) around k2, ie. Ay ~ k2

As for the effective average action formalism, here the running scale k is identified through the
relation k = L/a, and the same conclusions on the UV-attractive fixed point of the asymptotic

safety scenario hold true
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