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Renormalization - Wilson’s Lesson

Any QFT is an Effective Field Theory

Theory at Λ → Theory at Λ/2 → ...
SΛ → SΛ/2 → ...

Inclusion of fluctuations, physical running scale Λ → Λ/2 → Λ/4 → Λ/8 → ...

Piling up of fluctuations → Evolution of parameters (couplings/masses)
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Renormalization - Higgs mass (Standard Model)

Standard Model - EFT valid up to a high scale Λ (MP , MGUT , ...)

Λ physical cut-off - SM effective Lagrangian L(Λ)
SM processes for momenta p ≲ Λ

Above Λ the SM has to be replaced by its UV completion

Naturalness/Hierarchy (NH) problem

1. Unsuppressed quantum fluctuations → m2
H ∝ Λ2 (Big Hierarchy)

“quadratic sensitivity” to Λ

If Λ too large → m2
H(Λ) “unnaturally” large

→ problem of “hierarchy” with the Fermi scale µF , where mH(µF ) ∼ 125 GeV

... But also ...

2. Heavy particles (BSM) coupled to Higgs → m2
H ∝ M2 (Little Hierarchy)
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Higgs Mass - Hierarchy/Naturalness Problem
Old days attitude

Great importance to (Big) Hierarchy Problem i.e. to Λ2 sensitivity of m2
H

Supersymmetry possible and very popular “solution”

More recent attitude
Since no sign of Supersymmetry up to now

Lot of activity on non-supersymmetric models
... scale invariant models (Meissner, Nicolai, Shaposhnikov, ...) ... newly proposed symmetries
(Lindner, ...) ... non-perturbative instanton effects (Shaposhnikov, ...) ...

Important to understand what is the general attitude in all these cases:

Quadratic sensitivity of m2
H to Λ not a problem ... technical issue ... just go on and

subtract this quadratic divergence ... Moreover, if dimensional regularization used ...

(Big) Hierarchy Problem downgraded to a technical issue (not an issue at all!)

... But ... remember ... Wilson’s lesson ...
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What about dimensional regularization?

Very good technique to go “directly” to the renormalized theory i.e. to
the “critical region” in the parameter space (*)

Fine-tuning automatically encoded in the calculations, although in a
hidden manner

Needless to say, DR cannot provide a solution to the problem
(despite claims to the contrary)

(*) C. Branchina, V. Branchina, F. Contino and N. Darvishi, Dimensional regularization, Wilsonian
RG, and the naturalness and hierarchy problem, Phys. Rev. D 106 (2022) no.6, 065007,
arXiv:2204.10582
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Lesson

According to Wilson’s lesson - and contrary to what is sometimes stated -

we cannot ignore the (Big) Hierarchy Problem

• The mass m2
H at the scale Λ is “naturally” expected to be m2

H(Λ) ∼ Λ2

• What takes the SM to the critical regime m2
H ≪ Λ2 (renormalized theory)?

Physical mechanism usually invoked to cope with (Big) Hierarchy:

Supersymmetry

This talk: gravity leads the theory to the critical regime m2
H ≪ Λ2

• no SUSY (physical cancellation mechanism)
• No technical cancellation (dim.reg., ζ-function regularization)
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Pure Gravity: recap
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Pure Gravity - One-loop
Einstein-Hilbert Action : Sgrav = 1

16πG

∫
d4x √g (−R + 2Λ)

One-loop correction δS1l
grav

e−δS1l
grav = lim

ξ→0

∫
[Dµ] e−δS(2)

; δS(2) ≡ S2 + Sgf + Sghost

Fradkin-Vilkovisky measure[
Dµ

]
≡

∏
x

[
g (a) 00(x)

(
g (a)(x)

)−1(∏
α≤ β

dhαβ(x)
)(∏

ρ
dv∗

ρ (x)
)(∏

σ
dvσ(x)

)]
ρvac =

Λ1l
cc

8πG1l =
Λcc

8πG

(
1−

3GΛcc

π
log

3Λ2

Λcc

)
only logarithmic corrections to ρvac

No Naturalness Problem in pure gravity ; No need for Bare Λcc ∼ M2
P

We may naturally have Λcc ≪ M2
P

Λ1l
cc ∼ Λcc
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Pure gravity - RG

k
∂Λk
∂k

=
3Gk
π

Λk
(

k2 − 2
3 Λk

)
1 + 3Gk

2π

(
k2 − 2

3 Λk
) ; k

∂Gk
∂k

=
3G2

k
π

k2 − 8
3 Λk

1 + 3Gk
2π

(
k2 − 2

3 Λk
)

rather than

k
∂

∂k
Λk =

Gk

π

[
k4 + 6Λk

(
k2 + Λk

)
− Λk

34k2 + 48 Λk

6

]
; k

∂

∂k
Gk = −G2

k
34k2 + 48 Λk

6π

NO sign of physical UV-attractive fixed point (AS)

- identification of the physical running scale properly done

- truly diffeomorphism invariant measure (FV) used

=⇒ No Asymptotic Safety scenario

i.e. No UV-attractive Fixed point (as in QCD)

Gravity is an Effective Field Theory (only Gaussian fixed point as in QED and ϕ4)
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The Higgs mass
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Scalar theory non minimally coupled to gravity

S =
1

16πG

∫
d4x √g (−R + 2Λcc) +

∫
d4x √g

[
1
2

gµν
∂µϕ ∂ν ϕ +

ξ

2
Rϕ

2 + V (ϕ)
]

Taking the metric g (a)
µν of a sphere of radius a

S(a)[ϕ] =
πΛcc

3G
a4 −

2π

G
a2 +

∫
d4x

√
g (a)

[
1
2

g (a) µν
∂µϕ ∂ν ϕ +

ξ

2
12
a2 ϕ

2 + V (ϕ)
]

One-loop correction δS1l (ϕ = Φ + η ; expand S up to η2)

e−δS1l
=

∫ [
Dµ(η)

]
e−S2

where
[

Dµ
]

Fradkin-Vilkovisky measure (arXiv:2506.05100)

S2 ≡
1

2

∫
d4x

√
g(a) η

[
− □ a +

12 ξ

a2
+ V ′′(Φ)

]
η ;

[
Dµ(η)

]
=

∏
x

[(
g(a) 00(x)

) 1
2
(

g(a)(x)
) 1

4 dη(x)

]
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Dimensionless operators

g (a)
µν = a2 g̃µν where components of g̃µν are dimensionless and a-independent(

g (a) 00(x)
)1/2 (

g (a)(x)
)1/4

= a
(

g̃ 00(x)
)1/2 (

g̃(x)
)1/4

Convenient redefinition: η̂ ≡ aη

S2 =
1
2

∫
d4x

√
g̃ η̂

[
− □̃ + 12 ξ + a2 V ′′(Φ)

]
η̂

−□̃ dimensionless spin-0 Laplace-Beltrami operator −□̃ ≡ −a2 □ a

Since dη(x) = a−1dη̂ (x)[
Dµ(η)

]
can be written as

[
Dµ(η)

]
= A

∏
x

[
dη̂ (x)

]
where a-independent terms such as

∏
x

(
g̃ 00(x)

)1/2 (
g̃(x)

)1/4
are included in the factor A
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Dimensionless operators

Eigenvalues λn of −□̃ and degeneracies Dn

λn = n2 + 3n ; Dn =
1
3

(
n +

3
2

)3
−

1
12

(
n +

3
2

)
Quantum correction to the action from Gaussian integration

e−δS =

∫ [
Dµ(η)

]
e−S2 =⇒ Γ = S(a)[Φ] +

1
2

log
[

det
(

−□̃ + 12ξ + a2V ′′(Φ)
)]

+ C

Had we missed
(
g (a) 00(x)

)1/2 (
g (a)(x)

)1/4 =⇒ a-dependence of the
determinant altered =⇒ determinant dimensionful =⇒ arbitrary scale µ needed
to make argument of Log dimensionless
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Calculation of log det
(
−□̃ + 12ξ + a2V ′′(Φ)

)
As for the pure gravity case

• Product of eigenvalues
• Proper time
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1 - Product of eigenvalues

Finite number N (≫ 1) of eigenvalues λn. Largest eigenvalue: λN ∼ N2 (N − 2 for convenience)

δS1l =
1
2

N−2∑
n=0

[
Dn log

(
λn + 12ξ + a2V ′′(Φ)

)]
+ C

N = numerical UV cutoff

Expanding for N ≫ 1

δS1l in terms of the numerical UV cutoff N:

δS1l =
8π2

3
a4

[
−

(
V ′′(Φ)

)2

64π2 log N2 +
12
a2

V ′′(Φ)
384π2

(
N2 + 2 (1 − 6ξ) log N2

)]
+

N4

48

(
−1 + 2 log N2

)
−

N2

72

(
13 − 72ξ + 3 log N2

)
+

(
2ξ (1 − 3ξ) −

29
180

)
log N2 + C
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Consider Φ4- theory : V (Φ) = m2

2 Φ2 + λ
4! Φ4

One-loop effective action Γ1l = S(a)[Φ] + δS1l

Γ1l =
8π2

3
a4

{
−

1
16πG

[
1 −

G m2

24π
(

N2 + 2(1 − 6ξ) log N2
) ]12

a2

+
Λcc

8πG

[
1 −

G m4

8πΛcc
log N2

]
+
ξ

2

[
1 +

λ

384π2 ξ

(
N2 + 2 (1 − 6ξ) log N2

)] 12
a2 Φ2

+
m2

2

[
1 −

λ

32π2 log N2
]

Φ2 +
λ

4!

[
1 −

3λ
32π2 log N2

]
Φ4

}
+

N4

48
(

−1 + 2 log N2
)

−
N2

72
(

13 − 72ξ + 3 log N2
)

+
(

2ξ (1 − 3ξ) −
29
180

)
log N2
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2 - Proper time

Since (−□̃ + 12ξ + a2V ′′(Φ)) dimensionless =⇒ regularize the determinant with
dimensionless proper-time τ (lower cut N ≫ 1). (λn and Dn eigenvalues and degeneracies)

det(−□̃ + 12ξ + a2V ′′(Φ)) = e
−

∫ +∞

1/N2
dτ
τ

K(τ)
; K(τ) =

+∞∑
n=0

Dn e
−τ

(
λn+12ξ+a2V ′′(Φ)

)
Perform first integration over τ and then sum over n with EML[ ∑nf

n=ni
f (n) =

∫ nf
ni

dx f (x) + f (nf )+f (ni )
2 +

∑p
k=1

B2k
(2k)!

(
f (2k−1)(nf ) − f (2k−1)(ni )

)
+ R2p

p is an integer ; Bm are Bernoulli numbers ; R2p is the rest

R2p =
∑∞

k=p+1
B2k
(2k)!

(
f (2k−1)(nf ) − f (2k−1)(ni )

)
= (−1)2p+1

(2p)!

∫ nf
ni

dx f (2p)(x)B2p(x − [x ])

Bn(x) Bernoulli polynomials ; [x ] integer part of x ; f (i) i-th derivative of f
]

Expanding the resulting expression of δS1l for N ≫ 1
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δS1l =
8π2

3
a4

[
−

(
V ′′(Φ)

)2

64π2 log N2 +
12
a2

V ′′(Φ)
384π2

(
N2 + 2 (1 − 6ξ) log N2

)]
−

N4

24
−

1 − 6ξ

6
N2 +

(
2ξ (1 − 3ξ) −

29
180

)
log N2 + C

Taking V (Φ) = m2
2 Φ2 + λ

4! Φ4 =⇒ Γ1l (= S(a) + δS1l ) is

Γ1l =
8π2

3
a4

{
−

1
16πG

[
1 −

G m2

24π

(
N2 + 2(1 − 6ξ) log N2

) ] 12
a2 +

Λcc

8πG

[
1 −

G m4

8πΛcc
log N2

]
+

ξ

2

[
1 +

λ

384π2 ξ

(
N2 + 2 (1 − 6ξ) log N2

)]
12
a2 Φ2

+
m2

2

[
1 −

λ

32π2 log N2
]

Φ2 +
λ

4!

[
1 −

3λ

32π2 log N2
]

Φ4
}

−
N4

24
−

1 − 6ξ

6
N2 +

(
2ξ (1 − 3ξ) −

29
180

)
log N2

Apart from irrelevant a- and Φ-independent terms, the two results for Γ1l coincide
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One-loop corrections to Λcc
G , 1

G , ξ, m2 and λ

Comparing Γ1l with S(a)[Φ] we read the corrections to Λcc
G , 1

G , ξ, m2 and λ in terms of N

1
G1l =

1
G

[
1 −

G m2

24π

(
N2 + 2(1 − 6ξ) log N2

) ]
Λ1l

cc

G1l =
Λcc

G

[
1 −

G m4

8πΛcc
log N2

]
m2

1l = m2
[

1 −
λ

32π2 log N2
]

λ
1l = λ

[
1 −

3λ

32π2 log N2
]

ξ
1l = ξ

[
1 +

λ

384π2 ξ

(
N2 + 2 (1 − 6ξ) log N2

)]
Now connect N with Λ (∼ MP or string scale Ms) Λ = N

adS
= N

√
Λcc
3
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... Let’s read how the couplings get modified ...
Λ1l

cc

8πG1l =
Λcc

8πG

[
1 −

G m4

8πΛcc
log

3Λ2

Λcc

]
;

1
G1l =

1
G

[
1 −

G m2

24π

( 3Λ2

Λcc
+ 2(1 − 6ξ) log

3Λ2

Λcc

)]
m2

1l = m2
[

1 −
λ

32π2 log
3Λ2

Λcc

]
; λ

1l = λ

[
1 −

3λ

32π2 log
3Λ2

Λcc

]
ξ

1l = ξ

[
1 +

λ

384π2 ξ

( 3Λ2

Λcc
+ 2 (1 − 6ξ) log

3Λ2

Λcc

)]
Quartic self-coupling - only mild logarithmic correction (coincides with flat space-time result)

Scalar mass δm2 ∼ log Λ rather than ∼ Λ2: no quadratic divergence
Usual result δm2 ∼ Λ2: enormus fine-tuning

Present result we may well have m2(Λ) ≪ Λ2

No (Big) Naturalness Problem for the scalar mass

If SM embedded in SUSY, GUT, . . . , fields of heavy mass M coupled to Higgs ⇒ δm2 ∝ M2.
Physical mechanism that disposes of these contributions and makes m2

H ∼ (125 GeV)2 needed !!
... work in progress ...

Still this is an important physical result, obtained within the Wilsonian framework, where physical
cutoff built-in: Absence of quadratic divergence not due to “technical tricks” (dimensional, zeta
function regularization, ...) nor to physical cancellations (SUSY, ...)
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... still reading the couplings ...

Λ1l
cc

G1l =
Λcc

G

[
1 −

G m4

8πΛcc
log

3Λ2

Λcc

]
;

1
G1l =

1
G

[
1 −

G m2

24π

( 3Λ2

Λcc
+ 2(1 − 6ξ) log

3Λ2

Λcc

)]
m2

1l = m2
[

1 −
λ

32π2 log
3Λ2

Λcc

]
; λ

1l = λ

[
1 −

3λ

32π2 log
3Λ2

Λcc

]
ξ

1l = ξ

[
1 +

λ

384π2 ξ

( 3Λ2

Λcc
+ 2 (1 − 6ξ) log

3Λ2

Λcc

)]
Non-minimal coupling ξ : besides a mild logarithmic correction (present in previous literature)
ξ receives a quadratically divergent contribution
UV sensitivity of m2 and ξ inverted : m2 ∼ log Λ ; ξ ∼ Λ2.

Phenomenological remarks
Higgs boson mass confronted with measured m2

H ∼ (125 GeV)2 =⇒ quadratic sensitivity to Λ gives
rise to severe naturalness problem. Much less is known on the experimental value of ξ.
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... still reading the couplings ...

Λ1l
cc

G1l =
Λcc

G

[
1 −

G m4

8πΛcc
log

3Λ2

Λcc

]
;

1
G1l =

1
G

[
1 −

G m2

24π

( 3Λ2

Λcc
+ 2(1 − 6ξ) log

3Λ2

Λcc

)]
m2

1l = m2
[

1 −
λ

32π2 log
3Λ2

Λcc

]
; λ

1l = λ

[
1 −

3λ

32π2 log
3Λ2

Λcc

]
ξ

1l = ξ

[
1 +

λ

384π2 ξ

( 3Λ2

Λcc
+ 2 (1 − 6ξ) log

3Λ2

Λcc

)]
Vacuum energy ρvac = Λcc

8πG . Radiative correction ∼ log Λ : no quartic/quadratic divergence

Note : log Λ correction multiplied by m4 =⇒ for SM masses m ∼ µF still left with (at least) 50
orders of magnitude discrepancy with measured vacuum energy. Absence of Λ4 and Λ2 corrections
sheds some light on the CC problem, and makes it less severe
Inverse Newton constant - Quadratically UV-sensitive contribution as usual
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Comparison with the literature
Calculation usually performed within the heat kernel expansion. Quadratically divergent
contribution to the mass typically found (obviously dimensional regularization excluded from these
considerations: trick to cancel powerlike divergences)

Let us go back to Γ1l : temporarily connect N and Λ through

Λ =
N
a

rather than Λ =
N

adS

Γ1l =
8π2

3
a4

{
−

1
16πG

[
1 +

1 − 6ξ
12π

GΛ2 −
G m2

24π
(

2(1 − 6ξ) log
(

a2Λ2
)) ]12

a2

+
Λcc

8πG

[
1 −

G
8πΛcc

Λ4 +
m2G
4πΛcc

Λ2 −
G m4

8πΛcc
log

(
a2Λ2

) ]
+
ξ

2

[
1 +

λ

384π2 ξ

(
2 (1 − 6ξ) log

(
a2Λ2

) )] 12
a2 Φ2

+
m2

2

[
1 +

λΛ2

32π2 m2 −
λ

32π2 log
(

a2Λ2
) ]

Φ2 +
λ

4!

[
1 −

3λ
32π2 log

(
a2Λ2

)]
Φ4

}
+

(
2ξ (1 − 3ξ) −

29
180

)
log

(
a2Λ2

)
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From N
adS

to N
a

Γ1l =
8π2

3
a4

{
−

[
1 −

G m2

24π

(
N2 + 2(1 − 6ξ) log N2

)] 1

16πG

12

a2
+

[
1 −

G m4

8πΛcc
log N2

] Λcc

8πG

+

[
1 +

λ

384π2 ξ

(
N2 + 2 (1 − 6ξ) log N2

)]
ξ

2

12

a2
Φ2 +

[
1 −

λ

32π2
log N2

] m2

2
Φ2 +

[
1 −

3λ

32π2
log N2

]
λ

4!
Φ4

}
−

N4

24
−

1 − 6ξ

6
N2 +

(
2ξ (1 − 3ξ) −

29

180

)
log N2

Legenda: Green →
Λcc

8πG
; Red → m2 ; Blue →

1
16πG

Γ1l =
8π2

3
a4

{
−

[
1 +

1 − 6ξ

12π
GΛ2 −

G m2

24π

(
2(1 − 6ξ) log

(
a2Λ2

))] 1

16πG

12

a2

+
[

1 −
G

8πΛcc
Λ4 +

m2G

4πΛcc
Λ2 −

G m4

8πΛcc
log

(
a2Λ2

) ] Λcc

8πG

+

[
1 +

λ

384π2 ξ

(
2 (1 − 6ξ) log

(
a2Λ2

))]
ξ

2

12

a2
Φ2

+
[

1 +
λ Λ2

32π2 m2
−

λ

32π2
log

(
a2Λ2

)] m2

2
Φ2 +

[
1 −

3λ

32π2
log

(
a2Λ2

)]
λ

4!
Φ4

}
+

(
2ξ (1 − 3ξ) −

29

180

)
log

(
a2Λ2

)
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Speculations / Conclusions

Curved vs flat spacetime

Radiative corrections to m2
H / flat spacetime /quadratic sensitivity ... However ...

Evidence for positive vacuum energy Λcc
8πG > 0 : Flat spacetime not suitable

cosmological description

Radiative corrections should be computed on curved background

Flat spacetime as limit ... different from flat ab initio ...

Our calculations indicate that usual methods may fail ...

Quadratic divergence in ξ instead of m2 cannot be detected in flat spacetime
computations, since in this case Rϕ2 ≡ 0
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BACK-UP SLIDES
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More on Wilson’s lesson
Great progress in our understanding of (renormalisation in) QFTs

Connection between Renormalization in QFT and Theory of Critical Phenomena

Critical Phenomena: Critical regime (ferromagnet: transition to ferromagnetic phase)
reached when the correlation length ξ among statistical fluctuations becomes >>
inter-atomic distance a

Ferromagnet: ξ >> a when T approaches the critical temperature Tc . For T
close to Tc we have ξ ∼ |T − Tc |−ν , with ν critical exponent

Connection QFTs/critical phenomena: mH → 1
ξ

, Λ → 1
a

m2
H(Λ) ≪ Λ2 nothing but Higgs system in the critical regime (renormalized regime)

While we know what drives the Ferromagnetic system towards the critical regime
namely the tuning of T towards Tc

We do not know why Higgs system → “critical regime” m2
H ≪ Λ2 ( 1

ξ
<< 1

a )

i.e. what triggers the Higgs system → renormalized theory

Renormalization of a QFT is not a matter of “cancellation of divergences”
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RG flow

Renormalized theory - defined around a fixed point (close to critical
surface)

When RG flow close to critical surface we have m2
H ≪ Λ2 ( 1

ξ << 1
a )

The question is: what drives the RG flow close to the critical surface?
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The Global Picture
All operators present from
the beginning - UV - then
intergrate out degrees of
freedom

Classification relevant / irrel-
evant / marginal operators
different in different regions of
the parameter space

Pauli term: ψ̄ σµνF µνψ

4-Fermion inter.: ψ̄ψψ̄ψ
SM operators dim > 4
... (*)

(*) J. Alexandre, V. Branchina and J. Polonyi, Global renormalization group, Phys. Rev. D 58
(1998), 016002, arXiv:hep-th/9712147
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Big Hierarchy
1. A popular approach - Assumes that UV completion of SM provides at Λ [?, ?, ?]

m2
H(Λ) ≪ Λ2 (1)

Sometimes viewed as a “quantum gravity miracle” [?] : realizes a conspiracy among
the SM couplings at the scale Λ (Example: Veltman condition). In such a scenario:

(i) Naturalness Problem “solved” from physics “outside” the SM realm : left-over of
its UV completion

(ii) Hierarchy Problem solved “inside” the SM, by considering the perturbative RG
equation for m2

H(µ) (γ ≪ 1 : perturbative anomalous mass dimension)

µ
d

dµ
m2

H(µ) = γ m2
H(µ) (2)

m2
H(µF ) and m2

H(Λ) ∼ same order: no problem of hierarchy.

This way of framing the problem relies on two ingredients :
(a) quantum gravity miracle

(b) Above: the correct RG equation for m2
H(µ) in the whole range [µF ,Λ]
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Big Hierarchy

2. Self-Tuning approach - Assumes again equation

µ
d

dµ
m2

H(µ) = γ m2
H(µ)

as the correct RG equation for m2
H(µ) in the whole range [µF ,Λ] and assumes that

gravity could provide a non-perturbative value for γ (∼ 2). In this case, the large
hierarchy between the Fermi scale µF and the UV scale Λ can be
accommodated [?, ?, ?, ?, ?, ?, ?, ?]: NH problem would disappear

Approaches 1 and 2 do not adderess correctly the problem

The ultimate reason is that any Effective Field Theory, including the
Standard Model, is necessarily defined in the Wilsonian framework
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3. Some authors suggest/hope/assume that dimensional regularization is endowed
with special properties that make it the correct “physical” way to calculate the
radiative corrections in quantum field theory. The Big Hierarcchy problem then seems
to be absent from the beginning
[?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?].
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These approaches do not solve the Big Hierarchy problem

The ultimate reason is that any Effective Field Theory, including the
Standard Model, is necessarily defined in the Wilsonian framework

... More on Wilson’s lesson ...
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(i) parameters (masses/couplings) gi(Λ) in the effective Lagrangian L(Λ)
SM

result from integrating out higher energy modes k > Λ related to the UV
completion of the SM
(ii) the same parameters gi(µ) at a lower scale µ < Λ result from
integrating out the modes of the fields that appear in L(Λ)

SM in the range
[µ, Λ].
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RG Equation for mH (subtracted)

Equation µ d
dµ

m2
H(µ) = γ m2

H(µ). This equation is obtained when the “critical value”
m2

cr (µ) is subtracted to m2(µ). In other words, m2
H(µ) in (2) is not the Wilsonian

mass m2(µ). It is rather: m2
H(µ) ≡ m2(µ) − m2

cr (µ). Equation (2) then incorporates
the fine-tuning, and cannot be invoked to solve the NH problem.
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Calculation with EML in proper time regularization

(−□̃(s) − α) dimensionless =⇒ determinants regularized in terms of a dimensionless
proper-time τ (lower cut: number N ≫ 1)

deti (−□̃(s) − α) = e
−

∫ +∞

1/N2
dτ
τ

K(s)
i (τ)

; K(s)
i (τ) =

+∞∑
n=s+i

D(s)
n e−τ

(
λ

(s)
n −α

)
After integration over τ , sum over n performed with EML sum formula

nf∑
n=ni

f (n) =

∫ nf

ni

dx f (x) +
f (nf ) + f (ni )

2
+

p∑
k=1

B2k

(2k)!

(
f (2k−1)(nf ) − f (2k−1)(ni )

)
+ R2p

p is an integer, Bm are Bernoulli numbers, R2p is the rest given by

R2p =
∞∑

k=p+1

B2k

(2k)!

(
f (2k−1)(nf ) − f (2k−1)(ni )

)
=

(−1)2p+1

(2p)!

∫ nf

ni

dx f (2p)(x)B2p(x − [x ])

Bn(x) are the Bernoulli polynomials, [x ] the integer part of x , and f (i) the i-th derivative of f with
respect to its argument
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Proper time RG
Wilsonian RG strategy implemented introducing an IR regulator k in the one-loop result∫ +∞

1/Λ2
cut

ds −→

∫ 1/k2

1/Λ2
cut

ds ,

taking the derivative with respect to k, and finally realizing the RG improvement of the one-loop
result

Equivalently introducing a smooth function fk (s) that interpolate between fk (s) ≈ 0 for s ≫ k−2

and fk (s) ≈ 1 for s ≪ k−2 ⇒ RG equation for the action

∂t Ŝk [g, ḡ ] = −
1
2

Tr

∫ +∞

0

ds
s

∂t fk (s)

[
e−s Ŝ(2)

k − 2 e
−s S(2)

ghost

]
.

where Ŝ [h̄; g ] ≡ S[ḡ + h̄] + Sgf [h̄; ḡ ]

Background metric ḡµν = g (a)
µν , Einstein-Hilbert truncation for Ŝk ⇒ Ŝ(2)

k contains dimensionful
Laplace-Beltrami operators −□ for the sphere of radius a (and different spins 0, 1, 2) whose
eigenvalues λ̂n go like λ̂n ∼ n2

a2

The term ∂t fk (s) effectively selects the eigenmodes of −□ whose corresponding eigenvalues lie in
a narrow range (“infinitesimal shell”) around k2, i.e. λ̂n ∼ k2

As for the effective average action formalism, here the running scale k is identified through the
relation k = L/a, and the same conclusions on the UV-attractive fixed point of the asymptotic
safety scenario hold true
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