X_{17} and anomalies in particle physics

Raoul Serao

University of Salerno and Istituto Nazionale di Fisica Nucleare

November 14, 2025

Overview

- Introduction
- ATOMKI anomaly and vector boson solution
- ▶ Lepton magnetic moment
- ▶ Lamb shift
- W mass
- Conclusion

The following presentation is based on: "A. Capolupo, A. Quaranta, R. Serao, Phys. Dark Univ. 47 101748 (2025)"

The Standard Model

A remarkably successful theory describing electromagnetic, weak, and strong interactions. Extensively confirmed by experiments, it forms the cornerstone of modern particle physics.

The Standard Model

A remarkably successful theory describing electromagnetic, weak, and strong interactions. Extensively confirmed by experiments, it forms the cornerstone of modern particle physics.

Yet, it is far from complete:

- No gravity, no true grand unification
- 19 free parameters fixed by data
- Neutrino masses: origin and nature (Dirac/Majorana) unknown
- Open questions in flavor physics: 3 generations, mixing?
- No explanation for dark matter or dark energy

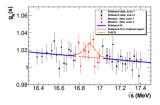
Experimental Anomalies

Tensions between SM predictions and data:

- Muon *g* − 2
- Proton radius (Lamb shift)
- ATOMKI anomaly

Experimental Anomalies

Tensions between SM predictions and data:

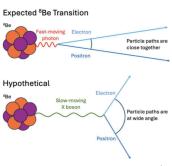

- Muon *g* − 2
- Proton radius (Lamb shift)
- ATOMKI anomaly

Possible hints of physics beyond the SM:

- Discrepancies suggesting new interactions or particles
- Proposed extensions often introduce dark sector candidates

ATOMKI Anomaly

- Normally, pair distributions decrease smoothly with θ and $m_{e^+e^-}$.
- ATOMKI observed peaks at $\theta \simeq 140^{\circ}$ and $m_{e^+e^-} \simeq 17.6$ MeV.
- Similar anomalies reported in C and He decays.
- The current status remains unclear:
 - MEG II (PSI): against
 - PADME (Frascati): in favor



Number of $e^+e^- \rightarrow e^+e^-$ events normalized to background (PADME Run III).

PADME Collaboration, arXiv:2505.24797 (2025)

A new vector boson

- A rather natural explanation is represented by a new intermediate particle X^2 with mass around $\simeq 17$ MeV
- The new particle must be a vector boson with distinct nucleon couplings
- X_{17} may fit into abelian extensions of the SM $(U(1)_D, U(1)_{B-L})$ as well as non-abelian extensions $(SU(2)_{\rm dark})$

Sketch of the X boson solution¹

1: C. Gustavino et al., Nuclear Instruments and Methods in Physics Research A 1072, 170087 (2025)

2:J.L. Feng et al. PRL 117,071803 (2016)

X_{17} and muon g-2

There is a discrepancy between the observed value of $(g-2)=2a_{\mu}$ and its SM prediction, with a significance of around 4.2 σ :

$$\delta a_{\mu} = a_{\mu, \text{EXP}} - a_{\mu, \text{SM}} \simeq (2.51 \pm 0.59) \times 10^{-9}.$$

 X_{17} may account for the anomaly if it has direct couplings to SM leptons:

One-loop contribution of X₁₇ to the lepton magnetic moment.

$$\mathcal{L} \supset -\epsilon_I X_{\nu} \bar{I} \gamma^{\nu} I, \qquad I = e, \mu, \tau.$$

Main contribution from the one-loop diagram

$$\delta\Gamma^{\mu}(q) = \int rac{d^4q}{(2\pi)^4} \, ar{u}(p') (-i\epsilon_l \gamma^{\lambda}) rac{i(p'+q+m_l)}{(p'+q)^2 - m_l^2} (e\gamma^{\mu}) rac{i(p+q+m_l)}{(p+q)^2 - m_l^2}
onumber \ imes (-i\epsilon_l \gamma^{
u}) rac{i}{q^2 + M_Y^2} \left(-g^{
u\lambda} + rac{q^{
u}q^{\lambda}}{M_Y^2}
ight) u(p)$$

X_{17} and muon g-2

There is a discrepancy between the observed value of $(g-2)=2a_{\mu}$ and its SM prediction, with a significance of around $4.2\,\sigma$:

$$\delta a_{\mu} = a_{\mu, \text{EXP}} - a_{\mu, \text{SM}} \simeq (2.51 \pm 0.59) \times 10^{-9}.$$

-9.

 X_{17} may account for the anomaly if it has direct couplings to SM leptons:

$$\mathcal{L} \supset -\epsilon_I X_{\nu} \bar{I} \gamma^{\nu} I, \qquad I = e, \mu, \tau.$$

One-loop contribution of X_{17} to the lepton magnetic moment.

Main contribution from the one-loop diagram

$$\delta\Gamma^{\mu}(q) = \int rac{d^4q}{(2\pi)^4} \, ar{u}(p')(-i\epsilon_l\gamma^{\lambda}) rac{i(p'+p\!\!\!/+m_l)}{(p'+q)^2-m_l^2} (e\gamma^{\mu}) rac{i(p\!\!\!/+p\!\!\!/+m_l)}{(p+q)^2-m_l^2}
onumber \ imes (-i\epsilon_l\gamma^{
u}) rac{i}{q^2+M_Y^2} \left(-g^{
u\lambda} + rac{q^{
u}q^{\lambda}}{M_Y^2}
ight) u(p)$$

Lepton Magnetic Moment X_{17} **Contribution**

Form Factor Correction

$$a_I^X = \frac{\alpha}{2\pi} (\epsilon_I m_I)^2 \int_0^1 dx \; \frac{x^2 (1-x)}{m_I^2 x^2 + M_X^2 (1-x)}$$

- The correction is **independent of the sign** of ϵ_I .
- Experimental data on the **electron** magnetic moment constrain:

$$\delta a_e = a_{e, \text{EXP}} - a_{e, \text{SM}} \le 4.8 \times 10^{-13} \Rightarrow |\epsilon_e| \le 1.0 \times 10^{-4} \quad (M_X = 17 \text{ MeV})$$

• The **muon** discrepancy can be accommodated with:

$$|\epsilon_{\mu}|\simeq (2.1\pm 0.3) imes 10^{-4}$$

 X_{17} can explain $(g-2)_{\mu}$ while remaining consistent with $(g-2)_{e}$.

Comments and Physical Implications

Key Observations

- The correction is insensitive to the sign of ε_I: we cannot determine the leptons charge under the new U(1) symmetry.
- The effect scales as $(m_I/M_X)^2$: negligible for the **electron**, visible for the **muon**, and potentially dominant for the **tau**.
- Dark couplings could in principle be flavor-blind or flavor-dependent. However, flavor-blind interactions would induce unobserved charged-lepton oscillations therefore we assume flavor-dependent couplings.

A consistent picture emerges only if the dark sector distinguishes lepton flavor.

X_{17} and the Anomalous Lamb Shift

 Precision spectroscopy of muonic atoms (such as muonic hydrogen and deuterium) shows a discrepancy with the SM prediction for the Lamb shift:

$$\delta E_{\mu}^{H} = (-0.363, -0.251) \, \mathrm{meV}, \qquad \delta E_{\mu}^{D} = (-0.475, -0.337) \, \mathrm{meV}.$$

 The exchange of the hypothetical X₁₇ boson generates an additional Yukawa-like potential in the nonrelativistic limit:

$$V_X(r) = \frac{\epsilon_\mu \epsilon_p}{e^2} \frac{\alpha e^{-M_X r}}{r},$$

acting as a short-range fifth force between the muon and the proton.

This new interaction could explain the energy shift observed in muonic atoms.

Energy-Level Shift from X_{17} Exchange

• The potential $V_X(r)$ produces a correction to the $2S_{1/2} - 2P_{3/2}$ splitting via standard perturbation theory:

$$\delta E_X^H = \int dr \, r^2 \, V_X(r) \big(|R_{20}(r)|^2 - |R_{21}(r)|^2 \big) = \frac{\alpha}{2a_H^3} \bigg(\frac{\epsilon_\mu \epsilon_\rho}{e^2} \bigg) \frac{f(a_H M_X)}{M_X^2}.$$

• Here:

$$a_H = (\alpha \, \mu_{mp})^{-1}, \qquad \mu_{mp} = \frac{m_\mu m_p}{m_\mu + m_p}, \qquad f(x) = \frac{x^4}{1 + x^4}.$$

The X_{17} contribution can naturally account for the observed $\mu {\rm H}$ Lamb shift anomaly.

Muonic Deuterium and the X_{17} Boson

- The same mechanism applies to muonic deuterium, where both the proton and neutron contribute to the interaction.
- The exchange of the hypothetical X₁₇ boson induces a Yukawa-like potential in the nonrelativistic limit:

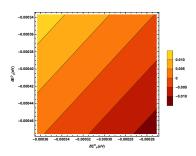
$$V_X(r) = \frac{\epsilon_\mu(\epsilon_p + \epsilon_n)}{e^2} \frac{\alpha e^{-M_X r}}{r}.$$

• The corresponding contribution to the $2S_{1/2} - 2P_{3/2}$ Lamb shift is:

$$\delta E_X^D = \frac{\alpha}{2a_D^3} \left(\frac{\epsilon_\mu (\epsilon_p + \epsilon_n)}{e^2} \right) \frac{f(a_D M_X)}{M_X^2},$$

with

$$a_D = (\alpha \, \mu_{\mu D})^{-1}, \qquad \mu_{\mu D} = \frac{m_\mu m_D}{m_\mu + m_D}, \qquad f(x) = \frac{x^4}{1 + x^4}.$$


 X_{17} exchange may explain the observed Lamb-shift discrepancy.

X_{17} and the Lamb Shift

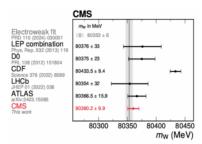
Upper bound on X_{17} -proton coupling vs. mass and muonic hydrogen data.

Upper bound on X_{17} -proton coupling vs. hydrogen and deuterium data.

Comments

- There remains an overall sign ambiguity due to the unresolved sign of $\epsilon_{\mu}.$
- To accommodate both discrepancies, ϵ_p and ϵ_n may have either the same or opposite sign, depending on the range considered.

W Mass Anomaly (CDF 2022)


 In 2022, the CDF Collaboration¹ reported a precise measurement of the W boson mass:

$$m_W^{\text{CDF}} = 80.4335 \pm 0.0084 \text{ GeV}.$$

• This value shows a 7σ discrepancy with the SM prediction:

$$m_W^{\rm SM} = 80.379 \pm 0.006$$
 GeV.

 The result triggered wide discussion about possible BSM effects in electroweak observables.

CDF 2022 result compared with previous determinations.

¹T. Aaltonen et al. (CDF Collaboration), Science 376, 170 (2022). → → → → → ○

W Mass Anomaly (CMS 2024 and Outlook)

- In late 2024, the CMS Collaboration¹ announced a new measurement with comparable precision, reporting a value much closer to the SM prediction.
- The overall experimental picture currently:
 - favors a W mass slightly above the SM value;
 - remains consistent within uncertainties.
- Future measurements at LHC Run 3 and future colliders will be crucial to determine whether this tension persists.
- Electroweak precision observables like m_W are extremely sensitive probes of new physics beyond the SM.

Future high-precision data will clarify the nature of this discrepancy.

¹CMS Collaboration, arXiv:2412.13872

Oblique Corrections to the W Mass (1/2)

• The tree-level W mass is determined by the Higgs mechanism $(c = \cos \theta_W)$:

$$m_W = \frac{gv}{2} = cm_Z$$

- At higher order, m_W receives vertex and box corrections from SM interactions. Additionally, it receives contributions from vacuum polarization diagrams, called **oblique corrections**², which are very sensitive to BSM effects.
- The basic polarization amplitudes $\Pi_{XY}(q^2)$ can be approximated as

$$\Pi_{jj}(q^2) \simeq \Pi_{jj}(0) + q^2 \Pi'_{jj}(0), \quad j = 1, 2, 3$$

$$\Pi_{QQ}(q^2) \simeq q^2 \Pi'_{QQ}(0), \quad \Pi_{3Q}(q^2) \simeq q^2 \Pi'_{3Q}(0)$$

²M.E. Peskin and T. Takeuchi, Phys. Rev. D **46**, 1 (1992) A Rev. D **46**, 1 (1992)

Oblique Corrections to the W Mass (2/2)

 The oblique parameters are defined as:

$$S = 16\pi \left(\Pi'_{33}(0) - \Pi'_{3Q}(0)\right)$$

$$T = \frac{4\pi}{s^2 c^2 m_Z^2} \left(\Pi_{11}(0) - \Pi_{33}(0)\right)$$

$$U = 16\pi \left(\Pi'_{11}(0) - \Pi'_{33}(0)\right)$$

 $W = i \frac{e^2}{r^2} \Pi_{11} g^{\mu\nu} + \cdots$

Kinetic Mixing (1/2)

• BSM contributions to m_W enter via the oblique parameters:

$$\mathit{m}_{W}^{2} = \mathit{m}_{W}^{\mathsf{SM}} \left[1 + \frac{\alpha c^{2}}{c^{2} - s^{2}} \bigg(-\frac{1}{2} \mathit{S} + c^{2} \mathit{T} + \frac{c^{2} - s^{2}}{4s^{2}} \mathit{U} \bigg) \right]$$

- S, T, U = 0 corresponds to the Standard Model.
- A minimal explanation of the W mass anomaly is provided by a dark vector boson X kinetically mixing with the hypercharge boson B:

$$\mathcal{L} \supset \frac{1}{4} \textit{B}_{\mu\nu} \textit{B}^{\mu\nu} - \frac{1}{4} \textit{X}_{\mu\nu} \textit{X}^{\mu\nu} + \frac{\xi}{2c} \textit{X}_{\mu\nu} \textit{B}^{\mu\nu} + \frac{1}{2} \textit{M}_{X,0}^2 \textit{X}^{\mu} \textit{X}_{\mu}$$

• $M_{X,0}$ is the bare mass parameter; ξ is the kinetic mixing.

Kinetic Mixing (2/2)

• The oblique parameters in terms of the kinetic mixing ξ are:

$$\begin{split} S &= \frac{4s^2(c^2-s^2)}{\alpha} \left(\frac{\xi}{1-r^2}\right)^2, \\ T &= -\frac{s^2r^2}{c^2\alpha} \left(\frac{\xi^2}{1-r^2}\right)^2, \\ U &= \frac{4s^2}{\alpha} \left(\frac{\xi^2}{1-r^2}\right)^2, \end{split}$$

where $r = \frac{M_X}{M_Z}$.

• This shows explicitly how the kinetic mixing ξ affects the electroweak precision observables, and can provide a minimal explanation for a shift in m_W .

Kinetic Mixing of X_{17}

Dark Vector Contribution

$$\delta m_W = -rac{m_W^{\sf SM} s^2 \xi^2}{2(c^2 - s^2)(1 - r^2)}$$

Comments:

- A heavy dark photon (M_X > M_Z ⇒ r > 1) can account for a positive shift in m_W.
- For the X_{17} , with $M_X \simeq 17 \, {\rm MeV} \ll M_Z$, the contribution is instead **negative**.
- The experimental uncertainty from the CMS measurement $(\Delta m_W \simeq 10 \, \text{MeV})$ imposes a stringent bound on the kinetic mixing:

$$|\xi| < 2.2 \times 10^{-2}$$

Even a tiny kinetic mixing leaves measurable traces in electroweak precision tests.

Conclusions

- The Standard Model remains highly successful, but several experimental tensions persist.
- ▶ A light vector boson ($M_X \simeq 17$ MeV) could explain the ATOMKI anomaly, $(g-2)_{\mu}$, and the Lamb shift.
- The W mass data impose strong bounds on its kinetic mixing.
- ► The X₁₇ might act as a portal to a dark sector.
- ► Future measurements will clarify its viability.

Scan for publications
Google Scholar

Raoul Serao

University of Salerno & INFN rserao@unisa.it

The search for new physics continues.