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Introduction

Motivation: Coordinate-based approaches in general relativity can be
limiting due to observer-dependence and coordinate singularities (e.g.,
Schwarzschild coordinates).

Covariant approaches: (1 + 1 + 2) formalisms exploit physical 4-vectors to
decompose space-time.

Challenges with spinors: Fermionic fields involve Clifford matrices and
tetrads, making standard covariant splitting difficult.

Polar form solution: Spinors expressed as modulus Ö phases �
hydrodynamic variables (density, velocity, spin, chiral angle), Dirac equations
interpretable as fluid-with-spin equations.

Proposed approach:

Velocity and spin vector fields as generators of time-like and space-like
congruences.
Apply to LRS space-times types I, II, III for perfect and non-perfect spinor
fluids.
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(1 + 1 + 2) Covariant Formalism

Introduce a time-like unit 4-vector ua, uaua = 1 =⇒ time-like congruence.

Introduce a space-like unit vector ni , nini = −1, orthogonal to ui =⇒
space-like congruence.

Decompose the tangent space at each point:

TxM⊥ = span{ui} ⊕ span{ni} ⊕ 2-space orthogonal to ui , ni

The metric tensor can be expressed as

gij = uiuj − ninj + Nij

Projection operators:

Uab = uaub, hab = −nanb, Nab = gab − uaub + nanb.
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LRS space-times classes

In LRS space-times, ni is a preferred spatial direction: 2-spatial components
vanish.

The covariant derivatives of the time-like and space-like congruence are

∇iuj = Σ

(
ninj +

1

2
Nij

)
+

1

3
Θ (Nij − ninj)− Auinj +Ωεij ,

∇inj =
1

2
ϕNij + ξεij − Auiuj +

(
Σ− 1

3
Θ

)
niuj .

with
Θ := ∇iu

i , A := (ua∇aui )n
i , Σ := ∇(aub)n

anb,

Ω :=
1

2
εab∇aub, ϕ := Nab∇anb, ξ := 1

2ε
ab∇anb,

For any covariant scalar f , we define:

ḟ = ui∇i f , f̂ = ni∇i f
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Energy–momentum tensor:

Tab = µuaub − p(Nab − nanb)− Q(naub + nbua) +
1
2Π(Nab + 2nanb).

with µ the energy density, p the isotropic pressure, Q the momentum density,
Π the anisotropic pressure.

The variables that covariantly describe LRS space-times are

{A,Θ,Σ,Ω, ϕ, ξ,E ,H, µ, p,Q,Π}

where E and H come from the decomposition of the Weyl tensor.

Scalars fully describe the kinematics, Weyl curvature, and matter content.

Covariant equations come from the decomposition of the Ricci identities,
Bianchi identities and conservation laws:

(∇c∇d −∇d∇c) ua(na) = Rabcdu
b(nb), ∇bT

ab = 0, ∇[aRbc]de = 0.

0Clarkson C. 2007, Phys.Rev. D 76 104034
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Classification of LRS Spacetimes

Definition

Three different classes of Locally Rotationally Symmetric (LRS) spacetimes.

LRS spacetimes

Class I
Ω ̸= 0, ξ = 0

ḟ = 0
Rotating, no twist.

Class II
Ω = 0, ξ = 0

Non-rotating, twist-free.

Class III
Ω = 0, ξ ̸= 0

f̂ = 0
Twisting, non-rotating.

0van Elst H. and Ellis G. F. R. 1996,Class. Quantum Grav. 13 1099
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Polar Formalism

A regular spinor field ψ can always be written in polar form:

ψ =
√

ρ
2 e

− i
2βγ

5

L
−1


1
0
1
0


where ρ is the density, β the chiral angle and L has the structure of a
spinor transformation.

Associated bilinears:

ψ̄ψ = ρ cosβ, iψ̄γ5ψ = ρ sinβ

Ua = ψ̄γaψ = ρua, Sa = ψ̄γaγ5ψ = ρsa

The orthogonal unit vectors ua and sa define the time-like and space-like
directions of the (1 + 1 + 2) splitting:

uau
a=−sas

a=1 and uas
a=0
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Covariant derivative of ψ:

∇kψ =
(

1
2∇k ln ρ− i

2∇kβγ
5 − iPk − 1

2Rabks
ab
)
ψ

where Pk and Rabk =−Rbak are called the momentum and tensorial
connection.

The tensorial connection is related to the velocity and the spin 4-vector fields:

∇ksb=saRabk and ∇kub=uaRabk

The Dirac equation takes the form:
∇iU

i = 0

(∇iβ + Bi )U
i + 2PiS

i = 0

∇[aUb] + εabpq∇pβ Uq − 1
2R

ij
p εijqkU

kεabpq + 2εabpqPpSq − 2mMab = 0

where Rka
a = Rk ,

1
2εkabcR

abc = Bk and Mab = 2iψ̄σabψ.

The energy-momentum tensor can be written as

T ab = P(bUa) + 1
2∇

(bβ Sa) − 1
4Rij

(bεa)ijkSk
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Covariant decomposition of the polar formalism

Through the covariant splitting, the Dirac equations reduce to

ρ̇ = −ρΘ
ρ̂ = ρ (A− ϕ+ 2m sinβ) ,

The decomposition of Tab gives:

µ = ρ
2 (m cosβ − β̂

2 − Ω), p = − ρ
12 (β̂ + 2Ω),

Π = −ρ
6 (β̂ − Ω), Q = −ρ

4 (β̇ + ξ),

These express the energy density, pressure, momentum density, and
anisotropic stress of the spinor field in geometric terms.

Definition of radial and orthogonal pressure:

ps = p +Π = −ρ
4
β̂, p⊥ = p − 1

2
Π = −ρ

4
Ω

This framework allows us to analyze the effective spinorial fluid in LRS
space-times =⇒ coupling of Dirac and covariant equations.
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Spinorial fluid in LRSI space–times

LRSI: ξ = 0, Ω ̸= 0

Σ = Θ = 0, ḟ = 0 ∀f covariant scalar

Final system of equations (unknowns A,Ω, ϕ, ρ, β):

Â = −Aϕ+ A2 + 2Ω2 − 1
2 (µ+ 3p)

Π̂ + p̂ = − 3
2Πϕ+ΠA+ A(µ+ p)

Ω̂ = −Ω(A+ ϕ)

ϕ̂ = − 1
2ϕ

2 − Aϕ+ 2Ω2 − (µ+ p)− Π

ρ̂ = ρ(2m sinβ + A− ϕ)

Well-posed differential equations system =⇒ it admits unique solution.

Perfect fluid case: Π = 0 =⇒ β̂ = Ω;

Six propagation equations for {A,Ω, ϕ, β, ρ} =⇒ constrained dynamic.
Dynamics not fully tangent to the constraint submanifold; a constraint
algorithm is required.
No solutions in which all variables are free.
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Â = −Aϕ+ A2 + 2Ω2 − 1
2 (µ+ 3p)

Π̂ + p̂ = − 3
2Πϕ+ΠA+ A(µ+ p)

Ω̂ = −Ω(A+ ϕ)

ϕ̂ = − 1
2ϕ

2 − Aϕ+ 2Ω2 − (µ+ p)− Π

ρ̂ = ρ(2m sinβ + A− ϕ)

Well-posed differential equations system =⇒ it admits unique solution.

Perfect fluid case: Π = 0 =⇒ β̂ = Ω;

Six propagation equations for {A,Ω, ϕ, β, ρ} =⇒ constrained dynamic.
Dynamics not fully tangent to the constraint submanifold; a constraint
algorithm is required.
No solutions in which all variables are free.

Giuseppe De Maria (University of Genoa) Covariant approach to the Dirac field in LRS space-times November 13, 2025 10 / 14



Spinorial fluid in LRSI space–times

LRSI: ξ = 0, Ω ̸= 0
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Spinorial fluid in LRSII space–times

LRSII: ξ = Ω = 0.

The system reduces to 14 equations for 9 unknowns.

Perfect spinorial fluid:

β̇ = β̂ = 0 =⇒ β = constant, µ =
1

2
ρm cosβ, p = 0

Fluid is dust (p = 0 =⇒ A = 0), geodesic worldlines.

Remaining variables: Θ,Σ,A, ϕ,E , ρ, β.

Particular cases:

E = 0 ⇒ Σ = 0, ρ̂ = 0:
1 ϕ = 0 ⇒ FLRW spinorial dust;
2 Θ = 0 ⇒ critical solution: µ = 0.

ϕ = 0 ⇒ E = (Σ− 1
3Θ)(Σ + 2

3Θ) + 2
3µ: Homogeneous: Bianchi-I, spinorial

dust
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Spinorial fluid in LRSIII space–times

LRSIII: ξ ̸= 0, Ω = 0 ,f̂ = 0 ∀f covariant scalar.

The fluid is forced to be perfect by the geometry ⇒ Π = 0.

From the Dirac equations:

2m sinβ = 0 =⇒ β = kπ

which implies ξ = −β̇ = 0, in contradiction with the LRSIII assumption.

No LRSIII solutions exist both in the case of perfect and non-perfect spinorial
fluid.
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Conclusions

Covariant formulation of the Dirac field in LRS spacetimes

Combined polar decomposition with covariant approach � Dirac field
described as an effective spinor fluid.

Avoided the use of tetrads and Dirac matrices.

Applied (1+1+2) decomposition to the energy–momentum tensor and
Dirac equations.

Main results

LRS III � ruled out.

LRS I � allowed for non-perfect fluids; perfect fluids lead to stringent
constraints.

LRS II � solutions exist; perfect fluids � dust-like solutions.

Future Perspectives

Analysis of the resulting systems of equations.

Generalization of the formalism by changing the choice of congruences.
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Thank you for your attention!
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