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Introduction

@ Motivation: Coordinate-based approaches in general relativity can be
limiting due to observer-dependence and coordinate singularities (e.g.,
Schwarzschild coordinates).

o Covariant approaches: (1 + 1+ 2) formalisms exploit physical 4-vectors to
decompose space-time.

@ Challenges with spinors: Fermionic fields involve Clifford matrices and
tetrads, making standard covariant splitting difficult.

o Polar form solution: Spinors expressed as modulus x phases —
hydrodynamic variables (density, velocity, spin, chiral angle), Dirac equations
interpretable as fluid-with-spin equations.

@ Proposed approach:

o Velocity and spin vector fields as generators of time-like and space-like
congruences.

o Apply to LRS space-times types |, Il, 1l for perfect and non-perfect spinor
fluids.
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-
(1 + 1+ 2) Covariant Formalism

@ Introduce a time-like unit 4-vector v?, u?u, = 1 = time-like congruence.
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(1 + 1+ 2) Covariant Formalism

Introduce a time-like unit 4-vector u?, u?u, = 1 = time-like congruence.

Introduce a space-like unit vector n, nin;=—1, orthogonal to v =
space-like congruence.

@ Decompose the tangent space at each point:

T.M, = span{u'} @ span{n’} ® 2-space orthogonal to u', n’

The metric tensor can be expressed as
8ij = ujuj — n;nj + N,J
@ Projection operators:

Uab = uaup,  hap = —nanp,  Nap = gap — Uatp + nanp.
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|
LRS space-times classes

In LRS space-times, n' is a preferred spatial direction: 2-spatial components
vanish.

@ The covariant derivatives of the time-like and space-like congruence are

1

V,‘Uj =Y (n,-nj + 5

1
NJ> + 30 (N — ninj) — Auin; + Qe

1 1
V;nj = E(bN,J +€E,'j — AU,‘UJ' + (Z — 3@) n;uj.
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LRS space-times classes

In LRS space-times, n' is a preferred spatial direction: 2-spatial components
vanish.

@ The covariant derivatives of the time-like and space-like congruence are

1

V,‘Uj =Y (n,-nj + 5

1
NJ> + 30 (N — ninj) — Auin; + Qe

1 1
V;nj = §¢NU +€E,'j — AU,’UJ' + (Z — 3@) n;uj.

with _ _
©:=Viu', A:=(V,u)n', X:= V(aub)n"nb7

1
Q= Esabvaub, ¢ = N3V ,np, &= %E"bvanb,
@ For any covariant scalar f, we define:
f=u'vVf, f=nVf
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@ Energy—-momentum tensor:
Tab = paup — p(Nap — nanp) — Q(naup + npus) + 3M(Nap + 2n,np).

with p the energy density, p the isotropic pressure, @ the momentum density,
[T the anisotropic pressure.

OClarkson C. 2007, Phys.Rev. D 76 104034
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@ Energy—-momentum tensor:
Tab = paup — p(Nap — nanp) — Q(naup + npus) + 3M(Nap + 2n,np).

with p the energy density, p the isotropic pressure, @ the momentum density,
[T the anisotropic pressure.

@ The variables that covariantly describe LRS space-times are
{A,@,Z,Q,¢,£, Ea H?Mapa Q7 l_l}

where E and H come from the decomposition of the Weyl tensor.
@ Scalars fully describe the kinematics, Weyl curvature, and matter content.

@ Covariant equations come from the decomposition of the Ricci identities,
Bianchi identities and conservation laws:

(vcvd - vdvc) ua(na) = Rabcdub(nb)a Vb T = 0, V[a'l'?bc]de =0.

OClarkson C. 2007, Phys.Rev. D 76 104034
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|
Classification of LRS Spacetimes

Definition

Three different classes of Locally Rotationally Symmetric (LRS) spacetimes.

LRS spacetimes

Q#0, £=0 Q-0 £=0 Q=0, £#£0

f=0 Non-rotating, twist-free. f=0

Class | [ Class 11 ] Class Il
Rotating, no twist. Twisting, non-rotating.

Ovan Elst H. and Ellis G. F. R. 1996,Class. Quantum Grav. 13 1099
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Polar Formalism

@ A regular spinor field 1) can always be written in polar form:

p=y/ge L

where p is the density, [ the chiral angle and L has the structure of a
spinor transformation.

— O

o
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Polar Formalism

@ A regular spinor field 1) can always be written in polar form:

1
0

where p is the density, [ the chiral angle and L has the structure of a
spinor transformation.
@ Associated bilinears:

i = pcos B, ihy’h = psin B
U? =gy = pu®,  S7 =y = ps’
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Polar Formalism

@ A regular spinor field 1) can always be written in polar form:

1
0

where p is the density, [ the chiral angle and L has the structure of a
spinor transformation.

@ Associated bilinears:
Ynp =pcosfB, iy’ = psin 3
U =y = pu®,  S* = py*y%)p = ps®

@ The orthogonal unit vectors u? and s? define the time-like and space-like
directions of the (14 1 + 2) splitting:

uuf=—s5,5"=1 and wu,s?=0
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@ Covariant derivative of 1):
Vb = (%vk Inp— 4ViBy® — iPy — %Rabksab)¢

where Py and R,px = —Rpak are called the momentum and tensorial
connection.
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@ Covariant derivative of 1):
Vb = (%vk Inp— 4ViBy® — iPy — %Rabksab)¢

where Py and R,px = —Rpak are called the momentum and tensorial
connection.
@ The tensorial connection is related to the velocity and the spin 4-vector fields:

Vksb ZSQRabk and Vkub: uaRabk
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@ Covariant derivative of 1):
Vb = (%vk Inp— 4ViBy® — iPy — %Rabksab)¢

where Py and R,px = —Rpak are called the momentum and tensorial
connection.

@ The tensorial connection is related to the velocity and the spin 4-vector fields:
Visp=5Rape and  Viup=u®Rypk
@ The Dirac equation takes the form:
ViU =0
(ViB+B)U +2P;S"=0
VIEUb! 4 &30 8 Uy — LRV &)y UkeP9 4 2225P9P, S — 2mM?*» = 0

where Ria® = Ry, 2eabc R?€ = By and My, = 2itpo?bep.
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VIEUb! 4 &30 8 Uy — LRV &)y UkeP9 4 2225P9P, S — 2mM?*» = 0

where Ria® = Ry, 2eabc R?€ = By and My, = 2itpo?bep.
@ The energy-momentum tensor can be written as

T = plya) 4 1ybg 52 1R, (beaikg,
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|
Covariant decomposition of the polar formalism

@ Through the covariant splitting, the Dirac equations reduce to
p=—pO
p=p(A—¢+2msinp),
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Covariant decomposition of the polar formalism

@ Through the covariant splitting, the Dirac equations reduce to

—p©
ﬁ p(A—¢+2msinf),

b

@ The decomposition of T, gives:

,uzg(mcosﬂ—é—ﬂ), p=- 1(54—29)
N=—¢(5-9). —4(8+9),

These express the energy density, pressure, momentum density, and
anisotropic stress of the spinor field in geometric terms.
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@ The decomposition of T, gives:

,uzg(mcosﬂ—é—ﬂ), p=- 1(54—29)
N=—¢(5-9). —4(8+9),
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@ Definition of radial and orthogonal pressure:

ps=p+ﬂ=—§37 PJ_—P_*H—_*Q
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Covariant decomposition of the polar formalism

@ Through the covariant splitting, the Dirac equations reduce to

—p©
ﬁ p(A—¢+2msinf),

b

@ The decomposition of T, gives:

,uzg(mcosﬁ—é—ﬂ), p=- 1(54—29)
N=—¢(5-9). —4(8+9),

These express the energy density, pressure, momentum density, and
anisotropic stress of the spinor field in geometric terms.

@ Definition of radial and orthogonal pressure:

ps=p+ﬂ=—§3, PJ_—P_*H—_*Q

This framework allows us to analyze the effective spinorial fluid in LRS
space-times = coupling of Dirac and covariant equations.
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|
Spinorial fluid in LRSI space—times

LRSI: £ =0, Q #0
eY=0=0, f=0 Vf covariant scalar
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Spinorial fluid in LRSI space—times

LRSI: € =0, Q #0
eY=0=0, f=0 Vf covariant scalar
@ Final system of equations (unknowns A, Q, ¢, p, B):

A= —Ap+ A2 +202 — L(u+3p)
M+ p=—3Mp+NA+A(u+p)
Q=—-QA+9)
$=—1¢—Ap+202 — (u+p)— T
p=p2msinB+A—¢)
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Spinorial fluid in LRSI space—times
LRSI: £ =0, Q #0

eY=0=0, f=0 Vf covariant scalar
@ Final system of equations (unknowns A, Q, ¢, p, B):
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M+ p=—3Mp+NA+A(u+p)
Q=—-QA+9)
$=—3¢? - Ap+202 — (u+p) — T
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@ Well-posed differential equations system = it admits unique solution.
o Perfect fluid case: 11 =0 — B =Q;
e Six propagation equations for {A, Q, ¢, 3, p} = constrained dynamic.
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@ Well-posed differential equations system = it admits unique solution.
o Perfect fluid case: 11 =0 — B =Q;

e Six propagation equations for {A, Q, ¢, 3, p} = constrained dynamic.

o Dynamics not fully tangent to the constraint submanifold; a constraint
algorithm is required.
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Spinorial fluid in LRSI space—times

LRSI: € =0, Q #0
eY=0=0, f=0 Vf covariant scalar
@ Final system of equations (unknowns A, Q, ¢, p, B):

A= —Ap+ A2 +202 — L(u+3p)
M+ p=—3Mp+NA+A(u+p)
Q=—-QA+9)
$=—3¢? - Ap+202 — (u+p) — T
p=p2msinB+A—¢)

@ Well-posed differential equations system = it admits unique solution.
o Perfect fluid case: 11 =0 — B =Q;

e Six propagation equations for {A, Q, ¢, 3, p} = constrained dynamic.
o Dynamics not fully tangent to the constraint submanifold; a constraint
algorithm is required.

o No solutions in which all variables are free.
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Spinorial fluid in LRSIl space—times

LRSII: £ = Q = 0.
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LRSII: £ = Q = 0.

@ The system reduces to 14 equations for 9 unknowns.
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@ The system reduces to 14 equations for 9 unknowns.

@ Perfect spinorial fluid:

. ~ 1
B =p8=0 = [ = constant, uZEPmCOSﬁ, p=0
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@ The system reduces to 14 equations for 9 unknowns.

@ Perfect spinorial fluid:

. ~ 1
B =p8=0 = [ = constant, uZEPmCOSﬁ, p=0

@ Fluid is dust (p =0 = A = 0), geodesic worldlines.
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Spinorial fluid in LRSIl space—times

LRSII: £ = Q = 0.

The system reduces to 14 equations for 9 unknowns.

Perfect spinorial fluid:

. ~ 1
B =p8=0 = [ = constant, uZEPmCOSﬁ, p=0

Fluid is dust (p =0 = A = 0), geodesic worldlines.
Remaining variables: ©,%, A ¢, E, p, 5.
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LRSII: £ = Q = 0.

The system reduces to 14 equations for 9 unknowns.

Perfect spinorial fluid:

. ~ 1
B =p8=0 = [ = constant, uZEPmCOSﬁ, p=0

Fluid is dust (p =0 = A = 0), geodesic worldlines.
@ Remaining variables: ©,% A ¢, E, p, 5.
Particular cases:
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Spinorial fluid in LRSIl space—times

LRSII: £ = Q = 0.

The system reduces to 14 equations for 9 unknowns.

Perfect spinorial fluid:

. ~ 1
B =p8=0 = [ = constant, uZEPmCOSﬁ, p=0

Fluid is dust (p =0 = A = 0), geodesic worldlines.
@ Remaining variables: ©,% A ¢, E, p, 5.

Particular cases:
e EFE=0=X=0,p=0:
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Spinorial fluid in LRSIl space—times

LRSII: £ = Q = 0.

The system reduces to 14 equations for 9 unknowns.

Perfect spinorial fluid:

. ~ 1
B =p8=0 = [ = constant, uZEPmCOSﬁ, p=0

Fluid is dust (p =0 = A = 0), geodesic worldlines.
@ Remaining variables: ©,% A ¢, E, p, 5.

Particular cases:
e E=0=%YX=0,p=0:

Q@ ¢ =0 = FLRW spinorial dust;
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Spinorial fluid in LRSIl space—times

LRSII: £ = Q = 0.

The system reduces to 14 equations for 9 unknowns.

Perfect spinorial fluid:

. ~ 1
B =p8=0 = [ = constant, uZEPmCOSﬁ, p=0

Fluid is dust (p =0 = A = 0), geodesic worldlines.
@ Remaining variables: ©,% A ¢, E, p, 5.

Particular cases:
e E=0=%YX=0,p=0:

Q@ ¢ =0 = FLRW spinorial dust;

@ © =0 = critical solution: p=0.
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Spinorial fluid in LRSIl space—times

LRSII: £ = Q = 0.

The system reduces to 14 equations for 9 unknowns.

Perfect spinorial fluid:

. ~ 1
B =p8=0 = [ = constant, uZEPmCOSﬁ, p=0

Fluid is dust (p =0 = A = 0), geodesic worldlines.
@ Remaining variables: ©,% A ¢, E, p, 5.

Particular cases:
e E=0=%YX=0,p=0:

Q@ ¢ =0 = FLRW spinorial dust;

@ © =0 = critical solution: p=0.

e p=0= E=(X—10)(Z + 30)+ Zu: Homogeneous: Bianchi-I, spinorial
dust
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Spinorial fluid in LRSIII space—times

LRSHI: £ #£0, Q=0 ,1? =0 Vf covariant scalar.
@ The fluid is forced to be perfect by the geometry = 1 = 0.
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Spinorial fluid in LRSIII space—times

LRSHI: £ #£0, Q=0 ,1? =0 Vf covariant scalar.
@ The fluid is forced to be perfect by the geometry = 1 = 0.

@ From the Dirac equations:
2msinf =0 = [ =kn

which implies € = —3 = 0, in contradiction with the LRSIl assumption.
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|
Spinorial fluid in LRSIII space—times

LRSHI: £ #£0, Q=0 ,f =0 Vf covariant scalar.
@ The fluid is forced to be perfect by the geometry = 1 = 0.

@ From the Dirac equations:
2msinf =0 = [ =kn

which implies € = —3 = 0, in contradiction with the LRSIl assumption.

@ No LRSIII solutions exist both in the case of perfect and non-perfect spinorial
fluid.
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Conclusions

Covariant formulation of the Dirac field in LRS spacetimes
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Conclusions

Covariant formulation of the Dirac field in LRS spacetimes

@ Combined polar decomposition with covariant approach — Dirac field
described as an effective spinor fluid.

@ Avoided the use of tetrads and Dirac matrices.

o Applied (1+1+42) decomposition to the energy—momentum tensor and
Dirac equations.

Main results
o LRS Il — ruled out.

@ LRS | — allowed for non-perfect fluids; perfect fluids lead to stringent
constraints.

@ LRS Il — solutions exist; perfect fluids — dust-like solutions.
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Conclusions

Covariant formulation of the Dirac field in LRS spacetimes

@ Combined polar decomposition with covariant approach — Dirac field
described as an effective spinor fluid.

@ Avoided the use of tetrads and Dirac matrices.

o Applied (1+1+42) decomposition to the energy—momentum tensor and
Dirac equations.

Main results
o LRS Il — ruled out.

@ LRS | — allowed for non-perfect fluids; perfect fluids lead to stringent
constraints.

@ LRS Il — solutions exist; perfect fluids — dust-like solutions.
Future Perspectives
@ Analysis of the resulting systems of equations.

o Generalization of the formalism by changing the choice of congruences.
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Thank you for your attention!
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