Covariant approach to the Dirac field in LRS space-times

Giuseppe De Maria

University of Genoa

November 13, 2025

• **Motivation:** Coordinate-based approaches in general relativity can be limiting due to observer-dependence and coordinate singularities (e.g., Schwarzschild coordinates).

- **Motivation:** Coordinate-based approaches in general relativity can be limiting due to observer-dependence and coordinate singularities (e.g., Schwarzschild coordinates).
- Covariant approaches: (1+1+2) formalisms exploit physical 4-vectors to decompose space-time.

- **Motivation:** Coordinate-based approaches in general relativity can be limiting due to observer-dependence and coordinate singularities (e.g., Schwarzschild coordinates).
- Covariant approaches: (1+1+2) formalisms exploit physical 4-vectors to decompose space-time.
- **Challenges with spinors:** Fermionic fields involve Clifford matrices and tetrads, making standard covariant splitting difficult.

- **Motivation:** Coordinate-based approaches in general relativity can be limiting due to observer-dependence and coordinate singularities (e.g., Schwarzschild coordinates).
- Covariant approaches: (1+1+2) formalisms exploit physical 4-vectors to decompose space-time.
- **Challenges with spinors:** Fermionic fields involve Clifford matrices and tetrads, making standard covariant splitting difficult.
- Polar form solution: Spinors expressed as modulus × phases →
 hydrodynamic variables (density, velocity, spin, chiral angle), Dirac equations
 interpretable as fluid-with-spin equations.

- **Motivation:** Coordinate-based approaches in general relativity can be limiting due to observer-dependence and coordinate singularities (e.g., Schwarzschild coordinates).
- Covariant approaches: (1+1+2) formalisms exploit physical 4-vectors to decompose space-time.
- **Challenges with spinors:** Fermionic fields involve Clifford matrices and tetrads, making standard covariant splitting difficult.
- Polar form solution: Spinors expressed as modulus × phases →
 hydrodynamic variables (density, velocity, spin, chiral angle), Dirac equations
 interpretable as fluid-with-spin equations.
- Proposed approach:

- Motivation: Coordinate-based approaches in general relativity can be limiting due to observer-dependence and coordinate singularities (e.g., Schwarzschild coordinates).
- Covariant approaches: (1+1+2) formalisms exploit physical 4-vectors to decompose space-time.
- **Challenges with spinors:** Fermionic fields involve Clifford matrices and tetrads, making standard covariant splitting difficult.
- Polar form solution: Spinors expressed as modulus × phases →
 hydrodynamic variables (density, velocity, spin, chiral angle), Dirac equations
 interpretable as fluid-with-spin equations.
- Proposed approach:
 - Velocity and spin vector fields as generators of time-like and space-like congruences.

- Motivation: Coordinate-based approaches in general relativity can be limiting due to observer-dependence and coordinate singularities (e.g., Schwarzschild coordinates).
- Covariant approaches: (1+1+2) formalisms exploit physical 4-vectors to decompose space-time.
- **Challenges with spinors:** Fermionic fields involve Clifford matrices and tetrads, making standard covariant splitting difficult.
- Polar form solution: Spinors expressed as modulus × phases →
 hydrodynamic variables (density, velocity, spin, chiral angle), Dirac equations
 interpretable as fluid-with-spin equations.
- Proposed approach:
 - Velocity and spin vector fields as generators of time-like and space-like congruences.
 - Apply to LRS space-times types I, II, III for perfect and non-perfect spinor fluids

• Introduce a time-like unit 4-vector u^a , $u^a u_a = 1 \Longrightarrow$ time-like congruence.

- Introduce a time-like unit 4-vector u^a , $u^a u_a = 1 \Longrightarrow$ time-like congruence.
- Introduce a space-like unit vector n^i , $n^i n_i = -1$, orthogonal to $u^i \Longrightarrow$ space-like congruence.

- Introduce a time-like unit 4-vector u^a , $u^a u_a = 1 \Longrightarrow$ time-like congruence.
- Introduce a space-like unit vector n^i , $n^i n_i = -1$, orthogonal to $u^i \Longrightarrow$ space-like congruence.
- Decompose the tangent space at each point:

$$\mathcal{T}_{\mathsf{x}} \mathcal{M}_{\perp} = \mathsf{span}\{u^i\} \oplus \mathsf{span}\{n^i\} \oplus 2\text{-space orthogonal to } u^i, n^i$$

- Introduce a time-like unit 4-vector u^a , $u^a u_a = 1 \Longrightarrow$ time-like congruence.
- Introduce a space-like unit vector n^i , $n^i n_i = -1$, orthogonal to $u^i \Longrightarrow$ space-like congruence.
- Decompose the tangent space at each point:

$$\mathcal{T}_{\mathsf{x}} \mathcal{M}_{\perp} = \mathsf{span}\{u^i\} \oplus \mathsf{span}\{n^i\} \oplus 2\text{-space orthogonal to } u^i, n^i$$

The metric tensor can be expressed as

$$g_{ij} = u_i u_j - n_i n_j + N_{ij}$$

- Introduce a time-like unit 4-vector u^a , $u^a u_a = 1 \Longrightarrow$ time-like congruence.
- Introduce a space-like unit vector n^i , $n^i n_i = -1$, orthogonal to $u^i \Longrightarrow$ space-like congruence.
- Decompose the tangent space at each point:

$$\mathcal{T}_{\mathsf{x}} \mathcal{M}_{\perp} = \mathsf{span}\{u^i\} \oplus \mathsf{span}\{n^i\} \oplus 2\text{-space orthogonal to } u^i, n^i$$

• The metric tensor can be expressed as

$$g_{ij} = u_i u_j - n_i n_j + N_{ij}$$

Projection operators:

$$U_{ab} = u_a u_b, \quad h_{ab} = -n_a n_b, \quad N_{ab} = g_{ab} - u_a u_b + n_a n_b.$$

LRS space-times classes

In LRS space-times, n^i is a preferred spatial direction: 2-spatial components vanish.

The covariant derivatives of the time-like and space-like congruence are

$$\nabla_{i}u_{j} = \Sigma \left(n_{i}n_{j} + \frac{1}{2}N_{ij}\right) + \frac{1}{3}\Theta \left(N_{ij} - n_{i}n_{j}\right) - Au_{i}n_{j} + \Omega\varepsilon_{ij},$$

$$\nabla_{i}n_{j} = \frac{1}{2}\phi N_{ij} + \xi\varepsilon_{ij} - Au_{i}u_{j} + \left(\Sigma - \frac{1}{3}\Theta\right)n_{i}u_{j}.$$

LRS space-times classes

In LRS space-times, n^i is a preferred spatial direction: 2-spatial components vanish.

• The covariant derivatives of the time-like and space-like congruence are

$$\nabla_{i}u_{j} = \Sigma \left(n_{i}n_{j} + \frac{1}{2}N_{ij}\right) + \frac{1}{3}\Theta\left(N_{ij} - n_{i}n_{j}\right) - Au_{i}n_{j} + \Omega\varepsilon_{ij},$$

$$\nabla_{i}n_{j} = \frac{1}{2}\phi N_{ij} + \xi\varepsilon_{ij} - Au_{i}u_{j} + \left(\Sigma - \frac{1}{3}\Theta\right)n_{i}u_{j}.$$

with

$$\begin{split} \Theta &:= \nabla_i u^i, \quad A := (u^a \nabla_a u_i) n^i, \quad \Sigma := \nabla_{(a} u_b) n^a n^b, \\ \Omega &:= \frac{1}{2} \varepsilon^{ab} \nabla_a u_b, \quad \phi := N^{ab} \nabla_a n_b, \quad \xi := \frac{1}{2} \varepsilon^{ab} \nabla_a n_b, \end{split}$$

LRS space-times classes

In LRS space-times, n^i is a preferred spatial direction: 2-spatial components vanish.

• The covariant derivatives of the time-like and space-like congruence are

$$\nabla_{i}u_{j} = \Sigma \left(n_{i}n_{j} + \frac{1}{2}N_{ij}\right) + \frac{1}{3}\Theta\left(N_{ij} - n_{i}n_{j}\right) - Au_{i}n_{j} + \Omega\varepsilon_{ij},$$

$$\nabla_{i}n_{j} = \frac{1}{2}\phi N_{ij} + \xi\varepsilon_{ij} - Au_{i}u_{j} + \left(\Sigma - \frac{1}{3}\Theta\right)n_{i}u_{j}.$$

with

$$\begin{split} \Theta &:= \nabla_i u^i, \quad A := (u^a \nabla_a u_i) n^i, \quad \Sigma := \nabla_{(a} u_{b)} n^a n^b, \\ \Omega &:= \frac{1}{2} \varepsilon^{ab} \nabla_a u_b, \quad \phi := N^{ab} \nabla_a n_b, \quad \xi := \frac{1}{2} \varepsilon^{ab} \nabla_a n_b, \end{split}$$

• For any covariant scalar f, we define:

$$\dot{f} = u^i \nabla_i f, \qquad \hat{f} = n^i \nabla_i f$$

• Energy-momentum tensor:

$$T_{ab} = \mu u_a u_b - p(N_{ab} - n_a n_b) - Q(n_a u_b + n_b u_a) + \frac{1}{2} \Pi(N_{ab} + 2n_a n_b).$$

with μ the energy density, p the isotropic pressure, Q the momentum density, Π the anisotropic pressure.

⁰Clarkson C. 2007, Phys.Rev. D 76 104034

Energy–momentum tensor:

$$T_{ab} = \mu u_a u_b - p(N_{ab} - n_a n_b) - Q(n_a u_b + n_b u_a) + \frac{1}{2} \Pi(N_{ab} + 2n_a n_b).$$

with μ the energy density, p the isotropic pressure, Q the momentum density, Π the anisotropic pressure.

The variables that covariantly describe LRS space-times are

$$\{A, \Theta, \Sigma, \Omega, \phi, \xi, E, H, \mu, p, Q, \Pi\}$$

where E and H come from the decomposition of the Weyl tensor.

⁰Clarkson C. 2007, Phys.Rev. D 76 104034

• Energy–momentum tensor:

$$T_{ab} = \mu u_a u_b - p(N_{ab} - n_a n_b) - Q(n_a u_b + n_b u_a) + \frac{1}{2} \Pi(N_{ab} + 2n_a n_b).$$

with μ the energy density, p the isotropic pressure, Q the momentum density, Π the anisotropic pressure.

The variables that covariantly describe LRS space-times are

$$\{A, \Theta, \Sigma, \Omega, \phi, \xi, E, H, \mu, p, Q, \Pi\}$$

where E and H come from the decomposition of the Weyl tensor.

• Scalars fully describe the kinematics, Weyl curvature, and matter content.

⁰Clarkson C. 2007, Phys.Rev. D 76 104034

Energy–momentum tensor:

$$T_{ab} = \mu u_a u_b - p(N_{ab} - n_a n_b) - Q(n_a u_b + n_b u_a) + \frac{1}{2} \Pi(N_{ab} + 2n_a n_b).$$

with μ the energy density, p the isotropic pressure, Q the momentum density, Π the anisotropic pressure.

• The variables that covariantly describe LRS space-times are

$$\{A, \Theta, \Sigma, \Omega, \phi, \xi, E, H, \mu, p, Q, \Pi\}$$

where E and H come from the decomposition of the Weyl tensor.

- Scalars fully describe the kinematics, Weyl curvature, and matter content.
- Covariant equations come from the decomposition of the Ricci identities,
 Bianchi identities and conservation laws:

$$(\nabla_c \nabla_d - \nabla_d \nabla_c) u_a(n_a) = R_{abcd} u^b(n^b), \quad \nabla_b T^{ab} = 0, \quad \nabla_{[a} R_{bc]de} = 0.$$

⁰Clarkson C. 2007, Phys.Rev. D 76 104034

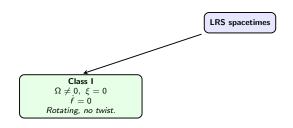
Definition

Three different classes of Locally Rotationally Symmetric (LRS) spacetimes.

LRS spacetimes

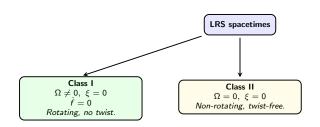
Definition

Three different classes of Locally Rotationally Symmetric (LRS) spacetimes.



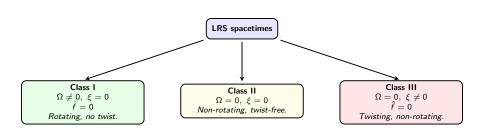
Definition

Three different classes of Locally Rotationally Symmetric (LRS) spacetimes.



Definition

Three different classes of Locally Rotationally Symmetric (LRS) spacetimes.



⁰van Elst H. and Ellis G. F. R. 1996, Class. Quantum Grav. 13 1099

Polar Formalism

• A regular spinor field ψ can always be written in **polar form**:

$$\psi = \sqrt{rac{
ho}{2}} \, \mathrm{e}^{-rac{i}{2}eta\gamma^5} \mathbf{\it L}^{-1} egin{pmatrix} 1 \ 0 \ 1 \ 0 \end{pmatrix}$$

where ρ is the **density**, β the **chiral angle** and \boldsymbol{L} has the structure of a spinor transformation.

Polar Formalism

• A regular spinor field ψ can always be written in **polar form**:

$$\psi = \sqrt{\frac{\rho}{2}} \, \mathrm{e}^{-\frac{i}{2}\beta\gamma^5} \boldsymbol{L}^{-1} \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}$$

where ρ is the **density**, β the **chiral angle** and \boldsymbol{L} has the structure of a spinor transformation.

Associated bilinears:

$$\begin{split} \bar{\psi}\psi &= \rho\cos\beta, \quad i\bar{\psi}\gamma^5\psi = \rho\sin\beta \\ U^{a} &= \bar{\psi}\gamma^{a}\psi = \rho u^{a}, \quad S^{a} = \bar{\psi}\gamma^{a}\gamma^5\psi = \rho s^{a} \end{split}$$

Polar Formalism

ullet A regular spinor field ψ can always be written in **polar form**:

$$\psi = \sqrt{\frac{\rho}{2}} e^{-\frac{i}{2}\beta\gamma^5} \mathbf{L}^{-1} \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}$$

where ρ is the **density**, β the **chiral angle** and **L** has the structure of a spinor transformation.

Associated bilinears:

$$\begin{split} \bar{\psi}\psi &= \rho\cos\beta, \quad i\bar{\psi}\gamma^5\psi = \rho\sin\beta \\ U^{a} &= \bar{\psi}\gamma^{a}\psi = \rho u^{a}, \quad S^{a} = \bar{\psi}\gamma^{a}\gamma^5\psi = \rho s^{a} \end{split}$$

• The orthogonal unit vectors u^a and s^a define the time-like and space-like directions of the (1+1+2) splitting:

$$u_a u^a = -s_a s^a = 1$$
 and $u_a s^a = 0$

$$\mathbf{\nabla}_k \psi = \left(\frac{1}{2} \nabla_k \ln \rho - \frac{i}{2} \nabla_k \beta \gamma^5 - i P_k - \frac{1}{2} R_{abk} \mathbf{s}^{ab}\right) \psi$$

where P_k and $R_{abk} = -R_{bak}$ are called the *momentum* and *tensorial* connection.

$$\nabla_k \psi = \left(\frac{1}{2} \nabla_k \ln \rho - \frac{i}{2} \nabla_k \beta \gamma^5 - i P_k - \frac{1}{2} R_{abk} s^{ab}\right) \psi$$

where P_k and $R_{abk} = -R_{bak}$ are called the *momentum* and *tensorial* connection.

• The tensorial connection is related to the velocity and the spin 4-vector fields:

$$\nabla_k s_b = s^a R_{abk}$$
 and $\nabla_k u_b = u^a R_{abk}$

$$\nabla_k \psi = \left(\frac{1}{2} \nabla_k \ln \rho - \frac{i}{2} \nabla_k \beta \gamma^5 - i P_k - \frac{1}{2} R_{abk} s^{ab}\right) \psi$$

where P_k and $R_{abk} = -R_{bak}$ are called the *momentum* and *tensorial* connection.

• The tensorial connection is related to the velocity and the spin 4-vector fields:

$$\nabla_k s_b = s^a R_{abk}$$
 and $\nabla_k u_b = u^a R_{abk}$

• The Dirac equation takes the form:

$$\begin{cases} \nabla_i U^i = 0 \\ (\nabla_i \beta + B_i) U^i + 2P_i S^i = 0 \\ \nabla^{[a} U^{b]} + \varepsilon^{abpq} \nabla_p \beta \ U_q - \frac{1}{2} R^{ij}_{\ \ p} \, \varepsilon_{ijqk} U^k \varepsilon^{abpq} + 2 \varepsilon^{abpq} P_p S_q - 2 m M^{ab} = 0 \end{cases}$$
 where $R_{ka}{}^a = R_k, \ \frac{1}{2} \varepsilon_{kabc} R^{abc} = B_k \ \text{and} \ M_{ab} = 2 i \bar{\psi} \sigma^{ab} \psi.$

$$\nabla_k \psi = \left(\frac{1}{2} \nabla_k \ln \rho - \frac{i}{2} \nabla_k \beta \gamma^5 - i P_k - \frac{1}{2} R_{abk} s^{ab}\right) \psi$$

where P_k and $R_{abk} = -R_{bak}$ are called the *momentum* and *tensorial* connection.

• The tensorial connection is related to the velocity and the spin 4-vector fields:

$$\nabla_k s_b = s^a R_{abk}$$
 and $\nabla_k u_b = u^a R_{abk}$

• The Dirac equation takes the form:

$$\begin{cases} \nabla_i U^i = 0 \\ (\nabla_i \beta + B_i) U^i + 2P_i S^i = 0 \end{cases}$$

$$\nabla^{[a} U^{b]} + \varepsilon^{abpq} \nabla_p \beta U_q - \frac{1}{2} R^{ij}_{\ p} \varepsilon_{ijqk} U^k \varepsilon^{abpq} + 2\varepsilon^{abpq} P_p S_q - 2mM^{ab} = 0$$

where $R_{ka}^{\ a} = R_k$, $\frac{1}{2} \varepsilon_{kabc} R^{abc} = B_k$ and $M_{ab} = 2i \bar{\psi} \sigma^{ab} \psi$.

• The energy-momentum tensor can be written as

$$T^{ab} = P^{(b}U^{a)} + \frac{1}{2}\nabla^{(b}\beta S^{a)} - \frac{1}{4}R_{ij}^{(b}\varepsilon^{a)ijk}S_{k}$$

• Through the covariant splitting, the Dirac equations reduce to

$$\begin{split} \dot{\rho} &= -\rho\Theta \\ \hat{\rho} &= \rho \left(A - \phi + 2m\sin\beta \right), \end{split}$$

• Through the covariant splitting, the Dirac equations reduce to

$$\begin{split} \dot{\rho} &= -\rho\Theta \\ \hat{\rho} &= \rho \left(A - \phi + 2m\sin\beta \right), \end{split}$$

• The decomposition of T_{ab} gives:

$$\begin{split} \mu &= \frac{\rho}{2} \big(m \cos \beta - \frac{\hat{\beta}}{2} - \Omega \big), \quad p = -\frac{\rho}{12} \big(\hat{\beta} + 2\Omega \big), \\ \Pi &= -\frac{\rho}{6} \big(\hat{\beta} - \Omega \big), \quad Q = -\frac{\rho}{4} \big(\dot{\beta} + \xi \big), \end{split}$$

These express the **energy density, pressure, momentum density, and anisotropic stress** of the spinor field in geometric terms.

• Through the covariant splitting, the Dirac equations reduce to

$$\dot{\rho} = -\rho\Theta$$

$$\hat{\rho} = \rho (A - \phi + 2m\sin\beta),$$

• The decomposition of T_{ab} gives:

$$\begin{split} \mu &= \frac{\rho}{2} \big(m \cos \beta - \frac{\hat{\beta}}{2} - \Omega \big), \quad p = -\frac{\rho}{12} \big(\hat{\beta} + 2\Omega \big), \\ \Pi &= -\frac{\rho}{6} \big(\hat{\beta} - \Omega \big), \quad Q = -\frac{\rho}{4} \big(\dot{\beta} + \xi \big), \end{split}$$

These express the energy density, pressure, momentum density, and anisotropic stress of the spinor field in geometric terms.

• Definition of radial and orthogonal pressure:

$$p_s = p + \Pi = -\frac{\rho}{4}\hat{\beta}, \qquad p_{\perp} = p - \frac{1}{2}\Pi = -\frac{\rho}{4}\Omega$$

• Through the covariant splitting, the Dirac equations reduce to

$$\begin{split} \dot{\rho} &= -\rho\Theta \\ \hat{\rho} &= \rho \left(A - \phi + 2m\sin\beta \right), \end{split}$$

• The decomposition of T_{ab} gives:

$$\begin{split} \mu &= \frac{\rho}{2} \big(m \cos \beta - \frac{\hat{\beta}}{2} - \Omega \big), \quad p = -\frac{\rho}{12} \big(\hat{\beta} + 2\Omega \big), \\ \Pi &= -\frac{\rho}{6} \big(\hat{\beta} - \Omega \big), \quad Q = -\frac{\rho}{4} \big(\dot{\beta} + \xi \big), \end{split}$$

These express the energy density, pressure, momentum density, and anisotropic stress of the spinor field in geometric terms.

Definition of radial and orthogonal pressure:

$$p_s = p + \Pi = -\frac{\rho}{4}\hat{\beta}, \qquad p_{\perp} = p - \frac{1}{2}\Pi = -\frac{\rho}{4}\Omega$$

This framework allows us to analyze the effective spinorial fluid in LRS space-times \implies coupling of Dirac and covariant equations.

Spinorial fluid in LRSI space-times

LRSI:
$$\xi = 0$$
, $\Omega \neq 0$

•
$$\Sigma = \Theta = 0, \ \dot{f} = 0 \ \ \forall f$$
 covariant scalar

LRSI: $\xi = 0$, $\Omega \neq 0$

•
$$\Sigma = \Theta = 0, \ \dot{f} = 0 \ \ \forall f$$
 covariant scalar

$$\begin{cases} \hat{A} = -A\phi + A^2 + 2\Omega^2 - \frac{1}{2}(\mu + 3p) \\ \hat{\Pi} + \hat{p} = -\frac{3}{2}\Pi\phi + \Pi A + A(\mu + p) \\ \hat{\Omega} = -\Omega(A + \phi) \\ \hat{\phi} = -\frac{1}{2}\phi^2 - A\phi + 2\Omega^2 - (\mu + p) - \Pi \\ \hat{\rho} = \rho(2m\sin\beta + A - \phi) \end{cases}$$

LRSI:
$$\xi = 0$$
, $\Omega \neq 0$

- $\Sigma = \Theta = 0, \ \dot{f} = 0 \ \forall f$ covariant scalar
- Final system of equations (unknowns $A, \Omega, \phi, \rho, \beta$):

$$\begin{cases} \hat{A} = -A\phi + A^2 + 2\Omega^2 - \frac{1}{2}(\mu + 3p) \\ \hat{\Pi} + \hat{p} = -\frac{3}{2}\Pi\phi + \Pi A + A(\mu + p) \\ \hat{\Omega} = -\Omega(A + \phi) \\ \hat{\phi} = -\frac{1}{2}\phi^2 - A\phi + 2\Omega^2 - (\mu + p) - \Pi \\ \hat{\rho} = \rho(2m\sin\beta + A - \phi) \end{cases}$$

ullet Well-posed differential equations system \Longrightarrow it admits unique solution.

LRSI: $\xi = 0$, $\Omega \neq 0$

•
$$\Sigma = \Theta = 0$$
, $\dot{f} = 0 \ \forall f$ covariant scalar

$$\begin{cases} \hat{A} = -A\phi + A^2 + 2\Omega^2 - \frac{1}{2}(\mu + 3p) \\ \hat{\Pi} + \hat{p} = -\frac{3}{2}\Pi\phi + \Pi A + A(\mu + p) \\ \hat{\Omega} = -\Omega(A + \phi) \\ \hat{\phi} = -\frac{1}{2}\phi^2 - A\phi + 2\Omega^2 - (\mu + p) - \Pi \\ \hat{\rho} = \rho(2m\sin\beta + A - \phi) \end{cases}$$

- ullet Well-posed differential equations system \Longrightarrow it admits unique solution.
- Perfect fluid case: $\Pi = 0 \Longrightarrow \hat{\beta} = \Omega$;

LRSI: $\xi = 0$, $\Omega \neq 0$

•
$$\Sigma = \Theta = 0$$
, $\dot{f} = 0 \ \forall f$ covariant scalar

$$\begin{cases} \hat{A} = -A\phi + A^2 + 2\Omega^2 - \frac{1}{2}(\mu + 3p) \\ \hat{\Pi} + \hat{p} = -\frac{3}{2}\Pi\phi + \Pi A + A(\mu + p) \\ \hat{\Omega} = -\Omega(A + \phi) \\ \hat{\phi} = -\frac{1}{2}\phi^2 - A\phi + 2\Omega^2 - (\mu + p) - \Pi \\ \hat{\rho} = \rho(2m\sin\beta + A - \phi) \end{cases}$$

- ullet Well-posed differential equations system \Longrightarrow it admits unique solution.
- Perfect fluid case: $\Pi = 0 \Longrightarrow \hat{\beta} = \Omega$;
 - Six propagation equations for $\{A, \Omega, \phi, \beta, \rho\} \Longrightarrow$ constrained dynamic.

LRSI: $\xi = 0$, $\Omega \neq 0$

•
$$\Sigma = \Theta = 0$$
, $\dot{f} = 0 \ \forall f$ covariant scalar

$$\begin{cases} \hat{A} = -A\phi + A^2 + 2\Omega^2 - \frac{1}{2}(\mu + 3p) \\ \hat{\Pi} + \hat{p} = -\frac{3}{2}\Pi\phi + \Pi A + A(\mu + p) \\ \hat{\Omega} = -\Omega(A + \phi) \\ \hat{\phi} = -\frac{1}{2}\phi^2 - A\phi + 2\Omega^2 - (\mu + p) - \Pi \\ \hat{\rho} = \rho(2m\sin\beta + A - \phi) \end{cases}$$

- Well-posed differential equations system \implies it admits unique solution.
- Perfect fluid case: $\Pi = 0 \Longrightarrow \hat{\beta} = \Omega$;
 - Six propagation equations for $\{A,\Omega,\phi,\beta,\rho\}$ \Longrightarrow constrained dynamic.
 - Dynamics not fully tangent to the constraint submanifold; a constraint algorithm is required.

LRSI:
$$\xi = 0$$
, $\Omega \neq 0$

- $\Sigma = \Theta = 0, \ \dot{f} = 0 \ \forall f$ covariant scalar
- Final system of equations (unknowns $A, \Omega, \phi, \rho, \beta$):

$$\begin{cases} \hat{A} = -A\phi + A^2 + 2\Omega^2 - \frac{1}{2}(\mu + 3p) \\ \hat{\Pi} + \hat{p} = -\frac{3}{2}\Pi\phi + \Pi A + A(\mu + p) \\ \hat{\Omega} = -\Omega(A + \phi) \\ \hat{\phi} = -\frac{1}{2}\phi^2 - A\phi + 2\Omega^2 - (\mu + p) - \Pi \\ \hat{\rho} = \rho(2m\sin\beta + A - \phi) \end{cases}$$

- Well-posed differential equations system ⇒ it admits unique solution.
- Perfect fluid case: $\Pi = 0 \Longrightarrow \hat{\beta} = \Omega$;
 - Six propagation equations for $\{A,\Omega,\phi,\beta,\rho\}$ \Longrightarrow constrained dynamic.
 - Dynamics not fully tangent to the constraint submanifold; a constraint algorithm is required.
 - No solutions in which all variables are free.

LRSII: $\xi = \Omega = 0$.

LRSII:
$$\xi = \Omega = 0$$
.

• The system reduces to 14 equations for 9 unknowns.

LRSII:
$$\xi = \Omega = 0$$
.

- The system reduces to 14 equations for 9 unknowns.
- Perfect spinorial fluid:

$$\dot{\beta} = \hat{\beta} = 0 \implies \beta = \text{constant}, \quad \mu = \frac{1}{2}\rho m \cos \beta, \quad p = 0$$

LRSII:
$$\xi = \Omega = 0$$
.

- The system reduces to 14 equations for 9 unknowns.
- Perfect spinorial fluid:

$$\dot{\beta} = \hat{\beta} = 0 \implies \beta = \text{constant}, \quad \mu = \frac{1}{2}\rho m \cos \beta, \quad \rho = 0$$

• Fluid is dust $(p = 0 \implies A = 0)$, geodesic worldlines.

LRSII:
$$\xi = \Omega = 0$$
.

- The system reduces to 14 equations for 9 unknowns.
- Perfect spinorial fluid:

$$\dot{\beta} = \hat{\beta} = 0 \implies \beta = \text{constant}, \quad \mu = \frac{1}{2}\rho m \cos \beta, \quad \rho = 0$$

- Fluid is dust $(p = 0 \implies A = 0)$, geodesic worldlines.
- Remaining variables: $\Theta, \Sigma, A, \phi, E, \rho, \beta$.

LRSII: $\xi = \Omega = 0$.

- The system reduces to 14 equations for 9 unknowns.
- Perfect spinorial fluid:

$$\dot{\beta} = \hat{\beta} = 0 \implies \beta = \text{constant}, \quad \mu = \frac{1}{2}\rho m \cos \beta, \quad \rho = 0$$

- Fluid is dust $(p = 0 \implies A = 0)$, geodesic worldlines.
- Remaining variables: Θ , Σ , A, ϕ , E, ρ , β .

LRSII:
$$\xi = \Omega = 0$$
.

- The system reduces to 14 equations for 9 unknowns.
- Perfect spinorial fluid:

$$\dot{\beta} = \hat{\beta} = 0 \implies \beta = {\rm constant}, \quad \mu = \frac{1}{2} \rho m \cos \beta, \quad \rho = 0$$

- Fluid is dust $(p = 0 \implies A = 0)$, geodesic worldlines.
- Remaining variables: Θ , Σ , A, ϕ , E, ρ , β .

•
$$E=0 \Rightarrow \Sigma=0$$
, $\hat{\rho}=0$:

LRSII:
$$\xi = \Omega = 0$$
.

- The system reduces to 14 equations for 9 unknowns.
- Perfect spinorial fluid:

$$\dot{\beta} = \hat{\beta} = 0 \implies \beta = \text{constant}, \quad \mu = \frac{1}{2}\rho m \cos \beta, \quad \rho = 0$$

- Fluid is dust $(p = 0 \implies A = 0)$, geodesic worldlines.
- Remaining variables: Θ , Σ , A, ϕ , E, ρ , β .

- $E = 0 \Rightarrow \Sigma = 0$, $\hat{\rho} = 0$:

LRSII:
$$\xi = \Omega = 0$$
.

- The system reduces to 14 equations for 9 unknowns.
- Perfect spinorial fluid:

$$\dot{\beta} = \hat{\beta} = 0 \implies \beta = \text{constant}, \quad \mu = \frac{1}{2}\rho m \cos \beta, \quad \rho = 0$$

- Fluid is dust $(p = 0 \implies A = 0)$, geodesic worldlines.
- Remaining variables: Θ , Σ , A, ϕ , E, ρ , β .

- $E = 0 \Rightarrow \Sigma = 0$, $\hat{\rho} = 0$:

 - **2** $\Theta = 0 \Rightarrow$ critical solution: $\mu = 0$.

LRSII:
$$\xi = \Omega = 0$$
.

- The system reduces to 14 equations for 9 unknowns.
- Perfect spinorial fluid:

$$\dot{\beta} = \hat{\beta} = 0 \implies \beta = \text{constant}, \quad \mu = \frac{1}{2}\rho m \cos \beta, \quad \rho = 0$$

- Fluid is dust $(p = 0 \implies A = 0)$, geodesic worldlines.
- Remaining variables: Θ , Σ , A, ϕ , E, ρ , β .

- $E = 0 \Rightarrow \Sigma = 0$, $\hat{\rho} = 0$:

 - **2** $\Theta = 0 \Rightarrow$ critical solution: $\mu = 0$.
- $\phi=0 \Rightarrow E=(\Sigma-\frac{1}{3}\Theta)(\Sigma+\frac{2}{3}\Theta)+\frac{2}{3}\mu$: Homogeneous: Bianchi-I, spinorial dust

LRSIII:
$$\xi \neq 0$$
, $\Omega = 0$, $\hat{f} = 0 \ \forall f$ covariant scalar.

• The fluid is forced to be perfect by the geometry $\Rightarrow \Pi = 0$.

LRSIII: $\xi \neq 0$, $\Omega = 0$, $\hat{f} = 0$ $\forall f$ covariant scalar.

- The fluid is forced to be perfect by the geometry $\Rightarrow \Pi = 0$.
- From the Dirac equations:

$$2m\sin\beta = 0 \implies \beta = k\pi$$

which implies $\xi=-\dot{\beta}=0$, in contradiction with the LRSIII assumption.

LRSIII: $\xi \neq 0$, $\Omega = 0$, $\hat{f} = 0$ $\forall f$ covariant scalar.

- The fluid is forced to be perfect by the geometry $\Rightarrow \Pi = 0$.
- From the Dirac equations:

$$2m\sin\beta = 0 \implies \beta = k\pi$$

which implies $\xi = -\dot{\beta} = 0$, in contradiction with the LRSIII assumption.

 No LRSIII solutions exist both in the case of perfect and non-perfect spinorial fluid.

Covariant formulation of the Dirac field in LRS spacetimes

 Combined polar decomposition with covariant approach → Dirac field described as an effective spinor fluid.

- Combined polar decomposition with covariant approach → Dirac field described as an effective spinor fluid.
- Avoided the use of tetrads and Dirac matrices.

- Combined polar decomposition with covariant approach → Dirac field described as an effective spinor fluid.
- Avoided the use of tetrads and Dirac matrices.
- Applied (1+1+2) decomposition to the energy-momentum tensor and Dirac equations.

- Combined polar decomposition with covariant approach → Dirac field described as an effective spinor fluid.
- Avoided the use of tetrads and Dirac matrices.
- Applied (1+1+2) decomposition to the energy-momentum tensor and Dirac equations.

Covariant formulation of the Dirac field in LRS spacetimes

- Combined polar decomposition with covariant approach → Dirac field described as an effective spinor fluid.
- Avoided the use of tetrads and Dirac matrices.
- Applied (1+1+2) decomposition to the energy-momentum tensor and Dirac equations.

Main results

- LRS III → ruled out.
- \bullet LRS I \to allowed for non-perfect fluids; perfect fluids lead to stringent constraints.
- LRS II → solutions exist; perfect fluids → dust-like solutions.

Covariant formulation of the Dirac field in LRS spacetimes

- Combined polar decomposition with covariant approach → Dirac field described as an effective spinor fluid.
- Avoided the use of tetrads and Dirac matrices.
- Applied (1+1+2) decomposition to the energy-momentum tensor and Dirac equations.

Main results

- LRS III → ruled out.
- LRS I → allowed for non-perfect fluids; perfect fluids lead to stringent constraints.
- LRS II \rightarrow solutions exist; perfect fluids \rightarrow dust-like solutions.

Future Perspectives

- Analysis of the resulting systems of equations.
- Generalization of the formalism by changing the choice of congruences.

Thank you for your attention!