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Plan of the presentation:

Ø Preliminaries

Ø Gauss-Bonnet theory

Ø Chern-Simons theory

Ø Conclusions and perspectives

• f(G) cosmology
• f(G) Black Holes

• Chern-Simons cosmology
• Chern-Simons Black Holes
• Application to electromagnetic theory

• Successes and shortcomings of Einstein’s General Relativity
• Extended gravity and topological Invariants



1. Preliminaries



Prediction of General Relativity
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Describes the gravitational interaction
through the space-time curvature

First theory to successfully pass 
the Solar System Tests

In a static and spherically
Symmetric background

Schwarzschild Solution

Predicts the middle ephocs
crossed by Universe evolution
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Reatività Generale

Modern 
Cosmology

Gravitational 
Waves

Black Holes



Shortcomings of General Relativity

ØAccelerated expansion of the Universe
ØInflation

ØMass-Radius diagram of 
Neutron Stars

Large scales

ØGalaxy rotation curve



Unfortunately, so far, no 
theory is capable of 
addressing all these

problems at once

Small scales

ØRenormalizability
ØGR cannot be quantized

ØCannot be treated under the same
standard as other interactions

ØDiscrepancy between theoretical
and experimental values of Λ

ØSpace-time singularity

Shortcomings of General Relativity
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Modified Theories of Gravity

Classification
• Extended action 𝑓(𝑅)
• Modified Action                                              𝑓(𝑇)
• Coupling To Scalar fields φ・𝑅

Motivations:
1. Could account for UV and IR quantum corrections

2. Fit the galaxy rotation curve

5. Predict the right mass-radius relation of some neutron star 
without invoking exotic EOS

3. Contains GR as a particular limit
4. Reproduce both late and early time cosmic evolutions



Modified theories of gravity

• Relax some assumptions of GR

Ø Equivalence principle Ø Second-order field equations

Ø Lorentz invariance



Examples of Modified Gravity Potentials





Example: f(R) Gravity

Example: Scalar-Tensor Gravity

Second-order field equations

Can be related to f(R) gravity through conformal transformations

Effective Energy-Momentum tensor

T.P. Sotiriou and V. Faraoni. Rev. Mod Phys. 82 (2010), 451-497



Newtonian potential in the weak-field limit

𝑓 𝑅 = 𝑅!
Selected theory

Static potential



𝑓 𝑅 = 𝑅!

𝑘 = 0.817

Galaxy rotation curve

No need for Dark Matter?



f(R) theory
𝑓 𝑅 = 𝑅 + 𝛼𝑅"

𝑓 𝑅 = 𝑓#𝑅! (𝑘 = 1 + 𝜺)
Mass-Radius Diagram



Gauss-Bonnet and Chern-Simons

In this framework, modified theories can also include topological invariants:



Topological Invariants

Depend on the topology, independently of the space-time geometry

They do not depend on the local form of the spacetime, but only
relies on its global structure

Torus cannot be obtained by 
deforming the sphere



2. Gauss-Bonnet Theory



Gauss-Bonnet Theory

General extended action with second-order curvature invariants:

There is only a particular combination….

…. Which provides a topological surface term:

Euler characteristic 

Euler density 

Usually the following action is considered:

So that, when                   , GR is safely recovered

Plays the role of cosmological constant

S. Nojiri, S.D. Odintsov. Phys. Lett. B 631 (2005),1-6



Gauss-Bonnet Theory

Here, due to

We consider

This theory can reproduce GR results even without adding the scalar curvature

Why considering the Gauss—Bonnet term?

1. The Gauss-Bonnet term is a topological surface term and 
reduces the dynamics

2. The Gauss-Bonnet term naturally emerges in gauge
theories of gravity (e.g. Lovelock gravity)

3. In homogeneous cosmology, it turns out that





Noether Point Symmetries
̅𝑡 = ̅𝑡 𝑡, 𝑞; ε ≃ 𝑡 + εξ 𝑡, 𝑞

+𝑞! = +𝑞! 𝑡, 𝑞; ε ≃ 𝑞! + εη! 𝑡, 𝑞

𝑿 = 𝜉 𝑡, 𝑞
𝜕
𝜕𝑡

+ 𝜂! 𝑡, 𝑞
𝜕
𝜕𝑞!

𝑿[#] = 𝑿+ 𝜂[#]!
𝜕
𝜕𝑞̇!

= 𝑿 + 𝜂̇! − ̇𝜉𝑞̇!
𝜕
𝜕𝑞̇!

Noether Theorem.  If and only if it exists a function 𝑔(𝑡, 𝑞 𝑡 ) such that

𝑿[#]𝐿 + ̇𝜉𝐿 = 𝑔̇,

then the one-parameter group of point transformations generated by 𝑿 is a one-parameter group of 
Noether point symmetries for the dynamical system described by 𝐿.
The associated first integral of  motion is:

𝐼 𝑡, 𝑞, 𝑞̇ = 𝜉 𝑞̇
𝜕𝐿
𝜕𝑞̇!

− 𝐿 − 𝜂!
𝜕𝐿
𝜕𝑞̇!

+ 𝑔

1-parameter (𝜀) group of 
point transformations

infinitesimal group generator

‘‘first prolongation’’ of the 
infinitesimal generator

The system contains the unknown
function 𝒇 𝑮 , so that it can  

provide, in principle, an explicit 
form for 𝒇 𝑮 related to  the 

existence of symmetries
k.F. Dialektopoulos and S. Capozziello. IJGMMP 15 (2018)



Noether Symmetry Approach

The recipe:   

1. We consider a point-like Lagrangian

2. We write the ansatz for 𝑿 ed 𝑿[#]

3. We expand the Noether point symmetries existence condition

𝑿[#]𝐿 + ̇𝜉𝐿 = 𝑔̇

to obtain a polynomial depending on  𝜉 𝑡, 𝑞 , 𝜂! 𝑡, 𝑞 , 𝑔̇ 𝑡, 𝑞 and products of the                      
Lagrangian velocities (𝑒. 𝑔. 𝜂̇! 𝜂̇% ̇𝜉 … )

3.   We obtain a system of PDEs for  𝜉, 𝜂! , 𝑔̇

The system contains the unknown function 𝒇 𝑮,𝝓 , so that it can  provide, in principle, 
an explicit form for 𝒇 𝑮,𝝓 related to  the existence of symmetries



Noether symmetry approach to modified Gauss—Bonnet theory 

with

Point-like Lagrangian

Symmetry generator

One se
t o

f so
lutio

ns

F. Bajardi and S. Capozziello. EPJC 80 (2020), 704



Cosmological applications

In four dimensions the Lagrangian becomes

and yields

from which it is possible to distinguish the epochs crossed by the Universe

To describe the early time evolution we need a quantum formalism
F. Bajardi and S. Capozziello. EPJC 80 (2020), 704



Applications to energy conditions
Modified gravity field equations

Modified Gauss-
Bonnet field 
equations

Energy density of the 
gravitational field for

Pressure of the 
gravitational field for

F. Bajardi. Eur.Phys. J. C 84 (2024) 12, 1298



With the help of cosmographic parameters

The EC are satisfied for

f(G) gravity can mimick dark energy

F. Bajardi. Eur.Phys. J. C 84 (2024) 12, 1298



Slow-roll inflation: inflation is driven by a scalar field rolling down a potential energy hill. Inflation occurs as soon as the 
scalar field rolling is slow with respect to the Universe expansion. 

Slow-Roll approximation

Thanks to the EC, it turns out that inflation in f(G) gravity is realized when

F. Bajardi. Eur.Phys. J. C 84 (2024) 12, 1298



Application to Quantum Cosmology

Using canonical quantization rules

One gets a Schroedinger-like equation

But…

If the solution is oscillating

Hartle Criterium

Many World

Enucleation 
from nothing

Probability of the quantum 
Universe to evolve towards 
our classical Universe



Quantum cosmology

But it is not the probability amplitude

Hartle’s Criterion

Noether symmetries

Oscillating wave function of the universe



Applications of f(G) gravity to quantum cosmology

By a Legendre transformation of the Lagrangian one gets: Imposing

The wave function can be recast as

with

Hartle’s criterion is recovered and classical 
trajectories are provided by Hamilton-

Jacobi equations
F. Bajardi and S. Capozziello. EPJC 80 (2020), 704



Spherical symmetry

d-1 sphere

Number of spatial dimensions

In this spacetime, the GB
term can be written as:

Note that for d=3 it turns into a topological surface term, while for d<3 it vanishes

We assume the 
Birkhoff theorem 

to hold for this 
model

F. Bajardi, K. D. Dialektopoulos, S. Capozziello. Symmetry 12 (2020), 372



We start from d+1 dimensional representation of the GB term in spherical symmetry

The action can be varied with respect to G, in order to find out the Lagrange multiplier

Imposing the symmetry existence condition

with generator

The function and the symmetry generator can be selected

F. Bajardi, K. D. Dialektopoulos, S. Capozziello. Symmetry 12 (2020), 372F. Bajardi, K. D. Dialektopoulos, S. Capozziello. Symmetry 12 (2020), 372



Results provided by the approach

Only non-trivial function containing symmetries

Once replaced into the field equations leads to

F. Bajardi, K. D. Dialektopoulos, S. Capozziello. Symmetry 12 (2020), 372F. Bajardi, K. D. Dialektopoulos, S. Capozziello. Symmetry 12 (2020), 372



Four-dimensional limit (d = 3)

Imposing d=3 and

The field equations folds into a single equation of the form

Whose solution is

with

Further analysis is needed to check whether the theory passes at least all the solar system tests



3. Chern-Simons Theory



Basic foundations of Lovelock and Chern-Simons theories

Lovelock action

The GB term naturally emerges

It is the most general action 
without torsion which leads 

to second-order field 
equations

Four-dimensional limit
Topological surface Lovelock Theorem:

The H-E action is the most 
general four-dimensional 
action leading to second-

order field equations

It follows that

J. Zanelli. arXiv:hep-th/0502193



Chern-Simons theory

Starting from Lovelock action, it 
is possible to select the 

coefficients such that the 
resulting theory is invariant with 

respect to some gauge group

Proceed by trial and error

Find a methodical procedure
All D-dimensional Lagrangians whose 

exterior derivative provides a 
topological surface term, are quasi

gauge-invariant

Chern-Simons Lagrangians

Shiing-Shen Chern James Harris Simons
Examples of three-dimensional CS Lagrangians

Why Chern-Simons?
• It fits the formalism of QFT
• It can be quantized
• It can be applied to SUGRA
• It can be renormalized
• AdS/CFT correspondence



Chern-Simons theory: three other examples

𝑃!
"($) = 𝑑𝐴𝑑𝐴 𝑃!

&"(!) = 𝑇𝑟[𝑑𝐴𝑑𝐴]

U(1) invariant

Related topological surface

SU(N) invariant
Related topological surface

AdS invariant

Electromagnetism Biological systems

Related topological surface

Cosmology and Black holes



Cosmological applications

Starting line 
element and 

starting action

d+1 dimensional expression of scalar curvature and GB term 

Cosmological Lagrangian

F. Bajardi, D. Vernieri, S. Capozziello. JCAP 11 (2021), 057 



Spherical symmetry

Starting line 
element and 

starting action

d+1 dimensional expression of scalar curvature and GB term 

Spherically symmetric Lagrangian

F. Bajardi, D. Vernieri, S. Capozziello. JCAP 11 (2021), 057 



Classical electromagnetism
In coordinates representation

Klein-Gordon equation for the vector field

Can be added to 
the free EM 
Lagrangian

By varying with 
respect to the 

gauge connection

Massive wave equations Massive photons

Proca wave equation: Breaks U(1) invariance

Chern-Simons wave equation: U(1) invariant, but not conformally invariant

Special relativity is preserved



4. Gauss-Bonnet Invariant 
emerging from symmetry 



Starting from a general fourth-order Lagrangian

The goal is to select coefficients by symmetry arguments

To this end, we focus on a general spherically-symmetric-like background

And use Lagrange multiplier to find the  point-like Lagrangian

We then apply the Noether symmetry existence condition in the minisuperspace

F. Bajardi. Phys. Rev. D 112, 104028 (2025)





This is interesting in view of investigating the power of symmetries in gravity models

Whose only solution is

with

The Gauss-Bonnet term is the only quadratic term containing symmetries

Example:



5. Conclusions and Perspectives



Conclusions and perspectives: Gauss-Bonnet

We considered:

Ø Cosmology and applications (EC, exact solutions)

Ø Spherical symmetry (Black hole solutions)

Future perspectives:

Ø Consider different backgrounds

Ø Constraining the free parameters by experiments

Ø Study the four-dimensional limit of the spherically symmetric solution via PPN formalism

Ø Consider other modifications including other topological surfaces (Pontrjagin scalar, Kretschmann scalar)



Conclusions and perspectives: Chern-Simons

Application of Chern-Simons Gravity to:

ØSpherical symmetry

Perspectives Study the orbits and the Solar System Test

ØCosmology
Extend Lovelock gravity

Perspectives
Study other topological theories




