

Modifying Gravity using Topological Terms

Francesco Bajardi

Catania, 13/11/2025

- Scuola Superiore Meridionale, Largo S. Marcellino 10, Napoli, Italy
- Istituto nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Via Cinthia, Napoli, Italy

Keywords: Noether Symmetry, Classical and Quantum Cosmology, Modified Theories of Gravity, Gauss-Bonnet Invariant

Plan of the presentation:

Preliminaries

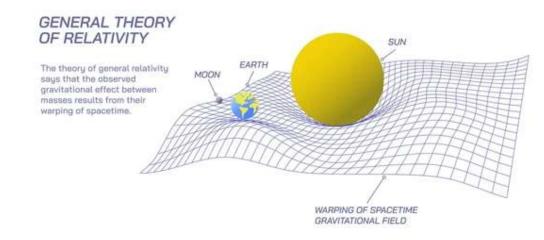
- Successes and shortcomings of Einstein's General Relativity
- Extended gravity and topological Invariants

Gauss-Bonnet theory

- f(G) cosmology
- f(G) Black Holes

Chern-Simons theory

- Chern-Simons cosmology
- Chern-Simons Black Holes
- Application to electromagnetic theory

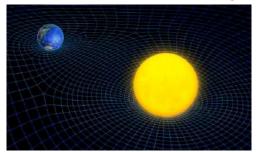


Conclusions and perspectives

1. Preliminaries

Prediction of General Relativity

Describes the gravitational interaction through the space-time curvature



First theory to successfully pass the Solar System Tests

In a static and spherically Symmetric background

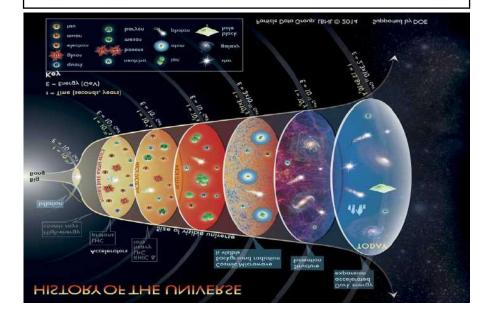
Schwarzschild ↓ *Solution*

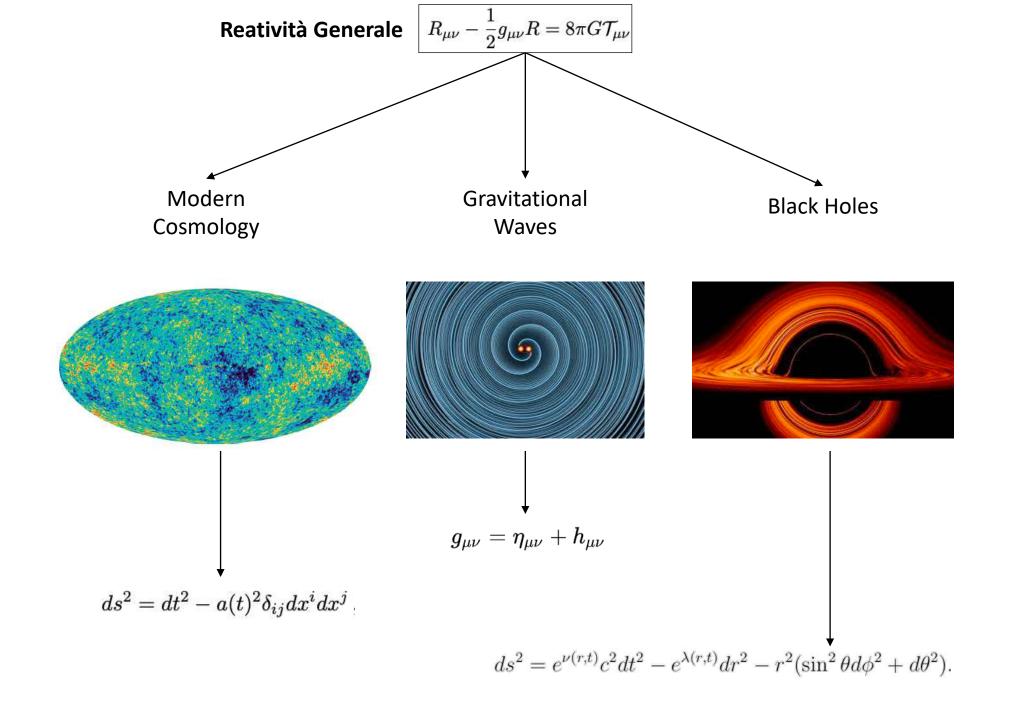
$$ds^2 = \left(1 - rac{2GM}{c^2 r}
ight)c^2 dt^2 - \left(1 - rac{2GM}{c^2 r}
ight)^{-1} dr^2 - r^2 d heta^2 - r^2 {
m sen}^2 heta d\phi^2$$

$$S_{GR} \equiv \frac{1}{2} \int d^4x \sqrt{-g} \, R$$

Predicts the middle ephocs crossed by Universe evolution

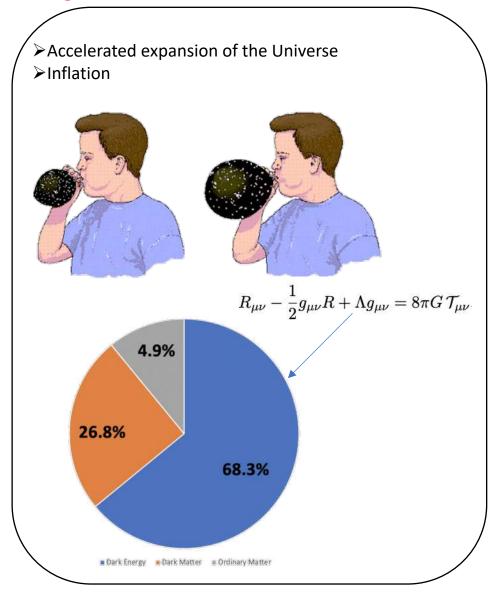
$$\frac{a}{a_0} = \left(\frac{t}{t_0}\right)^{\frac{2}{3(\gamma+1)}} \qquad \rho(t) = \left[6\pi G_N(1+\gamma^2)t^2\right]^{-1}$$

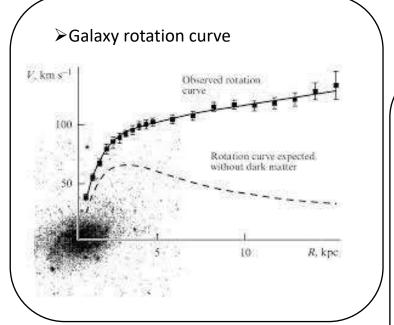


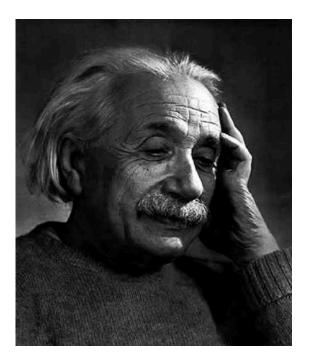


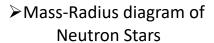
Shortcomings of General Relativity

Large scales



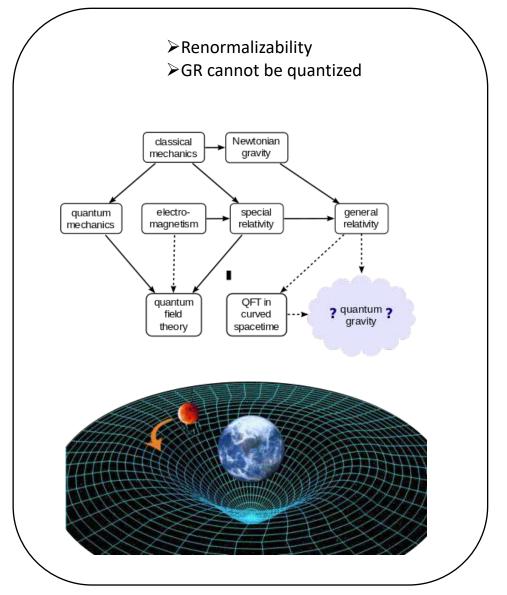






Shortcomings of General Relativity

Small scales

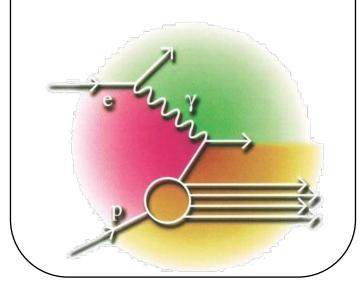


ightharpoonup Discrepancy between theoretical and experimental values of Λ

$$R_{\mu\nu} - rac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 8\pi G \mathcal{T}_{\mu\nu}$$

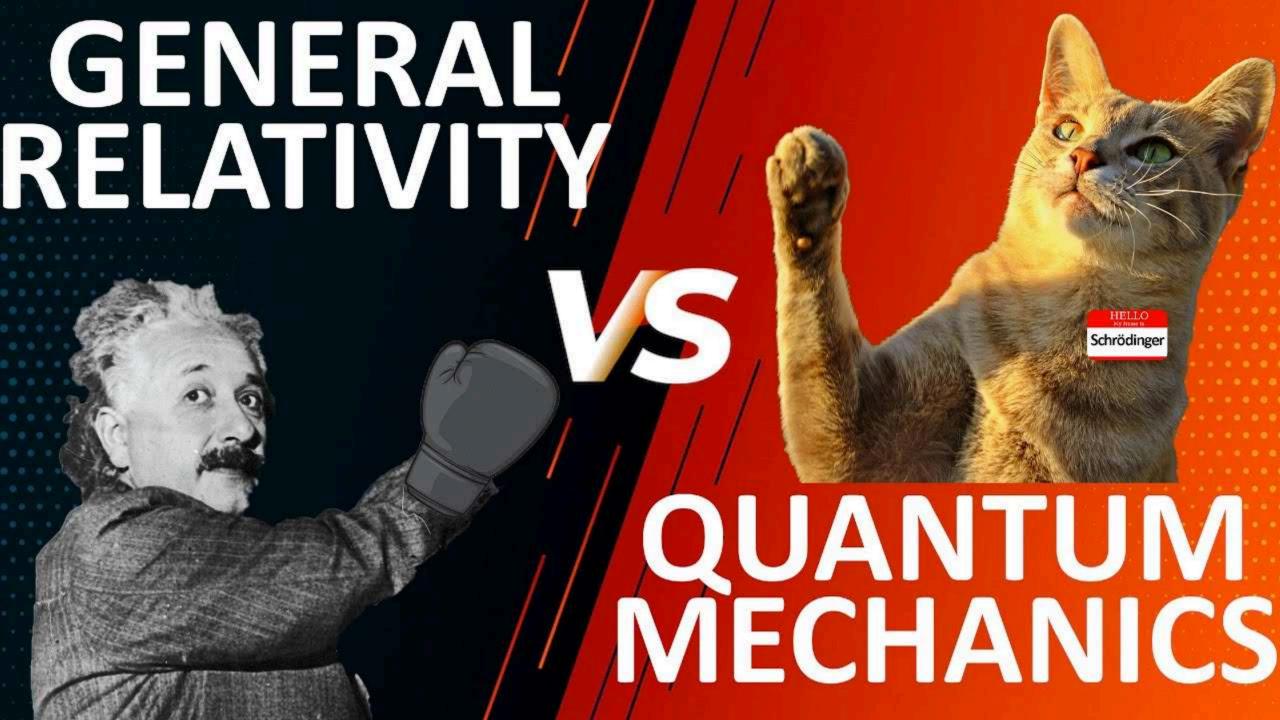
$$rac{
ho'_{\Lambda}}{
ho_{\Lambda}} = rac{\hbar^2}{96\pi^3 G H_0^2} \sim 10^{121}$$

➤ Cannot be treated under the same standard as other interactions



➤ Space-time singularity

Unfortunately, so far, no theory is capable of addressing all these problems at once



Modified Theories of Gravity

Classification

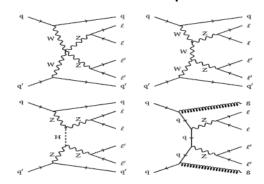
- Extended action f(R)
- Modified Action f(T)
- Coupling To Scalar fields $\longrightarrow \phi \cdot R$

- 3. Contains GR as a particular limit
- 4. Reproduce both late and early time cosmic evolutions

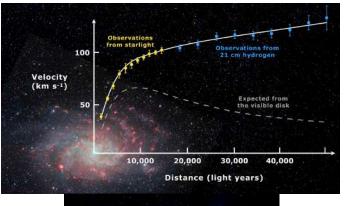
5. Predict the right mass-radius relation of some neutron star without invoking exotic EOS

Motivations:

1. Could account for UV and IR quantum corrections

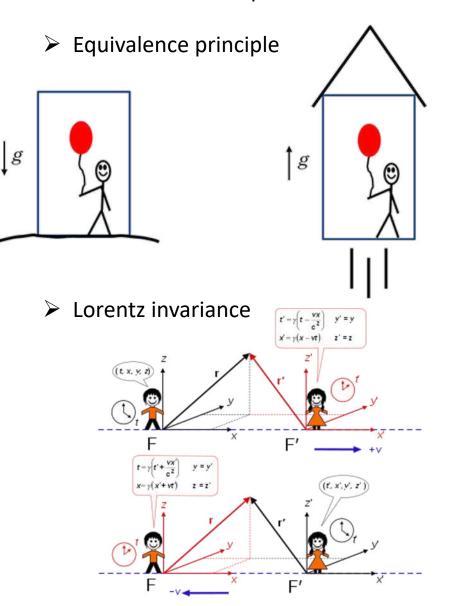


2. Fit the galaxy rotation curve

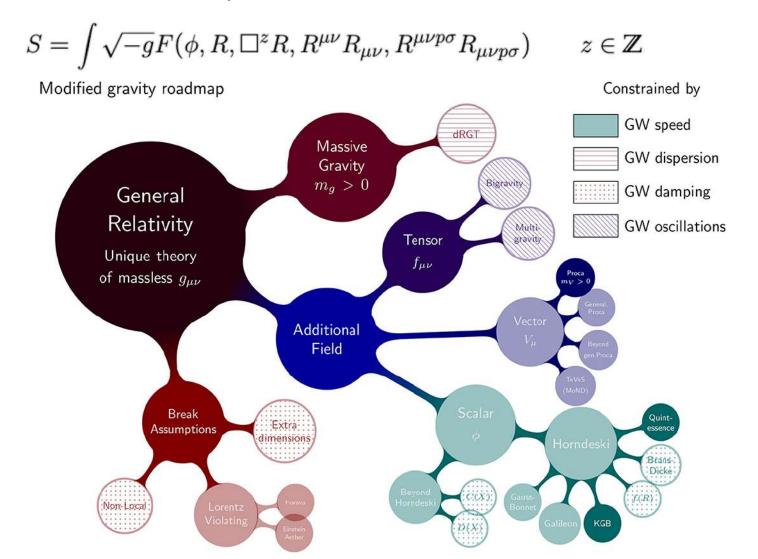


Modified theories of gravity

Relax some assumptions of GR

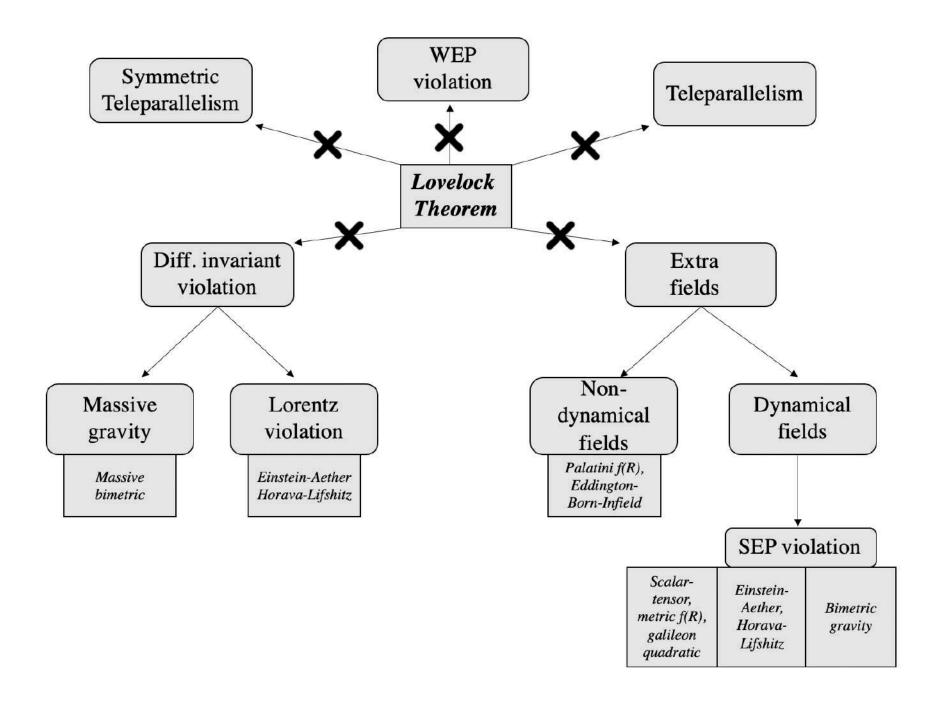


> Second-order field equations



Examples of Modified Gravity Potentials

Modified Gravity Model	Corrected potential	Yukawa parameters
f(R)	$egin{aligned} oldsymbol{\Phi}(r) &= -rac{G_N M}{r} igg[1 + lpha e^{-m_R r} igg] \ \mathbf{A} &= rac{G_N}{r^3} \mathbf{r} imes \mathbf{J} \end{aligned}$	$m_R^2 = -rac{f_R(0)}{6f_{RR}(0)}$
$f(R,\Box R) = R + a_0 R^2 + a_1 R \Box R$	$\Phi(r) = -\frac{G_N M}{r} \left(1 + c_0 e^{(-r/l_0)} + c_1 e^{(-r/l_1)} \right)$ $\mathbf{A} = \frac{G_N}{r^3} \mathbf{r} \times \mathbf{J}$	$c_{0,1} = \frac{1}{6} \mp \frac{a_0}{2\sqrt{9a_0^2 + 6a_1}}$
		$l_{0,1} = \sqrt{-3a_0 \pm \sqrt{9a_0^2 + 6a_1}}$ $m_R^2 = -\frac{1}{3f_{RR}(0.0,\phi^{(0)}) + 2f_Y(0.0,\phi^{(0)})}$
$f(R, R_{\alpha\beta}R^{\alpha\beta}, \phi) + \omega(\phi)\phi_{;\alpha}\phi^{;\alpha}$	$ \Phi(r) = -\frac{G_N M}{r} \left[1 + g(\xi, \eta) e^{-m_R \tilde{k}_R r} + \right] $	$m_Y^2 = rac{1}{f_Y(0,0,\phi^{(0)})}$ $m_{\phi}^2 = -rac{f_{\phi\phi}(0,0,\phi^{(0)})}{2\omega(\phi^{(0)})}$
	$+[1/3 - g(\xi,\eta)] e^{-m_R \bar{k}_\phi r} - \frac{4}{3} e^{-m_Y r}$	$\xi = \frac{3f_{R\phi}(0,0,\phi^{(0)})^2}{2\omega(\phi^{(0)})}$
	$\mathbf{A} = \frac{G_N}{r^3} \left[1 - \left(1 + m_Y r \right) e^{-m_Y r} \right] \mathbf{r} \times \mathbf{J}$	$\eta = \frac{m_{\phi}}{m_R}$ $g(\xi, \eta) = \frac{1 - \eta^2 + \xi + \sqrt{\eta^4 + (\xi - 1)^2 - 2\eta^2(\xi + 1)}}{6\sqrt{\eta^4 + (\xi - 1)^2 - 2\eta^2(\xi + 1)}}$
		$\tilde{k}_{R,\phi}^2 = \frac{1-\xi+\eta^2\pm\sqrt{(1-\xi+\eta^2)^2-4\eta^2}}{2}$



Example: f(R) Gravity
$$S = \int \sqrt{-g} f(R) \, d^4x.$$

$$G_{\mu\nu} = \frac{1}{f_R(R)} \left\{ \frac{1}{2} g_{\mu\nu} \left[f(R) - R f_R(R) \right] + f_R(R)_{;\mu;\nu} - g_{\mu\nu} \Box f_R(R) \right\}$$
 Effective Energy-Momentum tensor
$$\overline{T}_{\mu\nu}^{GF} = \frac{1}{f_R(R)} \left\{ \frac{1}{2} g_{\mu\nu} \left[f(R) - R f_R(R) \right] + f_R(R)_{;\mu;\nu} - g_{\mu\nu} \Box f_R(R) \right\} \longrightarrow G_{\mu\nu} = \overline{T}_{\mu\nu}^{GF}$$

Example: Scalar-Tensor Gravity
$$S = \int \sqrt{-g} \left\{ f(\phi) \; R + \frac{\omega(\phi)}{2} g^{\mu\nu} \phi_{,\mu} \phi_{,\nu} - V(\phi) \right\} d^4x$$

$$Second-order \ field \ equations$$

Can be related to f(R) gravity through conformal transformations

Newtonian potential in the weak-field limit

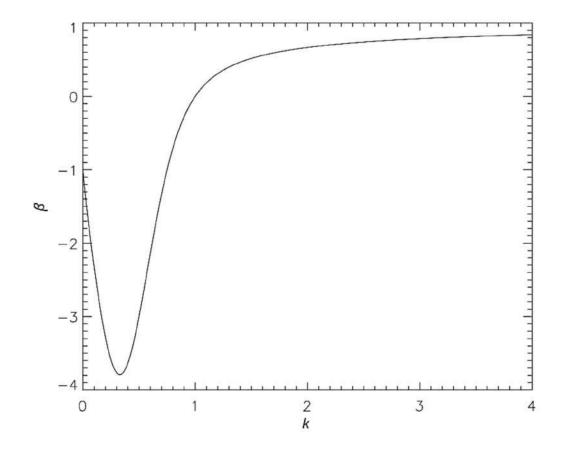
Selected theory

$$f(R) = R^k$$

Static potential

$$\Phi(r) = -rac{GM}{2r} \left[1 + \left(rac{r}{r_c}
ight)^{eta}
ight]^{-1}$$

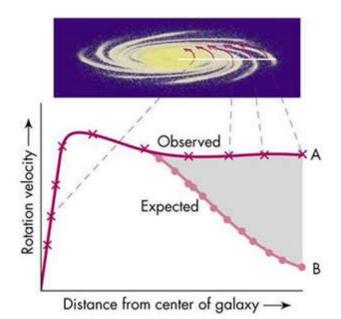
$$\beta = \frac{12k^2 - 7k - 1 - \sqrt{36k^4 + 12k^3 - 83k^2 + 50k + 1}}{6k^2 - 4k + 2}$$



Galaxy rotation curve

$$f(R) = R^k$$

$$k = 0.817$$

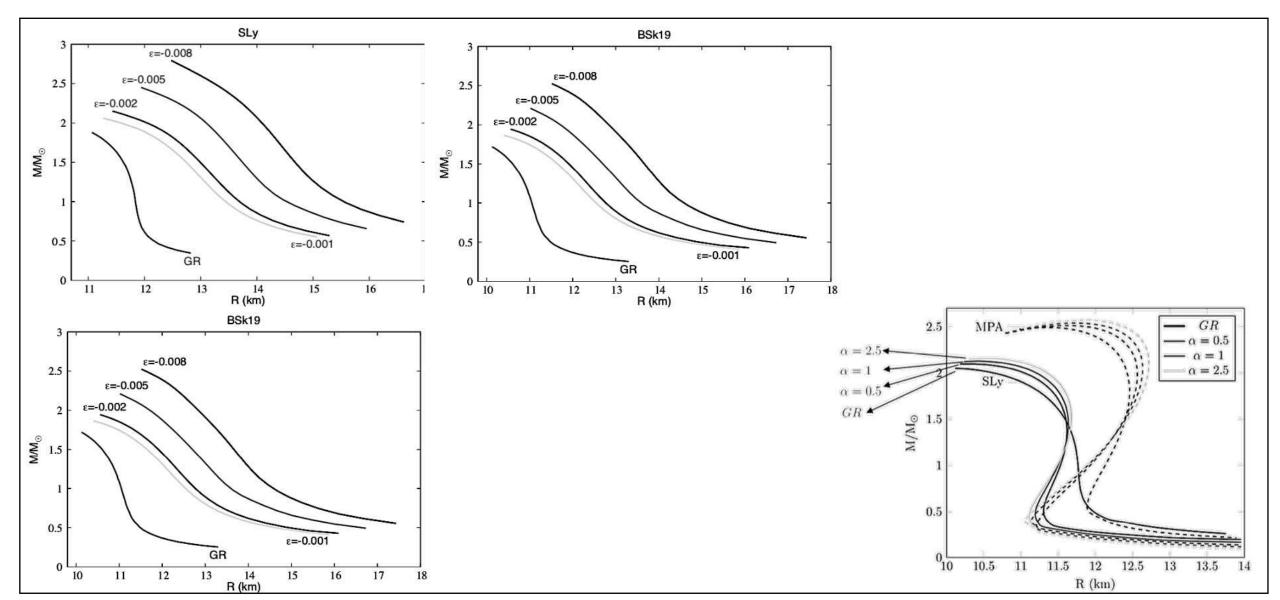


No need for Dark Matter?

f(R) theory
$$f(R) = R + \alpha R^{2}$$

$$f(R) = f_{0}R^{k} \quad (k = 1 + \varepsilon)$$

Mass-Radius Diagram



Gauss-Bonnet and Chern-Simons

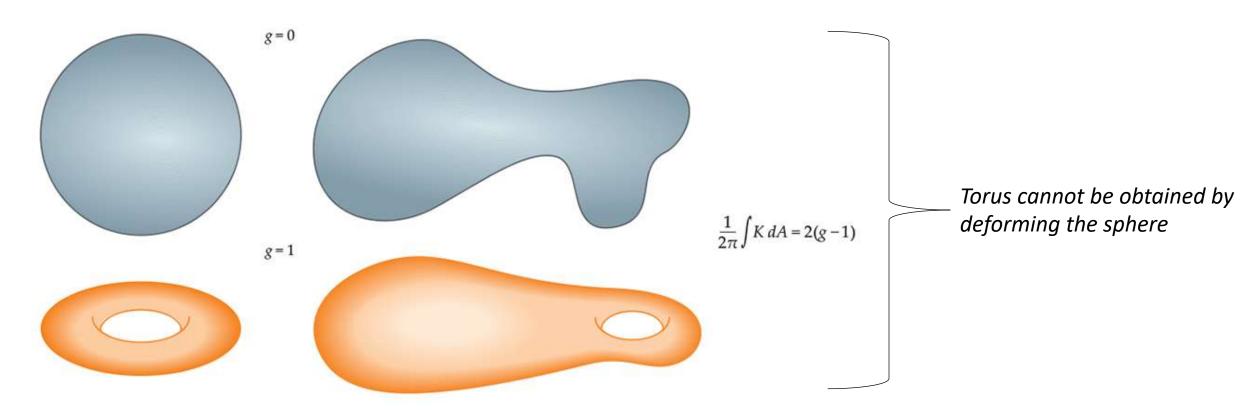
In this framework, modified theories can also include topological invariants:

Gauss—Bonnet theory

Chern—Simons theory

Topological Invariants

Depend on the topology, independently of the space-time geometry



They do not depend on the local form of the spacetime, but only relies on its global structure

2. Gauss-Bonnet Theory

Gauss-Bonnet Theory

General extended action with second-order curvature invariants: $S=\int \sqrt{-g}\,f(R,P,Q)\,d^4x$ $P\equiv g^{\mu p}R^{\nu\sigma}R_{\mu\nu p\sigma}$

There is only a particular combination....
$$\mathcal{G} \equiv R^2 - 4P + Q$$

Euler characteristic

.... Which provides a topological surface term: $\int_{\mathcal{M}} \sqrt{-g}\,\mathcal{G}\,d^4x = \chi(\mathcal{M})$

$$\int_{\mathcal{M}} \sqrt{-g} \, \mathcal{G} \, d^4 x = \chi(\mathcal{M})$$

Euler density

Usually the following action is considered:

$$S = \int \sqrt{-g} \left(\frac{1}{2} R + f(\mathcal{G}) \right) d^4 x$$

So that, when $f(\mathcal{G}) \to 0$, GR is safely recovered

Plays the role of cosmological constant

Gauss-Bonnet Theory

Here, due to

$$\sqrt{\mathcal{G}} \sim \sqrt{R^2}$$

$$S = \int \sqrt{|g|} f(\mathcal{G}) \ d^{d+1}x$$

We consider
$$-\left(2RR_{\mu\nu}-4R_{\mu p}R^{p}_{\ \nu}+2R^{\ p\sigma\tau}_{\mu}R_{\nu p\sigma\tau}-4R^{\alpha\beta}R_{\mu\alpha\nu\beta}\right)f_{\mathcal{G}}(\mathcal{G})$$

$$+\left(2RD_{\mu}D_{\nu}+4G_{\mu\nu}\Box-4R^{p}_{\{\nu}D_{\mu\}}D_{p}+4g_{\mu\nu}R^{p\sigma}D_{p}D_{\sigma}\right)$$

$$-4R_{\mu\alpha\nu\beta}D^{\alpha}D^{\beta} f_{\mathcal{G}}(\mathcal{G})+\frac{1}{2}g_{\mu\nu}f(\mathcal{G})=0\;,$$

This theory can reproduce GR results even without adding the scalar curvature

Why considering the Gauss—Bonnet term?

- The Gauss-Bonnet term is a topological surface term and reduces the dynamics
- 2. The Gauss-Bonnet term naturally emerges in gauge theories of gravity (e.g. Lovelock gravity)
- 3. In homogeneous cosmology, it turns out that $f(\mathcal{G}) = \sqrt{\mathcal{G}}$ –

How to select the form of the action?

Noether Point Symmetries

$$\bar{t} = \bar{t}(t,q;\epsilon) \simeq t + \epsilon \xi(t,q)$$

 $\bar{q}^i = \bar{q}^i(t,q;\epsilon) \simeq q^i + \epsilon \eta^i(t,q)$
1-parameter (ϵ) group of point transformations

$$X = \xi(t,q) \frac{\partial}{\partial t} + \eta^i(t,q) \frac{\partial}{\partial g^i}$$
 infinitesimal group generator

$$X^{[1]} = X + \eta^{[1]i} \frac{\partial}{\partial \dot{q}^i} = X + (\dot{\eta}^i - \dot{\xi}\dot{q}^i) \frac{\partial}{\partial \dot{q}^i}$$
 "first prolongation" of the infinitesimal generator

Noether Theorem. If and only if it exists a function g(t,q(t)) such that

$$X^{[1]}L + \dot{\xi}L = \dot{g},$$

then the one-parameter group of point transformations generated by X is a one-parameter group of Noether point symmetries for the dynamical system described by L.

The associated first integral of motion is:

$$I(t,q,\dot{q}) = \xi \left(\dot{q} \frac{\partial L}{\partial \dot{q}^i} - L \right) - \eta^i \frac{\partial L}{\partial \dot{q}^i} + g$$

The system contains the unknown function f(G), so that it can provide, in principle, an explicit form for f(G) related to the existence of symmetries

Noether Symmetry Approach

The recipe:

- 1. We consider a point-like Lagrangian
- 2. We write the ansatz for X ed $X^{[1]}$
- 3. We expand the Noether point symmetries existence condition

$$\mathbf{X}^{[1]}L + \dot{\xi}L = \dot{g}$$

to obtain a polynomial depending on $\xi(t,q)$, $\eta^i(t,q)$, $\dot{g}(t,q)$ and products of the Lagrangian velocities $(e,g,\dot{\eta}^i\,\dot{\eta}^j\,\dot{\xi}\,...)$

3. We obtain a system of PDEs for ξ , η^i , \dot{g}

The system contains the unknown function $f(G, \phi)$, so that it can provide, in principle, an explicit form for $f(G, \phi)$ related to the existence of symmetries

Noether symmetry approach to modified Gauss—Bonnet theory

$$ds^2 = dt^2 - a(t)^2 \delta_{ij} dx^i dx^j \longrightarrow \mathcal{G} = \frac{p(d) \left[(d-3)\dot{a}^4 + 4a\dot{a}^2 \ddot{a} \right]}{a^4} \quad \text{with} \quad p(d) = d(d-1)(d-2)$$

$$S = \int \sqrt{-g} f(\mathcal{G}) \ d^{d+1}x \longrightarrow S = 2\pi^2 \int \left[a^d f(\mathcal{G}) - \lambda \left\{ \mathcal{G} - \frac{p(d) \left[(d-3)\dot{a}^4 + 4a\dot{a}^2 \ddot{a} \right]}{a^4} \right\} + \mathcal{L}_m \right] d^{d+1}x$$
 Point-like Lagrangian
$$\mathcal{L} = \frac{1}{3} a^{d-4} \left[(3-d)p(d)\dot{a}^4 f_{\mathcal{G}}(\mathcal{G}) + 3a^4 [f(\mathcal{G}) - \mathcal{G}f_{\mathcal{G}}(\mathcal{G})] - 4ap(d)\dot{a}^3 \dot{\mathcal{G}}f_{\mathcal{G}\mathcal{G}}(\mathcal{G}) \right] + \mathcal{L}_m$$
 Symmetry generator
$$\mathcal{X} = \xi(a,\mathcal{G},t)\partial_t + \alpha(a,\mathcal{G},t)\partial_a + \beta(a,\mathcal{G},t)\partial_{\mathcal{G}}$$

$$\mathcal{X} = \xi(a,\mathcal{G},t)\partial_t + \alpha(a,\mathcal{G},t)\partial_a + \beta(a,\mathcal{G},t)\partial_{\mathcal{G}}$$

$$a(t) = a_0e^{qt}, \quad \mathcal{G}(t) = (d+1)p(d) q^4, \quad k = \frac{d+1}{4}$$

$$a(t) = a_0t^{-4} \frac{(k-1)(4k-1)}{4k-d-1}, \quad \mathcal{G}(t) = \frac{256 \left[(k-1) \left(4k-1 \right) \right]^3 \left[4 + (d+1)(4k-5) \right] p(d)}{((d+1)t-4kt)^4},$$

Cosmological applications

In four dimensions the Lagrangian becomes

$$\mathcal{L}^{(4)}=a^3[f(\mathcal{G})-\mathcal{G}f_{\mathcal{G}}(\mathcal{G})]-8\dot{a}^3f_{\mathcal{G}\mathcal{G}}(\mathcal{G})\dot{\mathcal{G}}+\rho_0a^{-3w}$$
 and yields
$$\begin{cases} a(t)=a_0t^{1-4k} & \mathcal{G}(t)=-96k(1-4k)^3t^{-4}\equiv\mathcal{G}_0t^{-4}\;, \quad w=0\\ \\ a(t)=e^{nt} & \mathcal{G}(t)=24m^4 \quad w=-1. \end{cases}$$

from which it is possible to distinguish the epochs crossed by the Universe

$$k = \frac{1}{8} \rightarrow a(t) \sim t^{\frac{1}{2}} \quad \mathcal{G} = -\frac{3}{2}t^{-4} \rightarrow \text{Radiation}$$

$$k = \frac{1}{6} \rightarrow a(t) \sim t^{\frac{1}{3}} \quad \mathcal{G} = -\frac{16}{27}t^{-4} \rightarrow \text{Stiff matter}$$

$$k = \frac{1}{12} \rightarrow a(t) \sim t^{\frac{2}{3}} \quad \mathcal{G} = -\frac{64}{27}t^{-4} \rightarrow \text{Dust matter}$$

To describe the early time evolution we need a quantum formalism

Matter Dominated Universe Radiation Dominated Universe

Applications to energy conditions

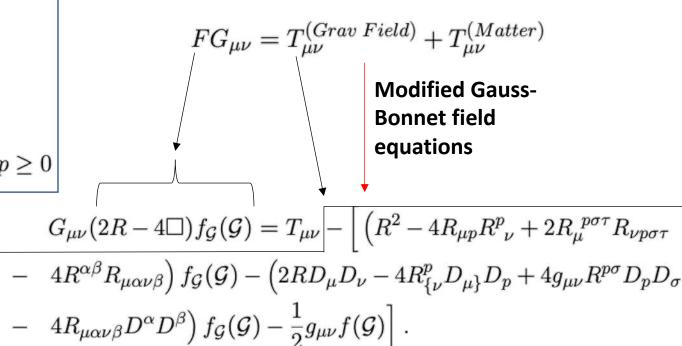
Null Energy Condition (NEC) $\rightarrow \rho + p \geq 0$

Weak Energy Condition (WEC) $\rightarrow \rho \geq 0$; $\rho + p \geq 0$

Dominant Energy Condition (DEC) $\rightarrow \rho - |p| \ge 0$

Strong Energy Condition (SEC) $\rightarrow \rho + p \ge 0$; $\rho + 3p \ge 0$

Modified gravity field equations



$$\begin{split} \rho^{(GF)} &= \frac{f_0}{2} \mathcal{G}^{k-3} \qquad \left[-24k(k-1)H^2 \left(\mathcal{G}\ddot{\mathcal{G}} + (k-2)\dot{\mathcal{G}}^2 \right) \right. \\ & \left. -72k\mathcal{G}^2 H^4 - 48k\mathcal{G}H^2 \left(2\mathcal{G}(\dot{H} + H^2) + (k-1)H\dot{\mathcal{G}} \right) + \mathcal{G}^3 \right] \\ p^{(GF)} &= \frac{f_0}{2} \mathcal{G}^{k-3} \qquad \left[16k(k-1)(\dot{H} + H^2) \left(\mathcal{G}\ddot{\mathcal{G}} + (k-2)\dot{\mathcal{G}}^2 \right) + 24k\mathcal{G}^2 H^4 \right. \\ & \left. + 16k\mathcal{G}(\dot{H} + H^2) \left(3\mathcal{G}(\dot{H} + H^2) + 2(k-1)H\dot{\mathcal{G}} \right) \right. \\ & \left. + 24k\mathcal{G}H^2 \left(4\mathcal{G}(\dot{H} + H^2) + (k-1)H\dot{\mathcal{G}} \right) - \mathcal{G}^3 \right], \end{split}$$

Energy density of the gravitational field for $f(\mathcal{G}) = f_0 \mathcal{G}^k$

Pressure of the gravitational field for $f(\mathcal{G}) = f_0 \mathcal{G}^k$

F. Bajardi. Eur.Phys. J. C 84 (2024) 12, 1298

With the help of cosmographic parameters

$$q = -1 - \frac{\dot{H}}{H^2} \quad j = 1 + \frac{\ddot{H} + 3\dot{H}H}{H^3}$$

$$s = 1 + \frac{\ddot{H} + 3\ddot{H}H + 3\dot{H}^2 + 6H^2\dot{H} + H\ddot{H}}{H^4}$$

The **EC** are satisfied for

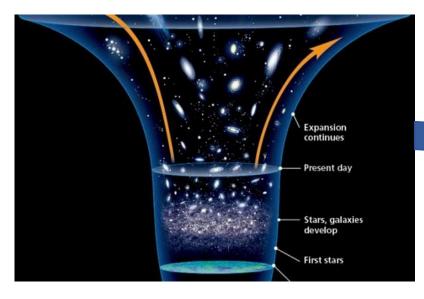
$$NEC \to 0 \le k \le 1.457 \lor k \ge 2.977$$

$$WEC \to 0.093 \le k \le 1.457 \lor k \ge 2.977$$

$$DEC \rightarrow 0.113 \le k \le 1.457 \lor k \ge 2.977$$

$$SEC \to 0 \le k \le 0.189$$
,

$$q = -0.81, j = 2.16, s = -0.22$$



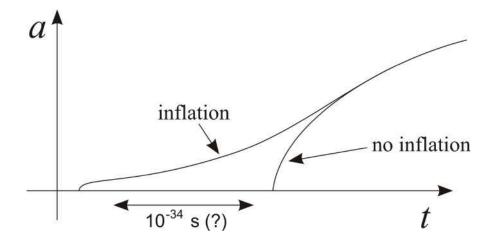
0.113 < k < 0.189

f(G) gravity can mimick dark energy

Slow-roll inflation: inflation is driven by a scalar field rolling down a potential energy hill. Inflation occurs as soon as the scalar field rolling is slow with respect to the Universe expansion.

Slow-Roll approximation

$$|\varepsilon| \equiv \left| -\frac{\dot{H}}{H^2} \right| \ll 1 \quad |\eta| \equiv \left| -\frac{\ddot{H}}{2H\dot{H}} \right| \ll 1$$



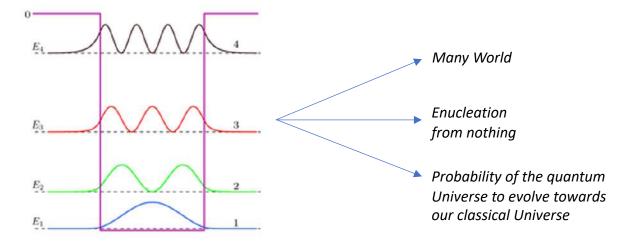
$$f(\mathcal{G})=f_0\mathcal{G}^k$$
 Thanks to the EC, it turns out that inflation in f(G) gravity is realized when $k\ll 0~\lor~k\gg \frac{1}{2}$

Application to Quantum Cosmology

Using canonical quantization rules

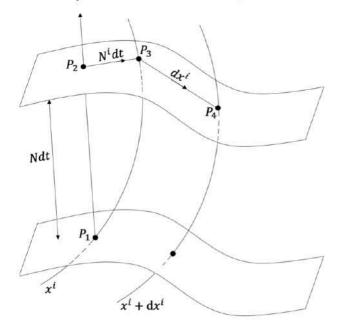
$$\begin{cases} [\hat{h}_{ij}(x), \hat{\pi}^{kl}(x')] = i \, \delta_{ij}^{kl} \, \delta^{3}(x - x') \\ \delta_{ij}^{kl} = \frac{1}{2} (\delta_{i}^{k} \delta_{j}^{l} + \delta_{i}^{l} \delta_{j}^{k}) \\ [\hat{h}_{ij}, \hat{h}_{kl}] = 0 \\ [\hat{\pi}^{ij}, \hat{\pi}^{kl}] = 0. \end{cases}$$

One gets a Schroedinger-like equation



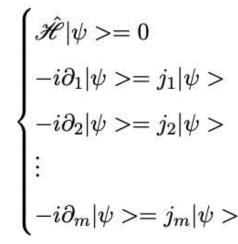
Quantum cosmology

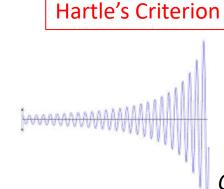
$$ds^2 = g_{\mu\nu}dX^{\mu}dX^{\nu} = -(N^2 - N_iN^i)dt^2 + 2N^idx_idt + h_{ij}dx^idx^j$$



$$\mathcal{H} = \int (\pi^{ij} \dot{h}_{ij} - \mathcal{L}) d^3x$$

$$\begin{cases} h_{ij} \to \hat{h}_{ij} \\ \pi \to \hat{\pi} = -i \frac{\delta}{\delta N_o} \\ \pi^i \to \hat{\pi}^i = -i \frac{\delta}{\delta N_i} \\ \pi^{ij} \to \hat{\pi}^{ij} = -i \frac{\delta}{\delta h_{ij}} \end{cases}$$
Noether symmetries





$$\hat{\mathcal{H}}_0|\psi>=0 \qquad |\psi>\sim e^{ij_kQ^k}$$

But it is not the probability amplitude

Oscillating wave function of the universe

Applications of f(G) gravity to quantum cosmology

By a Legendre transformation of the Lagrangian one gets:

$$\mathcal{H}=rac{f_0}{k}\mathcal{G}^ka^3+\pi_a\left(-rac{\pi_{\mathcal{G}}}{8f_0}\mathcal{G}^{2-k}
ight)^{rac{1}{3}}$$

$$\frac{\partial S}{\partial a} = \pi_a \quad \rightarrow \quad \mathcal{G}^k a^3 = 24 \mathcal{G}^{k-2} \dot{a}^3 \dot{\mathcal{G}}$$

$$\begin{cases} \pi_{\mathcal{G}} = -i\frac{\partial}{\partial \mathcal{G}} \\ \\ \pi_{a} = -i\frac{\partial}{\partial a} \\ \\ \mathcal{H}\psi = 0 \; . \end{cases}$$

$$i\frac{\partial}{\partial \mathcal{G}}\psi(a,\mathcal{G}) = 8f_0\Sigma_0\mathcal{G}^{4k-2}\psi(a,\mathcal{G})$$

The wave function can be recast as

$$\psi(a,\mathcal{G}) \sim e^{iS}$$

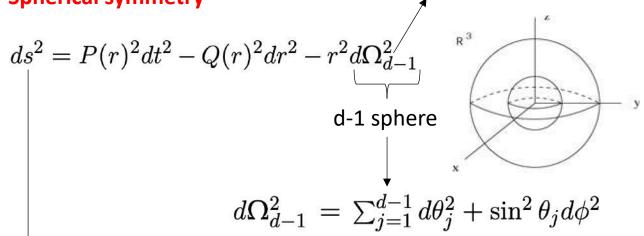
$$S = -\frac{f_0}{4k} (\Sigma_0)^{-\frac{1}{3}} a^4 + \frac{8f_0 \Sigma_0}{1 - 4k} \mathcal{G}^{4k-1}$$

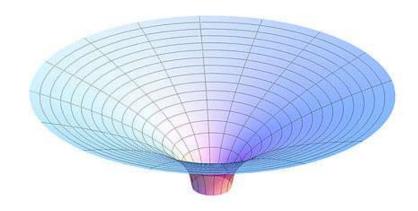
Hartle's criterion is recovered and classical trajectories are provided by Hamilton-Jacobi equations

$$\psi(a,\mathcal{G}) = \psi_0 \exp \left\{ i \left[-\frac{f_0}{4k} (\Sigma_0)^{-\frac{1}{3}} a^4 + \frac{8f_0 \Sigma_0 \mathcal{G}^{4k-1}}{1 - 4k} \right] \right\}$$

$$\frac{\partial S}{\partial a} = \pi_a \quad o \quad \mathcal{G}^k a^3 = 24 \mathcal{G}^{k-2} \dot{a}^3 \dot{\mathcal{G}}$$

Number of spatial dimensions





In this spacetime, the **GB** term can be written as:

$$\mathcal{G}^{(d+1)} = \frac{(d-2)(d-1)}{r^4 P Q^5} \qquad \left\{ (d-3)P \left(Q^2 - 1 \right) \left[(d-4)Q^3 - (d-4)Q + 4rQ' \right] \right.$$
$$\left. -4r \left[(d-3)Q^3 P' + rQ^3 P'' - (d-3)QP' - rQP'' \right.$$
$$\left. -rQ^2 P'Q' + 3rP'Q' \right] \right\},$$

Note that for d=3 it turns into a topological surface term, while for d<3 it vanishes

We assume the Birkhoff theorem to hold for this model

We start from

, d+1 dimensional representation of the GB term in spherical symmetry

$$\mathcal{S} = \int d^{d+1}x \ r^{d-1}PQ\left[f(\mathcal{G}) - \lambda\left(\mathcal{G} - \widetilde{\mathcal{G}}\right)\right]$$

The action can be varied with respect to G, in order to find out the Lagrange multiplier

$$\mathcal{L}(r, P, Q, \mathcal{G}) = r^{d-1}PQ \left[f - \mathcal{G}f_{\mathcal{G}} \right] + \frac{(d-1)(d-2)r^{d-5}(Q^{2}-1)}{Q^{4}} \left\{ (d-3)Pf_{\mathcal{G}} \left[(d-4)Q(Q^{2}-1) + 4rQ' \right] + 4r^{2}QP'\mathcal{G}'f_{\mathcal{G}\mathcal{G}} \right\}.$$

Imposing the symmetry existence condition

$$X^{[1]}\mathcal{L} + \partial_{\mu}\xi^{\mu}\mathcal{L} = \partial_{\mu}g^{\mu}$$

with generator

$$\mathcal{X} = \xi(r, \mathcal{G}, P, Q)\partial_r + \eta^{\mathcal{G}}(r, \mathcal{G}, P, Q)\partial_{\mathcal{G}} + \eta^{P}(r, \mathcal{G}, P, Q)\partial_P + \eta^{Q}(r, \mathcal{G}, P, Q)\partial_Q$$

The function and the symmetry generator can be selected

Results provided by the approach

$$f = f_0 \mathcal{G}^k$$

Once replaced into the field equations leads to

${f P(r)^2}$	${f Q(r)^2}$	d	k
$1 + e^{-2c_2}\sqrt{c_1 - 4r}r^{\frac{3}{2} - \frac{d}{2}}$	$1/P(r)^{2}$	$d \ge 3$	$k > 0, \neq 1$
$P_0^2 \left(1 - \frac{k_3}{r^{\frac{d}{2} - 2}} \right)$	$1/P(r)^{2}$	d > 3	k = 1
$1 \pm r^{2-\frac{d}{2}} \sqrt{\frac{4k_1d}{120\binom{d+1}{d-4}}} \pm r^2 \sqrt{\frac{\mathcal{G}_0(d-3)}{120\binom{d+1}{d-4}}}$	$1/P(r)^{2}$	d > 3	$k = \frac{d+1}{4}$
orall P(r)	$\frac{1}{3} \left(A(r) - e^{q_0} P'(r) + \frac{e^{2q_0}}{A(r)} P'(r)^2 \right)$	d=3	k > 0
$-\frac{1}{2}\exp\left[tanh^{-1}\left(\sqrt{\frac{\mathcal{G}_0}{30}}\frac{r^2}{2}\right)\right]\sqrt{4-\frac{\mathcal{G}_0r^4}{30}}$	$1 + \frac{\sqrt{\mathcal{G}_0}r^2}{2\sqrt{30}}$	d=4	k = 5/4
1	1	d=4	$\forall k$

Four-dimensional limit (d = 3)

Imposing d=3 and $Q(r) = P(r)^n$

The field equations folds into a single equation of the form

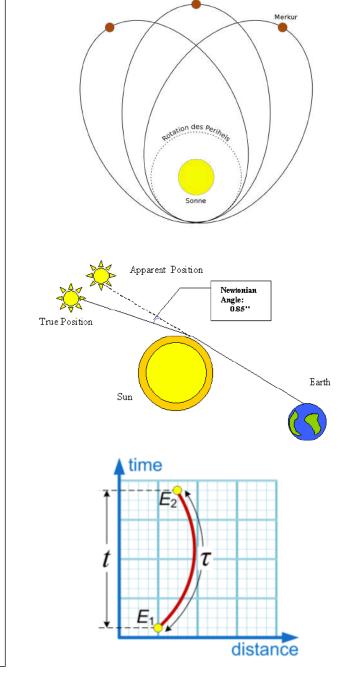
$$k(P^{2n} - 3)P'^2 - P(P^{2n} - 1)P'' = 0$$

Whose solution is

$$P(r)^{2} = -2c_{1} \left[(r + c_{2}) \left(\frac{6r}{M(r)} + 1 \right) \right] + \frac{3}{8} \left[\frac{M(r)^{2} + 9}{M(r)} + 3 \right]$$

with

$$M(r) = \sqrt[3]{128c_1^2r^2 + 16(16c_1c_2 - 9)c_1r + \frac{464\sqrt{c_1^3(c_2 + r)^3(4c_1r + 4c_2c_1 - 1)} + \frac{464\sqrt{c_1^3(c_1 + r)^3(4c_1r + 4c_2c_1r + 1)} + \frac{464\sqrt{c_1^3(c_1 + r)^3(4c_1r + 4c_1r + 1)} + \frac{464\sqrt{c_1^3(c_1 + r)^3(c_1r + 4c_1r + 1)} + \frac{464\sqrt{c_1^3(c_1 +$$



Further analysis is needed to check whether the theory passes at least all the solar system tests

3. Chern-Simons Theory

Basic foundations of Lovelock and Chern-Simons theories

Lovelock action

$$SO(1, D - 1)$$

$$S = \kappa \int_{\mathcal{M}} \sum_{i=0}^{\frac{D}{2}} \alpha_i \mathcal{L}^{(D,i)}$$

$$\mathcal{L}^{(D,i)} = \epsilon_{a_1,a_2...a_D} R^{a_1 a_2} \wedge R^{a_3 a_4} \wedge ... \wedge R^{a_{2i-1} a_{2i}} \wedge e^{a_{2i+1}} \wedge e^{a_{2i+2}} \wedge ... \wedge e^{a_D}$$

It is the most general action without torsion which leads to second-order field equations

The **GB** term naturally emerges

$$\mathcal{G} = \epsilon_{a_1, a_2, a_3, \dots, a_n} R^{a_1, a_2} \wedge R^{a_3, a_4} \wedge e^{a_5} \wedge \dots \wedge e^{a_n}$$

Four-dimensional limit

It follows that

$$S = \kappa \int \sqrt{-g} \left(\alpha_0 + \alpha_1 R + \alpha_2 \mathcal{G}\right) d^4 x$$

$$\mathcal{L}^{(4)} = \epsilon_{abcd} \left[\alpha_2 R^{ab} \wedge R^{cd} + \alpha_1 R^{ab} \wedge e^c \wedge e^d + \alpha_0 e^a \wedge e^a \wedge e^b \wedge e^c \wedge e^d\right]$$

Lovelock Theorem:

The H-E action is the most general four-dimensional action leading to second-order field equations

Chern-Simons theory

Starting from Lovelock action, it is possible to select the coefficients such that the resulting theory is invariant with respect to some gauge group

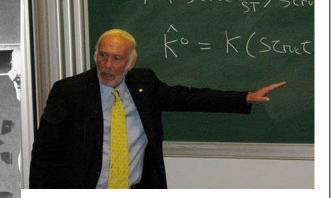
$$S = \kappa \int_{\mathcal{M}} \sum_{i=0}^{\frac{D}{2}} \alpha_i \mathcal{L}^{(D,i)}$$

Proceed by trial and error

Find a methodical procedure

- It fits the formalism of QFT
- It can be quantized
- It can be applied to SUGRA
- It can be renormalized
- AdS/CFT correspondence

All D-dimensional Lagrangians whose exterior derivative provides a topological surface term, are quasi gauge-invariant $E=d\mathcal{L}$.



Shiing-Shen Chern

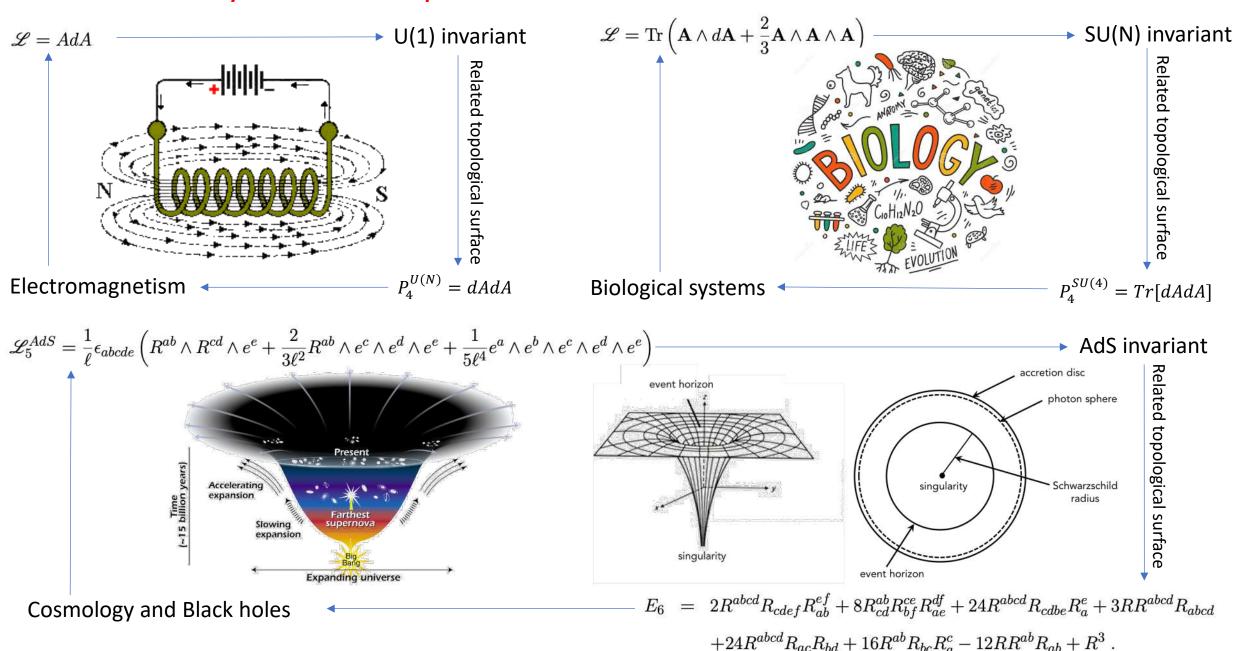
James Harris Simons

Chern-Simons Lagrangians

D=3 Chern-Simons Lagrangian	Top. Invariant(\mathcal{P})	Group
$L_3^{(A)dS} = \epsilon_{abc} (R^{ab} \pm \frac{e^a e^b}{3l^2}) e^c$	$E_4 = \epsilon_{abc} (R^{ab} \pm \frac{e^a e^b}{l^2}) T^c$	$SO(4)\dagger$
$L_3^{Lorentz} = \omega^a_b d\omega^b_a + \frac{2}{3} \omega^a_b \omega^b_c \omega^c_a$	$P_4^{Lorentz} = R^a_{\ b} R^b_{\ a}$	SO(2,1)
$L_3^{Torsion} = e^a T_a$	$N_4 = T^a T_a - e^a e^b R_{ab}$	SO(2,1)
$L_3^{U(1)} = AdA$	$P_4^{U(N)} = FF$	U(1)
$L_3^{SU(N)} = tr[\mathbf{A}d\mathbf{A} + \frac{2}{3}\mathbf{A}\mathbf{A}\mathbf{A}]$	$P_{4}^{SU(4)} = tr[FF]$	SU(N)

Examples of three-dimensional **CS** Lagrangians

Chern-Simons theory: three other examples



Cosmological applications

$$ds^{2} = dt^{2} - \frac{a(t)^{2}}{1 - kr^{2}}dr^{2} - r^{2}d\Omega_{d-1}^{2}$$
$$S = \kappa \int |e| \left[\alpha_{0} + \alpha_{1}\mathcal{R}^{(d+1)} + \alpha_{2}\mathcal{G}^{(d+1)}\right] d^{d+1}x$$

Starting line element and starting action

d+1 dimensional expression of scalar curvature and GB term

$$\mathcal{R}^{(d+1)} = -d \left[2\frac{\ddot{a}}{a} + (d-1) \left(\frac{\dot{a}^2 + k}{a^2} \right) \right]$$

$$\mathcal{G}^{(d+1)} = d(d-1)(d-2) \left[(d-3) \left(\frac{\dot{a}^4}{a^4} + 2k\frac{\dot{a}^2}{a^4} + \frac{k^2}{a^4} \right) + \frac{4}{3a^3} \frac{d}{dt} \left(\dot{a}^3 \right) + 4k\frac{\ddot{a}}{a^3} \right]$$

$$\mathcal{L} = \frac{r^{d-2}a^{d-4}}{3\sqrt{1-kr^2}} \qquad \left\{ 3a^2[a^2\alpha_0 + \alpha_1 d(d-1)(\dot{a}^2 - k)] - \alpha_2 d(d-1)(d-2)(d-3)(\dot{a}^4 + 6k\dot{a}^2 - 3k^2) \right\}$$

Cosmological Lagrangian

Case	α_0 α_1 α_2	k	Scale Factor	Dimension
Einstein-de Sitter	≠ 0 ≠ 0 0	≠ 0	$a(t) = \pm \sqrt{rac{lpha_1 k d(d-1)}{lpha_0 - lpha_0 \coth^2 \left[\sqrt{lpha_0} \left(c_1 + rac{t}{\sqrt{lpha_1 (d-1)d}} ight) ight]}$	Any
		0	$a(t)=a_0e^{\pm\sqrt{rac{lpha_0}{a_1a(d-1)}}t}$	
			$a(t)=a_0e^{\pm\sqrt{rac{lpha_0}{12a_1}}t}$	5
Pure Gauss-Bonnet	≠0 0 ≠0	0	$a(t) = a_0 \exp\left\{\pm \sqrt[4]{\frac{-\alpha_0}{d(d-1)(d-2)(d-3)\alpha_2}} t\right\} \ \ a(t) = b(t)$	Any
			$a(t) = a_0 \exp\left\{\pm\sqrt[4]{rac{-lpha_0}{24lpha_2}}t ight\}$	5
	0 0 ≠0	≠ 0	$a(t) = \sqrt{-k}t$	Any
		0	$a(t) \sim ext{Const.}$	
			$a(t) \sim ext{Const.}$	5
Lovelock	$\neq 0 \neq 0 \neq 0$	0	$a(t) = a_0 \exp\left\{\pm\sqrt{\frac{2\alpha_0}{\pm\sqrt{(d-1)d\left[\alpha_1^2(d-1)d - 4\alpha_0\alpha_2(d-3)(d-2)\right]} + \alpha_1d(d-1)}} t\right\}$	Any
			$a(t) = a_0 \exp\left\{\pm\sqrt{\frac{\alpha_0}{\pm 2\sqrt{9\alpha_1^2 - 6\alpha_0\alpha_2 + 6\alpha_1}}}t\right\}$	5
	0 \neq 0 \neq 0	≠ 0	$a(t) = \pm \sqrt{\frac{-\alpha_2 k(d-3)(d-2)}{\alpha_1}} \sinh \left[\sqrt{\alpha_1} \left(\frac{t}{\sqrt{\alpha_2(d-3)(d-2)}} + c_1 \right) \right]$	Any
		0	$a(t) = a_0 \exp \left\{ \pm \sqrt{rac{lpha_1}{lpha_2 \left(d-2 ight) \left(d-3 ight)}} t ight\}$	
			$a(t) = a_0 \exp\left\{\pm\sqrt{\frac{\alpha_1}{2\alpha_2}}t\right\}$	5
Chern-Simons	$\frac{1}{5l^4} \frac{2}{3l^2} 1$	0	$a(t)=a_0\exp\left\{\pmrac{1}{l}\sqrt{rac{1}{6}\left(1\pm\sqrt{rac{7}{10}} ight)}\;t ight\}$	

Spherical symmetry

$$ds^{2} = P(r)^{2}dt^{2} - Q(r)^{2}dr^{2} - r^{2}d\Omega_{d-1}^{2}$$
$$S = \kappa \int |e| \left[\alpha_{0} + \alpha_{1}\mathcal{R}^{(d+1)} + \alpha_{2}\mathcal{G}^{(d+1)} \right] d^{d+1}x$$

Starting line element and starting action

d+1 dimensional expression of scalar curvature and GB term

$$\mathcal{R}^{(d+1)} = \frac{2r\left\{Q\left[(d-1)P' + rP''\right] - rP'Q'\right\} + (1-d)P\left[(d-2)Q^3 + (2-d)Q + 2rQ'\right]}{r^2PQ^3}$$

$$\mathcal{G}^{(d+1)} = \frac{(d-2)(d-1)}{r^4 P Q^5} \qquad \left\{ (d-3)P \left(Q^2 - 1 \right) \left[(d-4)Q^3 - (d-4)Q + 4rQ' \right] -4r \left[(d-3)Q^3 P' + rQ^3 P'' - (d-3)QP' - rQP'' - rQP'' + 3rP'Q' \right] \right\},$$

$$\mathcal{L}^{(d+1)} = \frac{r^{d-5}P}{Q^4} \qquad \left\{ \alpha_0 r^4 Q^5 - \alpha_1 (d-1) r^2 Q^2 [(d-2)Q(Q^2-1) + 2rQ'] + \alpha_2 (d-3)(d-2)(d-1)(Q^2-1) [(d-4)Q(Q^2-1) + 4rQ'] \right\}$$

Spherically symmetric Lagrangian

F. Bajardi, D. Vernieri, S. Capozziello. JCAP 11 (2021), 057

	Case	α_0 α_1 α_2	$P(r)^2,~~Q^2(r)$	Dimension
	Einstein-de Sitter	≠ 0 ≠ 0 0	$P(r)^2 = 1/Q(r)^2 = 1 + \frac{c_1}{r^{d-2}} - \frac{\alpha_0}{\alpha_1 d(d-1)} r^2$	Any
			$P(r)^2 = 1/Q(r)^2 = 1 + rac{c_1}{r^2} - rac{lpha_0}{12lpha_1} r^2$	5
	Pure Gauss-Bonnet	≠0 0 ≠0	$P(r)^2 = 1/Q(r)^2 = 1 \pm \frac{1}{r^{d/2-2}} \sqrt{\frac{c_1}{6\alpha_2\binom{d-1}{d-4}} - r^d \frac{\alpha_0}{24\alpha_2\binom{d}{d-4}}}$	Any
			$P(r)^2 = 1/Q(r)^2 = 1 \pm \sqrt{1 + e_1 - \frac{\alpha_0}{24\alpha_2}r^4}$	5
			$P^{2}(r) = P_{0}^{2}\sqrt{48\alpha_{2}\left(2c_{1}+1\right)\mp4\sqrt{6}\sqrt{\alpha_{2}\left(24\alpha_{2}+96\alpha_{2}c_{1}-\alpha_{0}r^{4}\right)}-\alpha_{0}r^{4}} \qquad Q^{2}(r) = \frac{2\left(12\alpha_{2}\pm\sqrt{6}\sqrt{\alpha_{2}\left(24\alpha_{2}+96\alpha_{2}c_{1}-\alpha_{0}r^{4}\right)}\right)-\alpha_{0}r^{4}}{\alpha_{0}r^{4}-96\alpha_{2}c_{1}}$	
		0 0 ≠ 0	$P(r)^2 = 1/Q(r)^2 = 1 + \frac{c_1}{r_2^d - 2}$	Any
			Const.	5
	Lovelock	≠ 0 ≠ 0 ≠ 0	$P(r)^2 = 1/Q(r)^2 = 1 \pm \frac{1}{r^{d/2-2}} \sqrt{\frac{c_1}{6\alpha_2\binom{d-1}{(d-4)}}} + r^d \left(\frac{\alpha_1^2}{16\alpha_2^2\binom{d-2}{d-4}^2} - \frac{\alpha_0}{24\alpha_2\binom{d}{d-4}}\right) - \frac{\alpha_1}{4\alpha_2\binom{d-2}{d-4}} r^2$	Any
			$P(r)^2 = 1/Q(r)^2 = 1 - \frac{\alpha_1 r^2}{4\alpha_2} \pm \frac{\sqrt{3r^4 \left(3\alpha_1^2 - 2\alpha_0\alpha_2\right) + 6\alpha_2c_1}}{12\alpha_2}$	5
			$P(r)^2 = P_0^2 \sqrt{-4c_1 + \alpha_0 r^4 - 12\alpha_1 r^2} \left[\frac{3\sqrt{r^4 uw + 2ux} + \sqrt{3} \left(\alpha_0 x - r^2 w(-3\alpha_1 + z)\right)}{-6\alpha_1 + \alpha_0 r^2 + 2z} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\frac{6\alpha_1 - \alpha_0 r^2 + 2z}{3\sqrt{r^4 vw} + 2vx + \sqrt{3} \left(r^2 w(z + 3\alpha_1) + \alpha_0 x\right)} \right]^{y/2} \left[\alpha_1 - \alpha_1 r^2 + 2vx + \alpha_1 r^2 +$	
			$Q(r)^2 = \frac{-3\alpha_1 r^2 + 12\alpha_2 \pm \sqrt{3}\sqrt{8c_1\alpha_2 - 2a_0\alpha_2 r^4 + 3a_1^2 r^4 + 48\alpha_2^2}}{\frac{a_0}{2}r^4 - 6a_1r^2 - 2c_1}$	
		0 ≠ 0 ≠ 0	$P(r)^2 = 1/Q(r)^2 = 1 \pm \frac{1}{r^{d/2-2}} \sqrt{\frac{c_1}{6\alpha_2\binom{d-1}{d-1}} + \frac{\alpha_1^2}{16\alpha_2^2\binom{d-2}{d-2}^2} r^d} - \frac{\alpha_1}{4\alpha_2\binom{d-2}{d-4}} r^2$	Any
			$P(r)^2 = 1/Q(r)^2 = 1 - \frac{\alpha_1 r^2}{4\alpha_2} \pm \frac{\sqrt{9\alpha_1^2 r^4 + 6\alpha_2 c_1}}{12\alpha_2}$	5
			$P(r)^2 = P_0^2 \left(2c_1 + \alpha_1 r^2\right) \sqrt{\frac{\sqrt{16\alpha_2(\alpha_2 + c_1) + \alpha_1^2 r^4 + \alpha_1 r^2}}{8\alpha_2^2 + 2\alpha_2 \left(\sqrt{16\alpha_2(\alpha_2 + c_1) + \alpha_1^2 r^4 + 4c_1}\right) + c_1 \left(\sqrt{16\alpha_2(\alpha_2 + c_1) + \alpha_1^2 r^2 - \alpha_1 r^2}\right)}},$	
			$Q(r)^2 = rac{-4lpha_2 - \sqrt{16lpha_2(lpha_2 + c_1) + lpha_1^2r^4 + lpha_1r^2}}{4c_1 + 2lpha_1r^2}$	
			$P(r)^2 = P_0^2 \sqrt{\frac{8\alpha_2^2 + 2\alpha_2\left(\sqrt{16\alpha_2(\alpha_2 + c_1) + \alpha_1^2r^4} + 4c_1\right) + c_1\left(\sqrt{16\alpha_2(\alpha_2 + c_1) + \alpha_1^2r^4} - \alpha_1r^2\right)}{\sqrt{16\alpha_2(\alpha_2 + c_1) + \alpha_1^2r^4} + \alpha_1r^2}$	
			$Q(r)^2 = \frac{-4\alpha_2 + \sqrt{16\alpha_2(\alpha_2 + c_1) + \alpha_1^2 r^4} + \alpha_1 r^2}{4c_1 + 2\alpha_1 r^2}$	
	Chern-Simons	$\frac{1}{5l^4} \frac{2}{3l^2} = 1$	$P(r)^2 = 1/Q(r)^2 = 1 - \frac{r^2}{6l^2} \pm \sqrt{\frac{7r^4}{360l^4} + \frac{c_1}{24}}$	
			$P(r)^{2} = P_{0}^{2} \sqrt{-4c_{1} + \frac{r^{4}}{5l^{4}} - \frac{8r^{2}}{l^{2}}} \left[\frac{\sqrt{3} \left(\frac{x}{5l^{4}} - r^{2}w \left(-\frac{2}{l^{2}} + z \right) \right) + 3\sqrt{u} \left(r^{4}w + 2x \right)}}{\frac{r^{2}}{5l^{2}} - \frac{4}{l^{2}} + 2z} \right]^{s/2} \left[\frac{-\frac{r^{2}}{5l^{4}} + \frac{4}{l^{2}} + 2z}{\sqrt{3} \left(\frac{x}{5l^{2}} + r^{2}w \left(z + \frac{2}{l^{2}} \right) \right) + 3\sqrt{v} \left(r^{4}w + 2x \right)}} \right]^{s/2} \left[\frac{r^{2}}{\sqrt{3} \left(\frac{x}{5l^{2}} + r^{2}w \left(z + \frac{2}{l^{2}} \right) \right) + 3\sqrt{v} \left(r^{4}w + 2x \right)}} \right]^{s/2} \left[\frac{r^{2}}{\sqrt{3} \left(\frac{x}{5l^{2}} + r^{2}w \left(z + \frac{2}{l^{2}} \right) \right) + 3\sqrt{v} \left(r^{4}w + 2x \right)}} \right]^{s/2} \left[\frac{r^{2}}{\sqrt{3} \left(\frac{x}{5l^{2}} + r^{2}w \left(z + \frac{2}{l^{2}} \right) \right) + 3\sqrt{v} \left(r^{4}w + 2x \right)}} \right]^{s/2} \left[\frac{r^{2}}{\sqrt{3} \left(\frac{x}{5l^{2}} + r^{2}w \left(z + \frac{2}{l^{2}} \right) \right) + 3\sqrt{v} \left(r^{4}w + 2x \right)}} \right]^{s/2} \left[\frac{r^{2}}{\sqrt{3} \left(\frac{x}{5l^{2}} + r^{2}w \left(z + \frac{2}{l^{2}} \right) \right) + 3\sqrt{v} \left(r^{4}w + 2x \right)}} \right]^{s/2} \left[\frac{r^{2}}{\sqrt{3} \left(\frac{x}{5l^{2}} + r^{2}w \left(z + \frac{2}{l^{2}} \right) \right) + 3\sqrt{v} \left(r^{4}w + 2x \right)}} \right]^{s/2} \left[\frac{r^{2}}{\sqrt{3} \left(\frac{x}{5l^{2}} + r^{2}w \left(z + \frac{2}{l^{2}} \right) \right) + 3\sqrt{v} \left(r^{4}w + 2x \right)}} \right]^{s/2} \left[\frac{r^{2}}{\sqrt{3} \left(\frac{x}{5l^{2}} + r^{2}w \left(z + \frac{2}{l^{2}} \right) \right) + 3\sqrt{v} \left(r^{4}w + 2x \right)}} \right]^{s/2} \left[\frac{r^{2}}{\sqrt{3} \left(\frac{x}{5l^{2}} + r^{2}w \left(z + \frac{2}{l^{2}} \right) \right) + 3\sqrt{v} \left(r^{4}w + 2x \right)}} \right]^{s/2} \left[\frac{r^{2}}{\sqrt{3} \left(\frac{x}{5l^{2}} + r^{2}w \left(z + \frac{2}{l^{2}} \right) \right) + 3\sqrt{v} \left(r^{4}w + 2x \right)}} \right]^{s/2} \left[\frac{r^{2}}{\sqrt{3} \left(\frac{x}{5l^{2}} + r^{2}w \left(z + \frac{2}{l^{2}} \right) \right) + 3\sqrt{v} \left(r^{4}w + 2x \right)} \right]^{s/2} \left[\frac{r^{2}}{\sqrt{3} \left(\frac{x}{5l^{2}} + r^{2}w \left(z + \frac{2}{l^{2}} \right) \right]^{s/2}} \right]^{s/2} \left[\frac{r^{2}}{\sqrt{3} \left(\frac{x}{5l^{2}} + r^{2}w \left(z + \frac{2}{l^{2}} \right) \right) + \sqrt{v} \left(r^{2}w + r^{2}w \left(z + \frac{2}{l^{2}} \right) \right) + \sqrt{v} \left(r^{2}w + r^{2}w \left(z + \frac{2}{l^{2}} \right) \right]^{s/2}} \right]^{s/2} \left[\frac{r^{2}}{\sqrt{3} \left(\frac{x}{5l^{2}} + r^{2}w \left(z + \frac{2}{l^{2}} \right) \right) + \sqrt{v} \left(r^{2}w \left(z + \frac{2}{l^{2}} + r^{2} \right) \right]^{s/2}} \right]^{s/2}} \right]$	
1 25			$Q(r)^2 = \frac{\sqrt{24c_1 + \frac{14c^2}{9c^4} + 144 - \frac{2c^2}{9c^4} + 12}}{-2c_1 + \frac{c^2}{10c^2} - \frac{4c^2}{l^2}}$	

Classical electromagnetism

In coordinates representation

$$S = \int \mathbf{A} d\mathbf{A} = \int (\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}) A_{p} \ dx^{\mu} \wedge dx^{\nu} \wedge dx^{p} = \int \epsilon^{\mu\nu p} F_{\mu\nu} A_{p} \ d^{3}x$$

$$Can \ be \ added \ to$$

$$the \ free \ EM$$

$$Lagrangian$$

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \frac{1}{2}m\,\epsilon^{\mu\nu p}F_{\mu\nu}A_p$$

By varying with respect to the gauge connection

$$(\Box + m^2) \left(\epsilon_{\alpha\beta\tau} F^{\alpha\beta} \right) = 0$$
 Massive wave equations — Massive photons

Klein-Gordon equation for the vector field $\epsilon_{\alpha\beta\tau}F^{\alpha\beta}$

Proca wave equation: $(\Box + m^2)A^{\beta} = 0$ Breaks U(1) invariance

Chern-Simons wave equation: $(\Box + m^2) \left(\epsilon_{\alpha\beta\tau} F^{\alpha\beta} \right) = 0$ \longrightarrow U(1) invariant, but not conformally invariant

Special relativity is preserved

4. Gauss-Bonnet Invariant emerging from symmetry

Starting from a general fourth-order Lagrangian

$$\mathcal{L} = \sqrt{-g} \left(\alpha_1 R^2 + \alpha_2 R^{\mu\nu} R_{\mu\nu} + \alpha_3 R^{\mu\nu\rho\sigma} R_{\mu\nu\rho\sigma} \right)$$

The goal is to select **coefficients** by symmetry arguments

To this end, we focus on a general spherically-symmetric-like background

$$ds^{2} = P(r)^{2}dt^{2} - Q(r)^{2}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

And use Lagrange multiplier to find the point-like Lagrangian

$$\mathcal{L} = \frac{1}{r^{2}PQ^{5}} \quad \left(\alpha_{2} \left\{ 2 \left[rQP' - P \left(rQ' + Q^{3} - Q \right) \right]^{2} + r^{2} \left(-rQP'' + rP'Q' + 2PQ' \right)^{2} + r^{2} \left[rP'Q' - Q \left(rP'' + 2P' \right) \right]^{2} \right\}$$

$$+4\alpha_{3} \left\{ r^{4}P'^{2}Q'^{2} - 2r^{4}QP'P''Q' + Q^{2} \left(r^{4}P''^{2} + 2r^{2}P'^{2} \right) + P^{2} \left(2r^{2}Q'^{2} + Q^{6} - 2Q^{4} + Q^{2} \right) \right\}$$

$$+4\alpha_{1} \left\{ r \left[rP'Q' - Q \left(rP'' + 2P' \right) \right] + P \left(2rQ' + Q^{3} - Q \right) \right\}^{2} \right),$$

We then apply the Noether symmetry existence condition in the minisuperspace

$$X^{[1]}\mathcal{L} + \partial_{\mu}\xi^{\mu}\mathcal{L} = \partial_{\mu}g^{\mu}$$

$$\eta^i = \{\alpha(P,Q,r), \beta(P,Q,r)\}$$

$$\begin{array}{ll} a: & 4r(4\alpha_1+\alpha_2)(Q^2-1)\left(Q\frac{\partial\alpha}{\partial r}-P\frac{\partial\beta}{\partial r}\right)-2(2\alpha_1+\alpha_2+2\alpha_3)\left[Q\left(Q^2-1\right)^2\left(\alpha+P\frac{\partial\xi}{\partial r}\right)+\beta P\left(Q^4+2Q^2-3\right)\right] \\ & +r^2Q^4\frac{\partial g}{\partial r}=0 \\ b: & (2\alpha_1+\alpha_2+2\alpha_3)\left[3\beta P+Q\left(\alpha-P\frac{\partial\xi}{\partial r}\right)\right]=0 \\ c: & r(4\alpha_1+\alpha_2)\left(Q\frac{\partial\alpha}{\partial r}-P\frac{\partial\beta}{\partial r}\right)+2\alpha_1P\left[\beta(Q^2-3)-Q(Q^2-1)\frac{\partial\xi}{\partial r}\right]=0 \\ d: & (2\alpha_1+\alpha_2+2\alpha_3)\frac{\partial\alpha}{\partial Q}=0 \\ e: & 2r(4\alpha_1+\alpha_2)Q\frac{\partial\alpha}{\partial r}-2Q^2\left(10\alpha_1+\alpha_2-2\alpha_1Q^2\right)\frac{\partial\alpha}{\partial Q}-\left(8\alpha_1+3\alpha_2+4\alpha_3\right)\left[5\beta P-Q\left(\alpha-P\frac{\partial\xi}{\partial r}+2P\frac{\partial\beta}{\partial Q}\right)\right]=0 \\ f: & r(2\alpha_1+\alpha_2+2\alpha_3)\frac{\partial\alpha}{\partial Q}-2(4\alpha_1+\alpha_2)P\frac{\partial\xi}{\partial Q}=0 \\ g: & (2\alpha_1+\alpha_2+2\alpha_3)\frac{\partial\xi}{\partial Q}=0 \\ h: & 2r(4\alpha_1+\alpha_2)\frac{\partial\alpha}{\partial Q}-\left(8\alpha_1+3\alpha_2+4\alpha_3\right)P\frac{\partial\xi}{\partial Q}=0 \\ i: & r(2\alpha_1+\alpha_2+2\alpha_3)\frac{\partial\xi}{\partial Q}-\left(8\alpha_1+3\alpha_2+4\alpha_3\right)P\frac{\partial\xi}{\partial Q}=0 \\ i: & r(2\alpha_1+\alpha_2+2\alpha_3)Q\frac{\partial\alpha}{\partial r}-\left(4\alpha_1+\alpha_2\right)\left[\frac{\partial\beta}{\partial Q}+2Q\left(\frac{\partial\alpha}{\partial Q}-P\frac{\partial\beta}{\partial Q}\right)\right]+2\alpha_3PQ^2(-1+Q^2)\frac{\partial\xi}{\partial Q}=0 \\ j: & 4r^2(8\alpha_1+3\alpha_2+4\alpha_3)P\frac{\partial\beta}{\partial r}-r^2Q^3\frac{\partial\beta}{\partial Q}+2(2\alpha_1+\alpha_2+2\alpha_3)PQ^2(-1+Q^2)^2\frac{\partial\xi}{\partial Q}\\ & +4r(4\alpha_1+\alpha_2)\left(-2\beta P(-2+Q^2)+Q(-1+Q^2)\left(\alpha-Q\frac{\partial\alpha}{\partial Q}+P\frac{\partial\beta}{\partial Q}\right)\right)-4r^2Q(10\alpha_1+\alpha_2-2\alpha_1Q^2)\frac{\partial\alpha}{\partial r}=0 \\ k: & 4\beta P(10\alpha_1+\alpha_2-\alpha_1Q^2)+2(4\alpha_1+\alpha_2)r\left(-Q\frac{\partial\alpha}{\partial r}+P\frac{\partial\beta}{\partial r}\right)+PQ(10\alpha_1+\alpha_2-2\alpha_1Q^2)\left(\frac{\partial\xi}{\partial r}-\frac{\partial\beta}{\partial Q}-\frac{\partial\alpha}{\partial r}\right)\\ & +(8\alpha_1+3\alpha_2+4\alpha_3)\left(Q^2\frac{\partial\alpha}{\partial r}+P^2\frac{\partial\beta}{\partial P}\right)=0 \\ l: & 2r(4\alpha_1+\alpha_2)P\frac{\partial\beta}{\partial r}+(8\alpha_1+3\alpha_2+4\alpha_3)\left[3\beta P+Q\left(\alpha+P\frac{\partial\xi}{\partial r}-2P\frac{\partial\alpha}{\partial P}\right)\right]+2P^2(10\alpha_1+\alpha_2-2\alpha_1Q^2)\frac{\partial\beta}{\partial P}=0 \\ m: & r(2\alpha_1+\alpha_2+2\alpha_3)\left\{5\beta P+Q\left[\alpha+P\left(3\frac{\partial\xi}{\partial r}-2\frac{\partial\beta}{\partial Q}-2\frac{\partial\alpha}{\partial Q}\right)\right]\right\}+4(4\alpha_1+\alpha_2)PQ\left(-Q\frac{\partial\xi}{\partial Q}+P\frac{\partial\xi}{\partial P}\right)=0 \\ n: & (2\alpha_1+\alpha_2+2\alpha_3)\frac{\partial\xi}{\partial P}=0 \\ o: & 2r^2(2\alpha_1+\alpha_2+2\alpha_3)\frac{\partial\xi}{\partial P}=0 \\ n: & (2\alpha_1+\alpha_2+2\alpha_3)\frac{\partial\xi}{\partial P}+2(2\alpha_1+\alpha_2)Q\frac{\partial\xi}{\partial P}=0 \\ n: & (2\alpha_1+\alpha_2+2\alpha_3)\frac{\partial\xi}{\partial P}=0 \\ n: & (2\alpha_1+\alpha_2+2\alpha_3)\frac{\partial\xi}{\partial P}+2(2\alpha_1+\alpha_2)Q\frac{\partial\xi}{\partial P}=0 \\$$

Whose only solution is

$$\underline{\xi = \xi_0 + \xi_1 r}, \quad \alpha = 2\xi_1 P + k_1 r + k_2, \quad \beta = \frac{\xi_1 Q(Q^2 - 1)}{(Q^2 - 3)}, \quad g = \frac{8k_1 \alpha_3 (1 - Q^2)}{Q^3} + g_2$$

with

$$2\alpha_1 + \alpha_2 + 2\alpha_3 = 0$$

$$\alpha_1 - \alpha_3 = 0.$$

$$\mathcal{L} = \sqrt{-g} \,\alpha_3 \left(R^2 - 4R^{\mu\nu} R_{\mu\nu} + R^{\mu\nu\rho\sigma} R_{\mu\nu\rho\sigma} \right) = \sqrt{-g} \,\alpha_3 \mathcal{G}.$$

The Gauss-Bonnet term is the only quadratic term containing symmetries

This is interesting in view of investigating the power of symmetries in gravity models

Example:
$$S = \kappa \int \sqrt{-g} \left(\alpha_0 + \alpha_1 R + \alpha_2 \mathcal{G} \right) d^4 x$$

$$\mathcal{L}^{(4)} = \epsilon_{abcd} \left[\alpha_2 R^{ab} \wedge R^{cd} + \alpha_1 R^{ab} \wedge e^c \wedge e^d + \alpha_0 e^a \wedge e^a \wedge e^b \wedge e^c \wedge e^d \right]$$

5. Conclusions and Perspectives

Conclusions and perspectives: Gauss-Bonnet

We considered:

- Cosmology and applications (EC, exact solutions)
- Spherical symmetry (Black hole solutions)

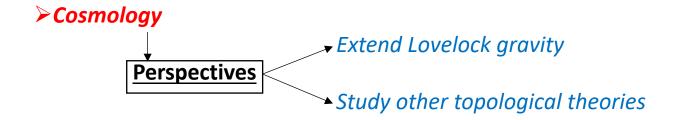
$$S = \int \sqrt{-g} f(\mathcal{G}) \ d^{d+1}x$$

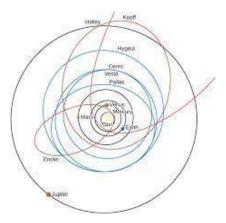
Future perspectives:

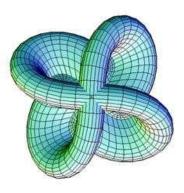
- Consider different backgrounds
- Constraining the free parameters by experiments
- > Study the four-dimensional limit of the spherically symmetric solution via PPN formalism
- Consider other modifications including other topological surfaces (Pontrjagin scalar, Kretschmann scalar)

Conclusions and perspectives: Chern-Simons

Application of **Chern-Simons Gravity** to:







Thank you for your attention ?

