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THE EQUIVALENCE PRINCIPLE (1)

Einstein formulation of the Equivalence Principle:

“ There then occurred to me the
[Happiest thought of my life]

in the following form.

The gravitational field has only a relative
existence...Because for an from the roof of a
house there exists, at least in his immediate surroundings, no
gravitational field. Indeed, if the observer drops some bodies then
these remain relative to him in a state of rest or uniform motion,
independent of their particular chemical or physical nature.

The observer has the right to interpret his state as ‘at rest’ ”.

(A. Einstein, as quoted in Pais, Subtle is the Lord: The Science and the Life of
Albert Einstein, (1982))



THE EQUIVALENCE PRINCIPLE (2)

“For an observer falling freely from the roof of a house there exists,
at least in his immediate surroundings, no gravitational field.”

l

This describes a local inertial frame in free fall, where the effects of
gravity are not felt: objects appear to float or move uniformly

: Let gaﬂ(x) be the metric tensor in one coordinate system.

At each point P of the spacetime it is possible to introduce
new coordinates x “ such that:

g/, 5 Local Inertial Frame




THE EQUIVALENCE PRINCIPLE (3)

Different formulations of Equivalence Principle (EP):

-Newtonian EP: equality of inertial and gravitational mass
(universality of free fall)

- EP: All test bodies, regardless of their composition or internal
structure, fall with the same acceleration in a given gravitational field

-Einstein EP: In a small enough region of spacetime, the laws of
physics reduce to those of special relativity for a freely falling
observer

-Strong EP: The outcome of any local experiment (gravitational or
non-gravitational) is independent of the velocity of the free-falling
apparatus and its location in spacetime (extends the Einstein EP by
including gravitational experiments)



METRIC-AFFINE GEOMETRY (1)

Metric-affine geometry (MAG) extends the Riemannian structure
of GR by relaxing the metric-compatibility constraint and allowing
the affine connection and the metric to be treated
as independent variables
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METRIC-AFFINE GEOMETRY (2
Key features of MAG:

1. Lengths and angles are not preserved during the parallel transport
of vectors

Consider the tangent vector (four-velocity) X" := dx"/ds along an autoparallel
curve, where iV ,x# = 0. The norm of X* is not conserved
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Even If one considers two vectors parallelly transported
along a curve, their scalar product is not conserved
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Vectors cannot be normalized globally




METRIC-AFFINE GEOMETRY (3)

2. Autoparallels and geodesics no longer coincide

The tangent vector to the curve x*(s) is
parallelly transported along the curve

Extremal curve (shortest or longest lines);
Geodesic curve curve which is of extremal length with
respect to the metric of the manifold
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METRIC-AFFINE GEOMETRY (4)

3. Nonvanishing acceleration even along autoparallels
(anomalous acceleration)

Two independent types of acceleration can be defined

Proper acceleration AH = 3V A
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Anomalous acceleration a, = XV PR
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In MAG, autoparallels, i.e., curves for which A# = 0, have in general a
, Which is represented by the anomalous term "




METRIC-AFFINE GEOMETRY (5)

Additional key difference with
respect to Riemannian geometry:
both anomalous and proper accelerations
are not orthogonal to the four-velocity
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FINITE-TEMPERATURE GRAVITY (1)

- [In its standard formulation, GR does not account for temperature

Matter no longer exists in vacuum but interacts
- T#0 > with a , typically modeled as a background

of photons or other relativistic particles

\4

EP violations are expected to arise
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Let us introduce a set of tetrad fields {eﬂa} (witha =0,1,2,3
anholonomic Lorentz index) spanning the local Minkowski tangent
space at each point of the spacetime manifold.

In this framework, 66” picks out the heat-bath rest frame



FINITE-TEMPERATURE GRAVITY (2)

We adopt a context where Hiemannian geometry is valid

G — srem & & — 0

Ordinary Einstein equations Contracted Bianchi identities

We can describe the motion of a test particle
in thermal equilibrium with a photon heat bath
starting from the conservation law:

V,0" =0




FINITE-TEMPERATURE GRAVITY (3)

) '] 2 A A ®"*: generalized energy-momentum
1% 1% p v 00
o — = a0 ¢ ¢ | tensor describing the effective source
3 2 00 of gravity at finite temperature

TH*: Standard energy-momentum
tensor associated with

the
9 Generalized my: particle mass at 7' =0
D — m% + ‘ mQ + —an? [ |dispersion relation p: momentum three-vector
3 a: fine-structure constant

®**characterizes a matter distribution coupled to gravity in a generally
covariant but not locally Lorentz-invariant way: it transforms as a
tensor under diffeomorphisms, but is does not transform as a scalar

under local Lorentz transformations




FINITE-TEMPERATURE GRAVITY (4)

Modified worldline equation for the test particle
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Deviation from geodesic motion that indicates
a breakdown of the universality of free fall

The presence of the introduces a preferred frame (i.e., the frame
where the heat bath is at rest) that breaks explicitly the Loreniz
invariance of the finite-temperature vacuum.

The lack of Lorentz invariance of the finite-temperature vacuum gives rise to a gravity
model in which in the tangent space spanned by the
tetrad field, while general covariance remains intact on the spacetime manifold




FINITE-TEMPERATURE GRAVITY (S5)

Application: test particle in Schwarzschild
background sourced by a mass M
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2M 2M
ds* = — <1 — —> di* + <1 — —> dr* + r* (d6* + sin® 6 d¢p*)
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FINITE-TEMPERATURE GRAVITY (6)

By employing the weak-field approximation, one obtains
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M
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EP VIOLATION IN MAG (1)

Consider a MAG with

- - i )
< Vanishing torsion tensor 1 u

Nonvanishing non-metricity tensor Qﬂm

Spherically symmetric and static geometry
|
ds?> = — A(r)dt? B )dr2 r* (do* + sin* 0 d¢p*)
r
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Q* .= ghQ* » Weyl vector




EP VIOLATION IN MAG (2)

Weak-field-slow-motion regime
|

Real gravitational field sourced by some mass M

|

The metric g is and when r — oo we have
M
A=1+20, B~ =1-20, D =-—
r

Newtonian potential

We further suppose that

Q'=yo




EP VIOLATION IN MAG (3)

The dynamics of the test particle is ruled by

M
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The resemblance between the two sets of equations is remarkable




CONCLUSIONS

-EP violations naturally emerge In finite-temperature gravity

-We have shown that these violations can be described within the

context of MAG

» Non-metricity & Lorentz symmetry breaking (formal analogy)

» Future goal: Providing a of EP
violations in MAG

...5tay tuned!



