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Astrometry is the ancient 
branch of Astronomy 
d e d i c a t e d t o t h e 
fundamental question: 
What is our place in the 
Universe?

-> measurements of the 
star positions and their 
m o v e m e n t s i n t h e 
Universe.

It acquires knowledge 
through the analysis of 
photons received over 
time from all sorts of 
celestial sources at the 
observer location. 

What is Astrometry
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Gaia measures at L2 of the Earth-Sun system  
position (direction and distance) and velocity  
of almost  2  billion objects with an accuracy  

of up to 1 microarcsecond 

ESA mission launched in 2013, nominal lifetime 5 years, extended up to 2025 

0”,000001 = micro(µ) arc sec

2FOV
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The location of an object in astrometry is 
considered reliable if its relative error is less 10%

parallax π(arcsec) ≈ 1(UA)/d*(pc)

π ≈ σπ ⋅ 10

Gaia

Hipparcos σπ = 1 mas = 10−3arcsec

σπ = 10 μas = 10−5arcsec

π ≈ 10−2arsec π ≈ 10−4arsec
d* = 100 pc

solar neighoborhood

d*= 10 kpc

Galactic scale!
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end-of-mission astrometric 
accuracies better than 5-10μas 

(brighter stars)  
130-600μas (faint targets)

spectral classification

photometric distances


brightness

temperature


mass

age


chemical composition

radial velocity

chemical abundances

positions  
proper motions 
parallaxes

G < 20.7 mag

G_RVS= 16.2  


Astrometry

Spectrometry

Photometry

total brightness and colour of stars observed by ESA's Gaia satellite 

total density of stars observed by ESA's Gaia satellite

7

Science with one/two billion objects in 3D,  
from structure and evolution of the Milky Way to GR tests Crosta - LNGS- 10 Ottobre



Gaia’s first look into the Milky Way, DR1

observations collected during the first 14 months of Gaia's routine operational phase

http://www.cosmos.esa.int/web/gaia/science
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Hipparcos HRD (105 stars to 0.1 kpc)
(5 106 stars  to 1.5 kpc)

(GDR2)

  THE HERTZSPRUNG-RUSSELL DIAGRAM
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https://www.esa.int/Science_Exploration/Space_Science/Gaia

Stellar density from the full Gaia DR3
 based on data collected between 25 July 2014 and 28 May 2017, spanning a period of 34 months

Source count maps based on the Gaia DR3 data.
Image credit: ESA/Gaia/DPAC
Image license: CC BY-SA 3.0 IGO

Acknowledgement: Images were created by André Moitinho and Márcia Barros, University of Lisbon, 
Portugal
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Credit: ESA/Gaia/
DPAC, CC BY-SA 
3.0 IGO.
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 Gaia Data Release 3
https://www.cosmos.esa.int/web/gaia/data-release-3

Next Gaia DR4 (based on 66 months of data) 
by the end of 2026 will be consisting of: 

Full astrometric, photometric, and radial-velocity 
catalogues 
All available variable-star and non-single-star solutions 
Source classifications (probabilities) plus multiple 
astrophysical parameters (derived from BP/RP, RVS, and 
astrometry) for stars, unresolved binaries, galaxies, and 
quasars 
An exoplanet list 
All epoch and transit data for all sources! 
Gaia DR5 (based on all mission data) not 

before the end of 2030 will be consisting of 
Complete Gaia Legacy Archive of all data 

Data Release Scenario  http://www.cosmos.esa.int/web/gaia/release
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Challenge to Einstein's theory  and the standard cosmological model

☼
< 70 UA

 < 650 ly

Distance from the Sun 

<33,000 ly

The structure of the halo

Beyond General Relativity

Gradients of cosmological origin in the 
thick disk

Cosmology at zero redshift 

Comparison of simulations (L) CDM on the 
scale of the Milky Way with the data of Gaia

Distance scale

High accurate calibration for all spectral 
classes the most important of the HR 
diagram; tens thousands of brown and white 
dwarfs 

The structure of the haloThe structure of the halo
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Testing light bending properties of matter

2,000 fully reconstructed systems (orbits and masses) 
around FGK stars; expected new planets around M dwarfs

✓GR tests from Solar System to Milky Way scales

The origin of the MW rotation curve

From Relativistic Astrometry to Gravitational Astrometry:  
data interpretation, the impact of GR models for Fundamental Physics/ Local Cosmology

Gravitational waves
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theoretical, analytical and/or numerical models, completely based on General 
Relativity and relativistic attitude (satellite or ground based observers) 

Stars belong to the architecture of spacetime which is dictated by the Einstein equations  

 Classical Astrometry 

Relativistic Astrometry

α,δ,µα,µδ,π,…

increasingly accurate astronomical data

Astrometry nowadays is dominated by Einstein's theory

0”,000001 = micro(µ) arc sec

GaiaSky@L2
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Source count maps based on the Gaia DR3 data.
Image credit: ESA/Gaia/DPAC
Image license: CC BY-SA 3.0 IGO

Acknowledgement: Images were created by André Moitinho and Márcia Barros, University of Lisbon, Portugal

M. Crosta et al. “General relativistic observable for gravitational astrometry in the context of the Gaia mission and beyond”  PRD 96 (2017)

the trajectories of photons emitted by the stars 
  - null geodesics - 

should be as fundamental as  
the equation of stellar evolution! 

Gaia: the Era of Relativistic Astrometry

Barycentric Celestial Reference System
The BCRS is a particular reference system in the curved space-time  
       of the Solar system

• One can use any 

• but one should fix one : 

ICRF by VLBI
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Used to describe motion of celestial body and description of light propagation
Ephemeride Astrometry

M.Crosta. “Astrometry in the 21st century. From Hipparchus to Einstein” La Rivista del Nuovo Cimento 42 (2019)
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IAU metric for the definition of the Celestial Coordinate Systems (BCRS)

Used to describe the motion of celestial bodies and the light propagation
Ephemeris Relativistic Astrometry
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 according to the Virial Theorem

Time variation  of the order of

IAU metric for celestial reference 
system!

ε2

Light crossing a weak field “geometry”

Angular separation from the perturbing body
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In relativistic astronomy 

All these reference systems are defined by the form of corresponding metric tensor

• BCRS (Barycentric Celestial Reference System )

• GCRS (Geocentric Celestial Reference System )

• Local Reference system of an observer 

Relationship  between the global and local set of coordinates are given by the following mapping 

𝑥𝜇(𝑐𝑇(𝑎), 𝑋𝑖
(𝑎)) = 𝑧𝜇

(𝑎)(𝑐𝑇(𝑎)) + 𝑒𝜇
𝑖 (𝑐𝑇(𝑎))𝑋𝑖

(𝑎) + 𝑂[(𝑋𝑖
(𝑎))

2],

triad of spacelike vectors (i = 1, 2, 3) undergoing some geometric 
transport along the body worldline

quadratic terms  in the local 
space coordinate 

(xi,t) global coordinates 

(Xi,T) local coordinates
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Towards Relativistic reference frames

Post-Newtonian & Minkowskian approximations
Post-Minkowskian approx.

Post-Newtonian approx.

hµ⌫ =
X

Gnh(n)
µ⌫

<latexit sha1_base64="ZLAaX1jGmVQCqhoXrueudQJ3h7Y="></latexit>

hµ⌫ =
X 1

cn
h(n)
µ⌫

<latexit sha1_base64="h/xk4NGBPLU5jkd8iZ97bX1Ttn8="></latexit>

Particular case of the Post-Newtonian approx.

ds2 = gµ⌫dx
µdx⌫ = ⌘µ⌫dx

µdx⌫ +
X

n

1

cn
h(n)
µ⌫ dx

µdx⌫

<latexit sha1_base64="Wkt0ExpMLbpoKevbFsHPsDhBXJc="></latexit>

154 The equivalence principle and spacetime curvature

the derivatives !0g"# are zero. An example of such a coordinate system might be
a fixed Cartesian frame at some point on the surface of the (non-rotating) Earth.

The worldline of a particle freely falling under gravity is given in general by
the geodesic equation

d2x"

d$2
+%"

#&
dx#

d$

dx&

d$
= 0'

We shall assume, however, that the particle is slow-moving, so that the compo-
nents of its 3-velocity satisfy dxi/dt ! c(i = 1)2)3*, where t is defined by
x0 ≡ ct. This is equivalent to demanding that, for i= 1)2)3,

dxi

d$
! dx0

d$
'

Thus we can ignore the 3-velocity terms in the geodesic equation to obtain

d2x"

d$2
+%"

00c
2
(
dt

d$

)2

= 0' (7.7)

Now, recalling the expression (3.21) giving the connection in terms of the metric
and using the form (7.6) for g"#, we find that the connection coefficients %"

00
are given by

%"
00 = 1

2g
+"(!0g0++ !0g0+− !+g00*=− 1

2g
+"!+g00 =− 1

2,
+"!+h00)

where the last equality is valid to first order in h"#. Since we have assumed that
the metric is stationary, we have

%0
00 = 0 and % i

00 = 1
2-

ij!jh00)

where the Latin index runs over i= 1)2)3. Inserting these coefficients into (7.7)
gives

d2t

d$2
= 0 and

d2$x
d$2

=− 1
2c

2
(
dt

d$

)2
$.h00'

The first equation implies that dt/d$ = constant, and so we can combine the two
equations to yield the following equation of motion for the particle:

d2$x
dt2

=− 1
2c

2 $.h00'

If we compare this equation with the usual Newtonian equation of motion for
a particle in a gravitational field (7.2), we see that the two are identical if we
make the indentification h00 = 2//c2. Hence for a slowly moving particle our

Motion of a free particule under gravity in Newtonian regime…
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BRS
SRS

matching

★

Near Z
one

pM
pN?

pN = pM
Local RS BCRS

 “absolute space and absolute time”

“absolute space-time” 
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Credits:
ESA/Gaia/DPAC

The (Celestial) Sphere Reduction/Reconstruction is Gaia’s primary objective 
frst direct materialization of a dense absolute reference frame at visual bands  

one of the most important fundamental physics task  
 quasi-inertial kinematically non-rotating global optical frame meeting the ICRS prescriptions/IAU recommendations

the Consortium constitued for the Gaia 
data reduction (DPAC)  

agreed to set up, respectively, two 
independent global sphere solutions:  

AGIS and GSR

2 independent GR models: 

GREM (Gaia RElativistic Model) 

RAMOD (Relativistic Astrometric MODel)

reference frame

TASK: 

 link of the optical to the 
radio reference frame 
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Italian Data Processing Center

The DPCT hosts the systems of  
the Astrometric Verification Unit (AVU), run by ALTEC 
(To) under the scientific supervision of the astrometric 

group INAF-OATo for ASI

Size at completion ~  2 PB 

Gaia, the ESA cornerstone mission, 
is a wide European effort involving 
almost 450 scientists

AVU is in charge, for DPAC, of the verification, through the 
Global Sphere Reconstruction (GSR), of the absolute 

astrometry achieved through the baseline astrometric model   

Gaia Data Processing 
and Analysis 

Consortium (DPAC)

This is the only Data Processing Center,  among 
the six  DPCs  across Europe, which specializes 
in the treatment and validation of the satellite 
astrometric data -> a big archive of raw data to 
exploit!

All Gaia operations activities (daily and cyclic) done in Italy are 
implemented at the DPCT, the Italian provided HW and SW 
operations system designed, built and run by ALTEC (To) and INAF-
OATo for ASI. 
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RAMOD vs. GREM: why?

they are based on a “GR framework”, but at first glance no 
evidence that
RAMOD  = GREM (IAU based)?
-> cross-checked theoretical models are of capital importance 
to interpret the same data: need of a validation process! 

control on the error budget at the level of mu-as for Gaia since the solar system generates several varying perturbations of 
the order of the measurement accuracy in different observation times and for different satellite positions

 rule out possible spurious contributions (especially systematic errors) 

consolidate the results via an independent mutual cross-checking: independent relativistic astrometric model, independent 
relativistic attitude model

any discrepancy between the relativistic models, if it can not be attributed to errors of different nature, means either a limit in 
the modeling/interpretation - that a correct application of GR should fix - and therefore a validation of GR, or, maybe, a clue that 
we need to refine our approach to GR
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x*= F(xobs, gµν, lobs, Ea ,.... )

 l*

★

RAMOD is a framework of general relativistic astrometric models with increasing 
intrinsic accuracy, adapted to many different observer’s settings, interfacing 
numerical and analytical relativity 

 fully based on alghorithms in General Relativity (GR)  -> no a priori 
approximations, top-down approach  
observations in a curved  space-time ->  RAMOD applies the 
measurement protocol  in GR 
direct comparison with TTF approach

stellar direction in pN

•  de Felice F., Crosta M., Vecchiato A. 
and Lattanzi M. G., Astrophys. J., 607  
(2004) 580 

• Crosta M., Geralico A., Lattanzi M. G. 
and Vecchiato A., Phys. Rev. D, 96 
(2107) 104030. 

• S. Bertone et al. ,2014 Class. Quantum 
Grav. 31 015021 

• Klioner S. A., Astron. Astrophys., 404 (2003) 783.  

GREM,   
baselined for the Astrometric Global Iterative Solution  for Gaia (AGIS), based 
on post-Newtonian approximations

GREM observed direction converts into a coordinate one via several steps , which 
separate the effects of the aberration, the gravitational deflection, the parallax, 
and proper motion-> bottom-up approach

aberrated (gravitational) 
direction

Crosta - LNGS- 10 Ottobre



the adopted GR formalism for the GSR determines distances in a curved spacetime. i.e.  from within  local 
gravitational fields 

σm-M ≈ 2 σd /d ≈ 0.2 mag !

M. Crosta and A. Vecchiato, Gaia relativistic astrometric 
models. Proper stellar direction and aberration,  A&A 509, 
A37 (2010)

m − M = 5log rpc − 5

Gravitationally aberrated direction

 h00/2 ≈ U/c2  (local potential)[ IAU solution]

relative error in mag with no planets   
(only the Sun) for d=10kpc 

Parallaxes in the catalogue are the results of a 
processing procedure based  on relativistic models. 

GR modulo distances via gravitational aberration

“Geometric distance” depends on the local ephemerides and observer position 

@ L2
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ds2 = gαβdxαdxβ = Tαβdxαdxβ + Pαβdxαdxβ

dLdT

To any time-like observer u we associate to tensorial operators, T and P,  so that

gαβ = Pαβ + Tαβ

World line

1+3 decomposition = geometric measurement 

an infinitesimal normal neighborhood of u the metric

RAMOD framework

Coordinates are not "physical observers”
The observer is selected according to the chosen measurement, namely by its specific kinematical status with respect to the 
background spacetime. 

Space time splitting 

P(u)αβ = gαβ + uαuβ

T(u)αβ = − uαuβ
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The notions of time and space are complementary since a “time-like” means measuring the 
elapsing time at fixed point in space, while "constant time hypersurfaces" implies a 
synchronization of times at different points of space. For the former local time direction is 
fundamental, for the latter space is fundamental (non local correlation of local time, i.e. 
space at some moment of time)  
[Quoting: R.T. Jantzen, P. Carini and D. Bini, Understanding Spacetime Splittings and Their Relationships or Gravitoelectromagnetism: the User Manual, 
https://homepage.villanova.edu/robert.jantzen/gem/gem.pdf]

The “splitting” with both tensor and tensorial differential operators is a necessary tool to 
reproduce formal “1+3” or “ 3+1” expressions, keeping the geometric consistency 
and meaning
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BCRS can be identified by a smooth family of space-like hypersurfaces with equation t (x, y, z) = constant

̂uα
B =

1
−g00

∂α
0 ≈ (1 + ϵ2w) ∂α

0

Local barycentric observer 

At any space-time point, one can define a fiducial 
observer u, which is tangent to the world line of a 
physical observer at rest, locally and only locally, with 
respect to the spatial grid of the BCRS

The rest space of u can be locally identified by a 
spatial triad lying on a surface (green area) which 
differs from the t = constant one, but their spatial 
components point to the local coordinate directions as 
chosen by the BCRS

asymptotically a Killing vector field

λα
̂a = h0aδα

0 + (1 −
h00

2 ) δα
a + 𝒪 (h2)

Given a metric,  a family of time-like 4-vectors u constitutes a set of fiducial observes filling the space-time.   A section 
orthogonal to the congruence describes the space-time evolution of the system as the time varies along the curves.

On each of these hypersurfaces one can choose a set of 
Cartesian-like coordinates centered at the barycenter of the 
system and running smoothly as parameters along space-like 
curves which point to distant cosmic sources.
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∇βuα = − aα(u)uβ − kα
β (u),

aα(u) = P(u)α
βuγ ∇γuβ

kα
β (u) = ωα

β (u) − θα
β (u), kinematics tensor

ωαβ = P(u)μ
αP(u)ν

β ∇[μuν]

θα(u) = P(u)μ
αP(u)ν

β ∇(μuν)

vorticity 

expansion

measures how a world-line of an observer 
rotates around a neighboring one

measures the average expansion of the 
infinitesimally nearby surrounding geodesics 

 acceleration 4-vector

The covariant derivative generates the kinematics of a congruence 

Null geodesic w.r.t the local barycentric observer

dℓ̄(u)α

dσ
+ Γα

μνℓ̄(u)μ(ℓ̄(u)ν + uν) + a(u)α − k(u)α
σℓ̄(u)σ −[ℓ̄(u)μℓ̄(u)νθ(u)μν + ℓ̄(u)μa(u)μ](ℓ̄(u)α + uα) = 0

Projector operator w.r.t. the rest-space of uB

Crosta et al. Phys. Rev. D 
96,104030, 2017 “General 
relativistic observable for 
gravitational astrometry in the 
context of the Gaia mission and 
beyond”

RAMOD: general approach applicable to any metric
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The concept of the Global Sphere reconstruction 
via  general relativistic astrometric observable 

Projector operator onto 
the rest space of the 
satellite 

Observation equation

Eαβ relativistic attitude tetrad” 
 -> essential to define the boundary condition   

u’ world-line of the satellite

𝐱∗ =
1
𝜛

(cos𝛼cos𝛿, sin𝛼cos𝛿, sin𝛿 )

• Vecchiato A. , B. Bucciarelli, M.G.Lattanzi  et al., Astron. Astrophys., 620 (2018) A40  

• de Felice F., Crosta M., Vecchiato A. , Lattanzi M. G. And B. Bucciarelli, Astrophys. J., 607  
(2004) 580 

• Crosta M., Geralico A., Lattanzi M. G. and Vecchiato A., Phys. Rev. D, 96 (2107) 104030.  

• Global astrometry 

1 obs.  ⇒ 1 condition eq. 
	  
(linearized) system of  solution with dimensions 
∼1010×108

Theoretical models

Merging repeated observations of 
the same objects from different 

satellite orientations and on different 
times allows to estimate their angular 

positions, parallaxes, and proper 
motions, i.e. the actual 

materialization of an absolute 
Reference Frame.  

This process is conventionally called 
Astrometric Sphere Reconstruction.

λα
(bs) ̂a = P(us)α

β[λβ
̂a −

γ (us, u)
γ (us, u) + 1

ν (u , us)α(ν (u , us)ρλ ̂aρ)]

Bini , Crosta, and de Felice, Class.Quantum Grav. 20, 4695, 2003

Eα
̂a = ℛ(αi) ̂a

b̂λα
b̂

α (t) = α (t0) + μα(t − t0) + O(Δt2), δ(t) = δ(t0) + μδ(t − t0) + O(Δt2)
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The concept of the Global Sphere Reconstruction

1 obs.  ⇒ 1 condition eq. 

(linearized) system of  
 solution with dimensions  ∼1010×108

Known Unknown Unknown

.	 .	 .	 .	 .	 .	 .

Solving the linearized GSR sphere in the Least-Squares sense 

Solution method (Vecchiato, Bucciarelli, Lattanzi et al. 2018)
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Talk outline
Background
• Motivation: Astrometry from Hipparcus to Einstein, Gaia 
• Relativistic/Gravitational Astrometry

Challenging the Galactic Models with Milky Way stars
• Local cosmology as DCM laboratory
• Testing General Relativity/Gravity @MilkyWay scale
• The impact  for Dark Matter interpretation 
• CDM model predictions @MilkyWay scale

Λ

Λ
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The location of an object in astrometry is 
considered reliable if its relative error is less 10%

parallax 𝜋(arcsec) ≈ 1(UA)/d∗(pc)

𝜋 ≈ 𝜎𝜋 ⋅ 10

Gaia

Hipparcos 𝜎𝜋 = 1mas = 10−3arcsec

𝜎𝜋 = 10𝜇as = 10−5arcsec

𝜋 ≈ 10−2arsec 𝜋 ≈ 10−4arsec
d* = 100 pc

solar 
neighoborhood

d*= 10 kpc

Galactic scale!

Chart the 6-dimensional phase space  (positions & velocities) 
throughout our Galaxy to kiloparsec scale (at least to 10 kpc 

all around the Sun) 

Probing MW gravitational potential and searching for 
signatures of Cosmic evolution 

MW  as the laboratory of «local» Cosmology  
(much like what the Sun is to stellar Astrophysics)

Gravitational astrometry @ Milky 
Way scale: investigating the effects 
of gravity on photons at all scales 

within the Milky Way, and then 
compare them to the predictions of 

current Gravity theories and 
Cosmological formation scenarios 

including stellar and planetary 
formation.
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To guarantee Gaia’s scientific outputs, we must rely on General Relativity.  

Given that the data analysis and processing follow a  GR approach, any 
subsequent exploitation of the results must remain consistent with the 

theoretical framework underlying the astrometric model.

➢ Local Cosmology:  Lambda-CDM model predictions  at the scale of the Milky Way 

Gaia can provide values (true observables) 
to estimate model parameters 

A fully relativistic model for the Milky Way (MW) should be pursued! 

Crosta - LNGS- 10 Ottobre



Absence of “evidences” of extra matter  (Concordance 
Cosmological Model): 

 galaxy cluster 
 large structure at Mpc scale 
 CMB 
 gravitational lensing 
 rotation curve at galactic scale 

Candidates 
 white/brown dwarfs 

 no baryonic particle (axions, WIMP)/SUSY 
self-interaction 
 neutrinos (sterile, massive, etc..) 
 scalar fields/modified gravity via MOND etc..

In the most advanced simulations standards Λ-CDM cosmology assumes an average 
FLRW evolution while growth in structure is treated by Newtonian N-body simulations:  
“ Friedman tells space how to curve  
and Newton tells mass how to move”  
arXiv:1612.09309v2 Coley, Wiltshire 

General Relativity (GR) is only partially considered

-> G-evolution: GR code for simulated large structures and expansion in Λ-CDM  
(Adameck et al. 2016) 
-> GRAMSES (Barrera-Hinojosa & Li 2020) 

ΛCDM: Cosmological Concordance model

Crosta - LNGS- 10 Ottobre
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The growth of cosmic structures:
•  primordial density fluctuations produced during inflation
• dominant mass component is cold dark-matter (CDM)
• fluctuations grow under the action of gravity
• ΛCDM power spectrum: small objects collapse first
• Gas cooling and star formation
• Galaxy evolution and merging 

ΛCDM - Hierarchical scenario

Examples of galactic 
building blocks in 
 protogalaxies 
observed by JWST	  

	 ”The cosmic rose”  
(0.1 Gyr)

"The big clumpy”  
 (0.3 Gyr) Crosta - LNGS- 10 Ottobre



Thin/thick disc

Bulge

Halo streams

Stellar halo 
(in situ, accreted satellites, 

heated disc stars)

Satellites

Accreted/unevolved 
disc star

Galactic components 
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Open questions

• How many mergers in the history of the Milky Way? 
• How large were they? 
• When did the mergers take place? 
• How the mergers have affected the Milky Way?
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Galactic halo formation -merging contributions

Babusioux et al (2018)

Amina Helmi et al. 2018, “The merger that led to the formation of the Milky Way's 
inner stellar halo and thick disk”, Nature, 563, 85

Abstract. … We demonstrate that the inner halo is dominated by debris from an object 

which at infall was slightly more massive than the Small Magellanic Cloud.

Major merger: Gaia – Sausage – Enceladus (GSE)
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Galactic halo formation - tidal contributions 

Sagittarius dwarf galaxy interaction with the MW

D ≈ 26 kpc    
L ≈ 108 L◉

1st
2nd

3rd

Star Formation History in the ~2-kpc-radius bubble around the Sun distinguishing between the thin and thick disks (selected on the 
basis of tangential velocity). 
Green-shaded areas highlight the location of the detected star-forming bursts. 
Three conspicuous and narrow episodes of enhanced star formation that we can precisely date as having occurred 5.7, 1.9 and 
1.0 Gyr ago, which coincide with proposed pericentre passages of the Sagittarius dwarf galaxy.

Ruiz Lara et al 2020
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Galactic halo formation - substructures 
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Toomre diagram.  
The traditional kinematic selection for halo stars, |ν − νLSR | 
> 230 km/s, represented by the dashed line. 
Re Fiorentin et al (2021, 2024)

LXY vs. LZ  distribution of Icarus stars (yellow and red dots) 
The red solid lines indicate the GSE locus (Helmi+2018).  
The debris of the simulated 10°-inclination prograde satellite with a 
stellar mass of ~109MSun  analysed in Re Fiorentin+2015 are 
overplotted for comparison (grey diamonds). 

Galactic disc - Icarus:  accreted/unevolved stars
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Gaia RV’s discover BH3 (25-30 solar mass at 500 
pc from the Sun!) and Gaia astrometry (shown in 
Figure) confirms it as the most massive stellar 
Black Hole ever discovered in our Galaxy (from 
Gaia Collaboration: Panuzzo et al., 2024, A&A, 
686, L2)

 Credits: Adapted from LIGO-VIRGO-KAGRA, Aaron Geller, Northwestern / L. Wyrzykowski, Warsaw by ESA/Gaia/DPAC.

Gaia BH1, Gaia BH2, Gaia BH3, and Gaia NS1 
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Warp is precessing at 10.86 ± 0.03 (statistical) ± 3.20 (systematic) km/s*kpc in the direction of Galactic rotation. 

The warp would complete one rotation around the center of the Milky Way in 600 to 700 million years 

Much faster than expected based on predictions from other models, such as those looking at the effects of the non-spherical halo 

The direction and magnitude of the warp’s precession rate favor the scenario that the warp is the result of a recent or ongoing encounter 
with a satellite galaxy, rather than the relic of the ancient assembly history of the Galaxy

Sun
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Flat rotation curves in disk galaxies - a longest outstanding 
problem in astronomy - provide the main observational support 
to the hypothesis of surrounding dark matter.
Adding a “dark matter” halo allows a good fit to data 

Stellar kinematics, as tracer of gravitational 
potential, is the most reliable observable for 
gauging different matter components 

Rotation curves are distinctive features of spiral galaxies like 
our Milky Way, a sort of a kinematical/dynamical signature, 
like the HR  diagram for the astrophysical content

Galactic disc: rotation curves 

->  the rotation curve of the MW used as a first 
test for a GR Galaxy
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In general one assumes that:  
gravitational potential or “relativistic effects” at the MW scale 
are usually “small”, then  

✓negligible..

“weakly” relativistic effect could be relevant?

✓locally Newton approximation is retained valid at each point.. 

weak field regime @Milky Way scale

≤ 100𝜇as

120𝜇as

 For the Gaia-like observer the weak 
gravitational regime turns out to be 

"strong" when one has to perform high 
accurate measurements 

but

The small curvature limit in General Relativity  may not coincide with the Newtonian regime

 need to compare the GR model and the classical one
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Lense-Thirring effect, the distortion of 
space-time due to rotating masses:  

new (weak) relativistic effect!

  Neptune as “dark” planet in the orbit of Uranus….a new “Newtonian” planet!

excess of the perihelion shift of Mercury 43”/100yr

Lense-Thirring effect

Lesson from the past

1846 observed by Johann Galle within a degree 
from the position predicted by Le Verrier 

advancement of Mercury’s perihelion: instead of correcting 
the dynamics by adding a "dark planet" (Vulcano) following 
the case of Neptune, GR cured the anomalous precession by 
accounting for the weak non-linear gravitational fields 
overlapping nearby the Sun. 
It amounts to only 43"/century, because of the small 

curvature, however the effect was ”strong” enough to justify a 
modification of the Newtonian theory
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”Classic” Milky Way (MWC) model with NFW dark matter halo

Newtonian limit applied for Galactic 
dynamics -> Poisson’s equation

MWC velocity profile 

3. Navarro-Frank-White DM halo2. Miyamoto-Nagai thin and thick discs1. Plummer bulge 

Pouliasis, E., Di Matteo, P.

Bovy, J. 2015, ApJs, 216, 29 

McMillan, P. J. 2017, MNRAS, 465, 76-94

Navarro, J. F., Frenk, C. S. and White, S. D. M. 1996, ApJ, 462, 563 
Korol, Rossi & Barausse (2019) 

Mb, Mtd, MTd, atd, aTd , bb, bd, ρ0halo and Ah correspond to the bulge mass, the masses and the scale 
lengths/heights of the thin and thick discs, the halo scale density, and the halo radial scale

  Haywood, M. 2017, A&A, 598, A66
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MOND 

𝑉𝑀𝑂𝑁𝐷(𝑅, 𝑉𝑏𝑎𝑟) =
𝑉𝑏𝑎𝑟

1 − 𝑒−𝑉𝑏𝑎𝑟/ 𝑅𝑔0

gravitational acceleration 
g N c o n v e n t i o n a l N e w t o n i a n 
acceleration, baryonic matter alone 

interpolation function  
setting the transition between the 
Newtonian and the deep MOND 
regimes through the acceleration 
scale g0

gravitational acceleration gMOND = centripetal acceleration

acceleration scale 
constrained by the observed Radial 
Acceleration Relation of external 
galaxies (Lelli et al. 2017)


EINASTO DENSITY PROFILE 

parameters of the Einasto profile 

Same baryonic distribution of MWC 

Cold dark matter distribution

enclosed halo mass at the virial radius

 C200 ≡ r200/rs.     

virial radius r200: the enclosed average density is 200 
times the critical density of the Universe (Planck 
Collaboration et al. 2014; Dutton & Maccio` 2014)

rotation velocity 

halo concentration   Li et al. (2019)
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GR model for the Milky Way

|z| < rin

Einstein equation are very difficult to solve analytically and Galaxy is a multi-structured 
object making it even the more difficult to detail a metric for the whole Galaxy

Lewis-Weyl-Papapetrou class

in a stationary and axisymmetric space-time there exist two commuting Killing vector fields, k  (time-like) and m  
(always zero on the axis of symmetry), and a coordinate system adapted to the symmetries whose line element takes 
the form (Stephani et al.2009, de Felice & Clarke 1990)

ds2 = − e2U(dt + Ndϕ)2 + e−2U [eν (dr2 + udz2) + r2dϕ2]

limr→0 [r−1eU−γ(e−2UW2 − e2UA2)1/2] = 1

Regularity condition, if violated singularities on the axis

1.Stationarity and axisymmetry spacetime 
2.Reflection symmetry (around the galactic plane) 
3.Masses inside a large portion of the Galaxy interact only gravitationally and reside far from the central bulge 

region

Galactic metric-disc
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1.Stationarity and axisymmetry spacetime 
2.Reflection symmetry (around the galactic plane) 
3.Disc is an equilibrium configuration of a pressure-less rotating perfect fluid (a GR dust) 
4.Masses inside a large portion of the Galaxy interact only gravitationally and reside far from the central bulge 

region 
5.Stellar encounters become effective below the parsec scale, on the other hand the Galaxy could be 

considered globally isolated around 25 kpc.

GR model for the Milky Way disc

Galactic metric-disc

2rγz + e4U Ar Az − 2r2UrUz = 0

4rγr + e4U (A2
r − A2

z ) − r2 (U2
r − U2

z ) = 0

4r2 (γrr + γzz) + e4U (A2
r + A2

z ) + 4r2 (U2
r + U2

z ) = 0

Arr + Azz −
Ar

r
+ 4 (ArUr + AzUz) = 0

2Urr + 2Uzz +
2Ur

r
+

e4U

r2 (A2
r + A2

z ) = 8πGρe2γ

Tμν = ρuμuν

∇μ(ρuμ) = 0 uμ ∇μuν = 0

 The Bianchi identities imply stationarity of the mass 
distribution and that dust particles follow geodesics
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uα = Γ (kα + βmα)
uα = γ (eα

0̂
+ ζ ̂ϕeα

̂ϕ)

ds2 = − M2dt2 + (r2 − N2)(dϕ + Mϕdt)2 + eν(dr2 + dz2)

Zα = (1/M )(∂t − Mϕ∂ϕ)ζ ̂ϕ =
gϕϕ

M
(β + Mϕ)

Observer in circular motion

ζ ̂ϕ =
N(r, z)

r

 orthonormal frame adapted to the 
ZAMO

β coordinate angular velocity, Γ  normalization factor 

γ Lorentz factor

ZAMO frames = locally non-rotating observers, move on 
worldlines orthogonal to the hypersurfaces t=constant

or

(de Felice and Bini, “Classical measurements in curved space-time”)

 Crosta M., Giammaria M., Lattanzi M. G., Poggio E., (2020)

ζ ̂ϕ =
gϕϕ

M
(β + Mϕ)

γ = M Γ a suitable foliation of the space time manifold that reflects 
the assumed symmetries

Geometric terms β  coordinate angular velocity 

ζ ̂ϕ
k =

gϕϕ

M
β

= ζ ̂ϕ
k + ζ ̂ϕ

d

ζ ̂ϕ
d =

gϕϕ

M
Mϕ

Relativistic kinematics, valid regardless the adopted exact solution 

spatial velocity w.r.t the local non-rotating observer

γ Lorentz factor
non local correlation of local time, namely 
synchronisation of times in different points of space
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GR model for the Milky Way disc 

Einstein field Eq.  

𝑟𝜕𝑧𝜈 + 𝜕𝑟𝑁𝜕𝑧𝑁 = 0

2𝑟2(𝜕𝑟𝜕𝑟𝜈 + 𝜕𝑧𝜕𝑧𝜈) + (𝜕𝑟𝑁 )2 + (𝜕𝑧𝑁 )2 = 0

𝑟(𝜕𝑟𝜕𝑟𝑁 + 𝜕𝑧𝜕𝑧𝑁 ) − 𝜕𝑟𝑁 = 0

(𝜕𝑟𝑁 )2 + (𝜕𝑧𝑁 )2 = 𝑘𝑟2𝜌𝑒𝜈

2𝑟𝜕𝑟𝜈 + (𝜕𝑟𝑁 )2 − (𝜕𝑧𝑁 )2 = 0

rin = bulge size  
Rout =  extension of the MW disk-> Galaxy size 
V0 =   velocity in the flat regime 

the function N(r,z) was solved  by Balasin & Grumiller (BG)

(Balasin and Grummiler, Int.J. Mod. Phys., 2008)

physical boundaries: for r >> N, far from r = 0, and 

✓Einstein equation allows to treat separately velocities and density

Denoting A= -N(r,z), e2U =1,  -> rigidly rotation dust e2γ = eν

 +   conformal factor (new parameter)eν(r,z)

|z| < rin

Physical region of the 
BG disc model

|z| < rin
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Gravitational dragging working at disc scale?

Different from the IAU metric!

 Stationarity and axisymmetry spacetime may include Kerr solution for the bulge as well as different disc solutions

MW core  
Relativistic 

hydrodynamics for the 
bulge/bar?

 Warp

Streams?

Our ansatz: the flatness of MW rotation curve is geometry driven?

The Galaxy is a multistructured object, global solutions are unrealistic 

Flaring?
Spiral arms

Peering into hidden parts is utmost fundamental  to establish boundary matching conditions  
between  internal/external Einstein’s solutions

Disc

1.Regions around the bulge and the bar need relativistic hydrodynamics, where equilibrium conditions are not  possible

->  the rotation curve of the MW used as a first test for a GR Galaxy

ζ ̂ϕ
d (r, z) = N(r, z)/r ∝ g0ϕζ ̂ϕ =

gϕϕ

M
(β + Mϕ)

On testing CDM and geometry-driven Milky Way rotation curve models with Gaia DR2- 
Crosta M., Giammaria M., Lattanzi M. G., Poggio E.,MNRAS, Volume 496, Issue 2, 
August 2020, Pages 2107–2122

If β is negligible or zero
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the observed stellar velocities solely to the dragging of the geometry

3 congruences of observers within our framework: 

i) the local barycentric observer tied to the BCRS metric (based on the post-Newtonian approximation to GR) and RAMOD modelling 
for Gaia (based on the measurement protocol in GR involving splitting formalism)

ii) the co-rotating static observer associated with the BG metric in the stationary axisymmetric spacetime

iii) the ZAMO observers, which locally do not rotate with respect to the local geometry

It is expected that the static observer and the locally barycentric observer at infinity coincide. However, the BCRS is connected to a 
quasi-inertial rather than inertial system. Therefore, our ansatz could turn into verifying whether asymptotically these 
observers can indeed coincide. 

Quoting Jantzen et al. (1992):  stationary axisymmetric spacetimes possess both a preferred threading by a time-like Killing vector 
field (i.e., the static observers), and a preferred slicing by a family of space-like hypersurfaces orthogonal to the ZAMOs. For the 
former local time direction is fundamental, for the latter space is fundamental (non local correlation of local time, namely 
synchronisation of times in different points of space). 

In this context, the ZAMOs are employed as gauges of a potential dragging. The local barycentric observer aligns at infinity with 
the congruence of curves that are orthonormal, vorticity-free and expansion-free -> the threading and slicing point of views coincide

Further considerations

 With static dust, this relative spatial velocity inherently reflects the angular velocity attributed solely to the gravitational 
dragging effects within the BG spacetime  -> our assumption is to compare this rotational velocity with the observed 
rotation curve measured by Gaia, i.e. with respect to an observer at rest w.r.t. distant quasars 
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1. Full transformation (including complete error propagation) from the ICRS equatorial to heliocentric galactic 
coordinates


2. translation to the galactic center


     -> independency from the local standard of rest. 

Data sample: full reconstruction of disc kinematics based on Gaia data only

DR2:  very homogenous sample of 5277 early type 
stars and 325 classical type I Cepheids.

i. Complete Gaia  astrometric dataset (                      parallax) and corresponding covariance matrix
ii. Three Gaia photometric bands (G, BP, RP) all available and RUWE < 1.4 [to discard sources with problematic astrometric solutions, 

astrometric binaries, and other anomalous cases]
iii.  Parallaxes good to 20% (i.e. parallax_over_error ≥ 5) [parallaxes to better than 20% allow to deal with similar (quasi–gaussian) statistics 

when transforming to distances]
iv. Gaia-measured velocity along the line of sight, i.e. radial velocity, with better than 20% uncertainties

i.+ii.+iii.+iv—> proper 6D reconstruction of the phase-space location occupied by each individual star as derived by the same observer

𝛼, 𝛿, 𝜇𝛼, 𝜇𝛿 ,

angular-momentum sustained stellar population  of the Milky Way that better traces its observed RC

DR3: a much larger sample of high-quality astrometric and spectro-
photometric data of unprecedented homogeneity of  


719143 young disc stars within |z| < 1 kpc and up to R = 19 kpc 
 241’918 OBA stars, 475’520 RGB giants, and 1’705 Cepheides  

radial cut at 4.5 kpc to avoid the bar influence
v.       Cross-matched entry in the 2MASS catalogue for the 

actual characterization of the sample in case of DR2 
and EDR3

Ref: On testing CDM and geometry-driven Milky Way rotation curve models with Gaia 
DR2- Crosta M., Giammaria M., Lattanzi M. G., Poggio E.,MNRAS, Volume 496, Issue 2, 
August 2020, Pages 2107–2122
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From ∼33 million stars with high-precision astrometry and spectroscopic 
LOS velocities, we focus on three disc populations, namely: Gaia DR3 disc tracers  

To avoid the influence of the MW bar a radial cut at 4.5 kpc is set, while halo stars are further discarded requiring |z|<1 kpc. 
The final sample comprises 719’143 stars including 241’918 OBA, 475’520 RGB and 1’705 DCEP.

Spatial distribution for the three samples 
of tracers. OBA stars, RGB giants with 
(quasi) circular orbits, DCEP in the
Galactic plane. The position of the 
Galactic centre is shown by the black dot 
on the right; the dashed line represents a 
Galactocentric circle passing through the
Sun’s position at (x,y)=(-8.249 kpc, 0 kpc).
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barionic density profiles:  relativistic (red)/classic (blu)

𝑉 𝐵𝐺𝑐 (𝑅 ) =
𝑉0
𝑅 (𝑅𝑜𝑢𝑡 − 𝑟𝑖𝑛 + 𝑟2

𝑖𝑛 + 𝑅2 − 𝑅 2
𝑜𝑢𝑡 + 𝑅2)

𝑉 2
𝑐 = 𝑅(𝑑Φ𝑡𝑜𝑡 /𝑑𝑅)

MCMC fit with DR2 data

5277 early-type stars e 325 
classical type I Cepheides 

parallax/sigma_parallax > 5 

RV/sigma_RV > 5 dalla Gaia 
DR2  

https://www.cosmos.esa.int/web/gaia/
iow_20200716)

V@halo
V@grav. dragging C

Dragging effect vs. halo effect

Velocity profiles - Classical (MWC) and GR (BG) RC 

Ref: On testing CDM and geometry-driven Milky Way rotation curve models with Gaia DR2- 
Crosta M., Giammaria M., Lattanzi M. G., Poggio E.,MNRAS, Volume 496, Issue 2, August 
2020, Pages 2107–2122

Best fit estimates as the median of the 
posteriors and their 1σ level credible 
interval

Stars = dust 
grains in 

axysimmetric 
and stationary 

spacetime  
(circular motion )

MW rotational curve with Gaia DR2 7

BG model ✓ ��
✓ �+✓

rin [kpc] 0.39 -0.25 +0.36
Rout [kpc] 47.87 -14.80 +23.96
V0 [km/s] 263.10 -16.44 +25.93
e�⌫ [·10�7] 3.59 -0.47 +0.65

Table 2. rin , Rout andV0 are the parameters of BG model that correspond
to the lower and upper radial limits (i.e. the dimension of the bulge and the
Galaxy radius), and a quantity representing the normalization of the velocity
in the flat regime. e�⌫ is the conformal factor of line element (4) at R� .
��
✓ and �+✓ are the 1� level credible interval from the posteriors of the

parameters.

MWC model ✓ ��
✓ �+✓

Mb [1010M�] 1.0 -0.4 +0.4
Mt d [1010M�] 3.9 -0.4 +0.4
MT d [1010M�] 4.0 -0.5 +0.5

at d [kpc] 5.2 -0.5 +0.5
aT d [kpc] 2.7 -0.4 +0.4

⇢halo
0 [M�pc�3] 0.009 -0.003 +0.004

Ah [kpc] 17 -3 +4

Table 3. Mb , Mt d , MT d , at d , aT d , ⇢halo
0 and Ah are the free parame-

ters of the MWC model: the bulge mass, the masses and the scale lengths of
the two disks, the halo scale density, and the halo radial scale, respectively.
��
✓ and �+✓ are the 1� level credible interval from the posteriors of the

parameters.

For the BG model (Balasin and Grumiller 2008), ⇢exp(R� |✓) is
calculated via the 00-term of Einstein equation (see section 4), while
for the MWC model ⇢exp(R� |✓) = ⇢b(R = R�, z = 0) + ⇢td(R =
R�, z = 0) + ⇢Td(R = R�, z = 0) from equations (1) and (2).

In summary, we have 4 free parameters, V0, Rout , rin and e
�⌫ ,

when fitting the BG velocity profile, while we decided for 7 free
parameters when dealing with the MWC, i.e. Mb , Mtd , MTd , atd ,
aTd ⇢

halo
0 and Ah .

We finally used Markov-Chain Monte-Carlo (MCMC) method
to fit to the data (see appendix B); Tables 2 and 3 report the best fit
estimates as the median of the posteriors and their 1� level credible
interval. For both models, the errors due to the Bayesian analyses are
at least one order of magnitude lower than the resulting uncertain-
ties of the parameters. This shows that the analysis is intrinsically
consistent and the simulation errors are negligible.

In Figure 1, the star-like symbols show median V� versus R

derived with the Gaia DR2 data in Table 1. The two estimated
velocity profiles are both fairly good representations of the data (see
appendix C).

The least constrained parameter in the BG model is the "up-
per" radial limit, i.e., Rout . As already discussed, this was actually
expected due to a relatively limited radial coverage of the Gaia-only
velocity data we have used. Beside, we obtain an important result
on the lower limit parameter rin, which confirms, a posteriori, the
validity hypothesis of the BG model and the cut at |z |  1 kpc we
made. In fact, at R ⇠ 1 kpc it would not be possible to neglect
the z-dependence of velocity due to the presence of the MW bulge.
Furtermore, from the value rin in Table 2 we can infer the thick-
ness of the critical bulge region at values |z | � rin localized along
the z-axis (i.e. at r ⇡ 0) as remarked in Balasin and Grumiller
(2008) after their equation (26).

Finally, our likelihood analysis shows the two theoretical mod-
els appear almost identically consistent with the data.

We stress that in order to ensure the validity of the BG
model we selected a stellar sample confined on the galactic plane,
as confirmed firstly by the tests reported in Sect. 3.2, and sec-
ondly a posteriori comparing the estimate of rin to the zmedian
of each radial bin (see Table 1).

It is worth mentioning here that Almeida et al. (2016)
converted the observational rotation curve from some external
galaxies into a data set of an e�ective analogue (called the e�ec-
tive Newtonian velocity profile VEN ) in order to define a method
to compare non-Newtonian gravity models with or without some
dark matter. From the fit of the newtonian velocity profile to
the e�ective Newtonian curve the authors derive some bary-
onic parameters (basically by solving Poisson equations). With
the application of such a method, it appears that both CT and
BG approaches have strong problems fitting galaxy rotational
curves without dark matter, but their selected sample favours
the BG approach over the CT one. Although the statistical tech-
nique used for the fit, i.e., a �2 minimization procedure, could be
insu�cient for exploring the parameter space (see appendix B)
and some parameters appear not suitable for a consistent rep-
resentation of the BG model (R ⇠ 107 kpc, for example, is out of
the range given by the BG solution, no galaxy can be considered
isolated at this distance), the fact the BG or CT density does
not fit VEN in absence of DM is an indication that o�-diagonal
term, which is not analyzed in Almeida et al. (2016)), plays the
relevant contribution as well as the whole set of the Einstein
field equations.

4 THE LOCAL MASS DENSITY

We derived the matter density profile in the galactic plane z=0 kpc
for the two models using the best-fit values of their respectively
parameters (Table 2 and Table 3) as shown in Figure 2.

In the case of the metric adopted in the BG model, once
inserted the estimated Rout , V0 and rin parameters in the 00-term
of Einstein’s field equation, it results (for its derivation see ap-
pendix D):

⇢(R, z) = e
�⌫(R,z) 1

8⇡R2 [(@RN(R, z))2 + (@zN(R, z))2], (16)

where ⇢(R, z) is the energy density at R and e
�⌫(R,z) is the conformal

metric factor defined in equation (7). Note that for r ! 1 and
z ! 1 the density approaches zero (Neill 2011).

As for the local baryonic matter density, we obtain ⇢(R =
R�, z = 0) ⌘ ⇢� = 0.083±0.006M�pc�3 that is in agreement with
independent current estimates, for example, of 0.007±0.007M·pc

�3

(Bienayme et al. 2014), 0.084±0.012M·pc
�3 ( McKee et al. 2015),

and 0.098+0.006
�0.014M·pc

�3 (Garbari et al.) 2012).
Our outcome is similar to the results of Balasin and Gru-

miller (2008), but the adopted procedure is slightly di�erent.
Indeed, we do not approximate a priori e

�⌫(R,z) to some numbers
(see sections 3.2 and 3.3. of Balasin and Grumiller) in order to
compare the GR mass density with respect to the newtonian
one. Di�erently, we fit the real Gaia data to equation (16) and
compare the obtained density with the most recent estimates for
the baryonic matter at the Solar position in order to obtain an
appropriate value for function ⌫. Moreover, as we use only one
data point to set the density normalization, we consider e

�⌫ as
a constant, while in general ⌫ = ⌫(R, z). A similar approach has
been used by Magalhaes and Cooperstock (2017) in choosing
the best fit for the Galaxy’s rotational curve with the CT model,

MNRAS 000, 1–13 (2019)
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The four velocity profiles are all good 
representations of the observed (binned) 
data. The four models are found to be 

statistically equivalent 
comparisons with the WAIC and LOO tests show almost 

identical values 
-

 MCMC fit to the Gaia DR3 data - Classical (MWC), MOND, EINASTO ,GR   
I.Results: azimuthal velocity profile of the MW

• Black starred symbols represent the median azimuthal 
velocity at the median distance from the galactic centre 
of the stellar population within each of the radial bins 

• Robust Scatter Estimate (RSE) adopted as a robust 
measure of the azimuthal velocity dispersion of the 
population in each radial bin 

• The filled areas represent the 68 per cent reliability 
intervals of each rotation curve 

• For R ≲ 4.5 kpc both the classical and the relativistic 
curves are very uncertain because of the lack of data in 
that region

The red, blue, green, and yellow curves show the best-fitting to 
the BG, MWC, MOND, and ΛCDM models, respectively

Geometry-driven and dark-matter-sustained Milky Way rotation curves with Gaia DR3, MNRAS, 529, 4681S 
W.Beordo, M.Crosta, MG Lattanzi, P. Re Fiorentin, A. Spagna, 2024 

W.Beordo, M.Crosta, MG Lattanzi,  2024 

Exploring Milky Way rotation curves with Gaia DR3: a comparison between ΛCDM, MOND, and General 
Relativistic approaches, JCAP 
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 MCMC fit to the Gaia DR3 data - Classical (MWC) and GR (BG) RC- velocity profile for each sample

best-fit estimates  
the medians of the posteriors 
and their 1σ credible intervals

• The values of Mb , Mtd , MTd are 
s l ight ly smal ler in the ΛCDM 
parad igm compared to those 
estimated with the MOND and MWC 
models

Leave-one-out cross-validation 
(LOO-CV)

Widely Applicable Information 
Criterion (WAIC)

• BG: larger value of 𝑅out due to 
wider radial coverage of DR3 over 
DR2

 prior 
distributions from  
N-body 
simulations 
within the ΛCDM 
cosmology

Black lines ΛCDM 
cosmological priors.  

Coloured data points are 
the best parameter 

estimates for each stellar 
sample. The shaded grey 

regions represent the 
1-,2-,3-σ ranges around 

the mean relations.
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• MWC and ΛCDM total matter density 
profiles (dashed lines) are almost 
coincident while departing from each 
other only at very large radii  

• Einasto profile of the ΛCDM model 
results larger than the NFW one both in 
the inner and outer parts of the Galaxy 
(dash-dotted lines)- >  more dark 
mat ter in the ΛCDM scenar io 
compared to the case of an NFW halo 
without cosmological constraints

• BG and MOND density profiles are 
consistent with both the baryonic and 
total density profiles of MWC

MCMC fit to the Gaia DR3 data - II. Results: radial density profile of the MW at z=0  

baryonic matter density observed at the Sun 

ρbar(R⊙) = 0.084 ± 0.012 M⊙pc−3

estimates of the local baryonic density ρΛCDM and ρMOND  
around 0.080M⊙pc−3

Crosta et. al, 2020, Beordo et al. 2024, Garbari et al. 
2012; Bienaymé et al. 2014; McKee et al. 2015

solid lines baryonic matter contributions

rin 

Rout

radial range covered by the 
sample

 local mass density inferred at 
the Sun position
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barionic density profiles:  
relativistic (red)/classic (blu)

In the radial range  probed by DR3, the relativistic 
mass density profile is consistent  within 1𝜎 of the 
total mass density profile and that of the baryonic-
only contribution (derived by fitting to the classical 
model)

In agreement, with current independent  
estimates 
0.077±0.007 Msun pc−3   
(Bienayme et al.  2014, A&A, 571) 

0.084 ± 0.012 Msun pc−3  
( McKee et al. 2015, ApJ, 814, 13 ) 
0.098+0.006 Msun pc−3  
(Garbari et al. 2012MNRAS, 425, 1445) 

Eilers et al. 2019; Wang et al. 2022; Cautun et al. 2020; Widmark 
et al. 2021
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• Relativistic mass in agreement with the 
baryonic mass within the region of validity of 
the model
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MCMC fit to the Gaia DR3 data - III. Results: Total mass estimates

The total baryonic mass 
predicted by the ΛCDM 
scenario is slightly smaller 
than the values expected 
for the MWC and MOND 
models

Density profile in 
agreement between all four 
models within the region of 
validity of BG

The dynamical mass is 
supplied by more dark 
matter in the ΛCDM 
scenario compared to a 
NWF halo without 
cosmological constraints
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The Jeans analysis on our selected sample shows a further 
slight increase within error bars suggesting  that the lack of the 
Jeans analysis in our procedure is unlikely to be the cause of 
the discrepancy observed at around 15 kpc.

Instead of employing various techniques to 
extend the measured rotation curve to 30 kpc, we 
imposed a stringent requirement of errors on 
parallaxes smaller than 20%.

Within the overlapping range of 10–18 kpc, our rotation 
curves exhibit slightly declining profiles, aligning with 
recent findings that indicate a pronounced decline only 
beyond 18–19 kpc

The resulting circular velocities typically exceed the azimuthal velocities by less than 5 
per cent and fall well within the error bars- The eccentricity selection for the orbits of 
RGB stars removes the effects of the asymmetric drift to match the OBA and DCEP 
rotation curves
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Dragging effect vs. halo effect

amount of rotational velocity 
across the MW plane due to 
gravitational dragging

The relativistic dragging effect has no newtonian counterpart, 

thus we compared:  
(i) the MWC baryonic-only contribution  with the effective 

Newtonian profile (Binney & Tremaine 1988) calculated by 

using the BG density: 
(ii) the MWC dark matter-only contribution (halo) with the 

"dragging curve" traced by subtracting  effective 

Newtonian profile  to VBG . 

Non-Newtonian contributions to the rotation curve are consistent with 
that of the dark matter halo: they become predominant over the classical 
baryonic counterpart from 10-15 kpc outwards and, at the Sun distance, 
they are responsible for the 30-37% of the velocity profile.

MCMC fit to the Gaia DR3 data - IV.Results: Non-Newtonian contributions vs  dark matter halo 

Solid lines represent the 
Newtonian/baryonic counterparts 
to the rotation curves

pure Mondian boost
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Crosta - LNGS- 10 Ottobre



 MCMC fit to the Gaia DR3 data - Classical (MWC) MOND  EINASTO  GR  

The four models are found to be 
statistically equivalent

Geometry-driven and dark-matter-sustained Milky Way rotation curves with Gaia 
DR3, MNRAS, 529, 4681S 

W.Beordo, M.Crosta, MG Lattanzi, P. Re Fiorentin, A. Spagna, 2024 

Exploring Milky Way rotation curves with Gaia DR3: a comparison between ΛCDM, MOND, 
and General Relativistic approaches, JCAP 2024

This again favourably points to the fact 
that a gravitational dragging-like effect 

could sustain a flat rotation curve

Crosta M., Giammaria M., Lattanzi M. G., Poggio E.,
On testing CDM and geometry-driven Milky Way rotation curve models with Gaia 
DR2, MNRAS, Volume 496, Issue 2, 2020

Dragging effect vs. halo effect

Best fit estimates as the median of the posteriors and their 1σ level credible interval
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Talk outline
Background
• Motivation: Astrometry from Hipparcus to Einstein, Gaia 
• Relativistic/Gravitational Astrometry

Challenging the Galactic Models with Milky Way stars
• Local cosmology as DCM laboratory
• Testing General Relativity/Gravity @MilkyWay scale
• The Dark Matter interpretation in GR 
• CDM model predictions @MilkyWay scale

Λ

Λ
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Our interpretation with Gaia DR2/DR3 depends only on the background geometry 

“space tells mass how to move”

 For our likelihood analysis the three models appear almost identically consistent with the data

Data are independent from the theoretical models that we use for the predictions and 
that is exactly why they constitute the testing ground.

 GR model has only 4 parameters, the classical model needs at least 10 parameters +1 for MOND , +3  for Lambda CDM

DM: does not absorb or emit light but it exerts and responds only to the gravity force; it enters the calculation as extra 

mass (halo) required to justify the flat galactic rotational curves.  
MOND requires an adjustment in the low acceleration regime 
Einasto ΛCDM model results larger than the NFW one, dynamical mass supplied by more dark matter in the ΛCDM scenario 
compared to the case of an NFW halo without cosmological constraints

GR could imply a gravitational dragging "DM-like" effect driving the Galaxy velocity rotation curve, i.e. the 
geometry - unseen but perceived as manifestation of gravity according to Einstein’s equation - is 
responsible of the flatness at large Galactic radii. 

Wrap-up

Barycentric Celestial Reference System
The BCRS is a particular reference system in the curved space-time  
       of the Solar system

• One can use any 

• but one should fix one : 

ICRF by VLBI
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Ephemeride Astrometry
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By setting a coherent GR framework, we are pursuing to:

✓Treat separately velocities and density with Einstein’s equations [contrary to what is done in 
classical models]  

✓Any modification of GR should be done with GR as background theory 

✓ Any modification should recover what is already confirmed, cross-checked comparisons 
✓Establish to what extent the MW structure is dictated by the standard theory of gravity  [avoiding 

replica of the common assumption that invalidate GR, i.e the GR effects are small in the linear 
approximation] or, viceversa, why  it should fail and requires Newtonian/alternative dynamics  

✓ At Galactic scale MW dynamics can be dominated, e.g., by Weyl, Lewis-Papapetrou spacetimes, 
whereas the Newtonian approximation is valid locally (e.g in the Solar System, binaries, …) 

GR is the standard theory of gravity over 60 order of magnitudes

Hypotehsis non fingo&Occam’s razor
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 MCMC fit to external Galaxies

Velocity profiles (SPARC data)
Classical (MWC)                         GR (BG) 

Best fit estimates as the median of the posteriors and their 1σ level credible interval

✓Extend the MW “geometries” to other galaxies:, the “geometries" of the Galaxy can play a reference role for 
other galaxies,  just like the Sun for stellar models
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‣ Improve the GR models by including more realistic solutions, e.g. metric solutions to describe the structure 
and evolution of a multi-structured Galaxy and its local Universe

‣ Fix boundary matching conditions between internal/external Einstein’s solutions [e.g. Mars and Senovilla “On 
the construction of global models describing rotating bodies; uniqueness of the exterior gravitational field" (gr-qc/
9806094v1)]

‣ Using hydrodynamical simulation for the inner part,  exploring semi-analytical solutions or Einstein-Vlasov 
system

‣ Adopt suitable gluing procedures [see J. Corvino 2025, S. Czimek and I. Rodnianski, 2022, P. T Chruściel and Wan 
Cong 2023, Aretakis S, Czimek S and Rodnianski I 2021] 
‣ Explore more “geometrical” observables enabling to prove the Milky Way formation and evolution 

‣ Export the fine-tuned template of our Galaxy to other galaxies, check other effects (e.g. weak lensing)  and 
set the limits

‣ Set comparisons at the scale of the Milky Way disc with the Lambda-CDM model predictions (outside-inside 
approach)

GR models offer the unique possibility of establishing a multi-laboratory for extensively testing gravity 
theories from Solar System to Milky Way and cosmological scales. 


In view of the next Gaia data release (inside-out approach):

Next developments
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Talk outline
Background
• Motivation: Astrometry from Hipparcus to Einstein, Gaia 
• Relativistic/Gravitational Astrometry

Challenging the Galactic Models with Milky Way stars
• Local cosmology as DCM laboratory
• Testing General Relativity/Gravity @MilkyWay scale
• Dark Matter interpretation in GR
• Simulations of CDM model predictions @MilkyWay scale 

Λ
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Formation History of the Milky Way disc 
Giammaria, Spagna, Lattanzi, Murante, Re Fiorentin, and Valentini (2021) MNRAS, 502, 2, 2251–2265

(Giammaria et  2021)

Central bar Exponential disk 

Size ~25 Kpc, i.e. ~1/10 of the virial radius 
Stars

Ga

(Cosmological) Initial conditions AqC4 (Spergel et al. 
2008) and MUPPI (MUlti Phase Particle Integrator, sub-
resolution model of star formation and feedback) 
implementation as in Giammaria et al (2021), following 
Murante et al. (2015).  

Select a   cube of the cosmological volume of side 
200-300 Mpc. MUPPI is then applied to a (10 Mpc) 3 

where stellar production and evolution is followed. 

At z=0, our AqC4 corresponds in (virial mass), ~1.6  x 
1012  Mʘ , and size (virial radius),  ~237 Kpc, to current 
estimates of the size of the MW. In particular, virial 
mass values ~ 1-1.3 x 1012  Mʘ   were reported in Posti 
& Helmi (2019) and Watkins et al. 2019) using 
dynamics of globular clusters, and in Eilers et al. (2019) 
and Crosta et al. (2020) utilizing observed galactic 
rotation curves.
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Giammaria et al (2021)
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Gravitomagnetism on galaxy scales Beordo, Bruni, Barrera-Hinojosa, Crosta in submission
W. Beordo, PhD thesis 

On large scales, the universe is typically described using the Friedmann-Lemaître-Robertson-Walker 
metric, with small perturbations treated within the framework of cosmological perturbation theory. On 
smaller, highly non-linear scales, the standard approach involves Newtonian 𝑁-body simulations, 
which provide a robust description of gravitational clustering and accurately capture many aspects of 
non-linear structure formation
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Partitions of the simulation domain into a unique 
tessellation of tetrahedra, whose vertices are 
defined by the particle positions 

The field is linearly interpolated in 𝑛 points inside 
the tetrahedron in which the grid point is located 
and the value in this point is computed as the 
volume-weighted average of the field inside the 
tetrahedron
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Representation of the 
stream lines of the vector 
potential, on top of the 
scalar potential 
distribution; streamlines 
with higher thickness 
represent regions where
the magnitude of the 
vector potential is larger.
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vector potential power spectrum
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The mandatory use of GR for astrometry in space has opened new possibilities and strategies to apply Einstein’s Theory in classical astronomy 
domain, providing new coherent methods and “laboratories” to exploit at best the standard theory of gravity and the LDCM scenario, i.e. any 
modification/extension of GR is done with GR as background theory

Gravitational Astronomy in this capacity is part of Fundamental Physics and an essential tool for building up a spacetime map of our Universe

Any GR tests performed by using Gaia @SS or @MW scale can play a reference role for other tests, much like the Sun for the stars, the Earth/
Jupiter for exoplanets, our Galaxy for other galaxies, and so on.. 

For the first time, there was quantitative evidence of the differences between the Newtonian and GR approaches to MW dynamics pushing 
towards more mathematical solutions of Einstein’s equations. Working out such solutions will imply to analyse the exchange of energy-momentum 
between matter and gravitational fields, including the role of the rotational energy, and to what extent it shaped the formation and evolution of our 
present Galaxy.

the “ether” was cured by a new kinematics (i.e. special relativity) instead of “new” dynamic as inspired by the FitzGerald-Lorentz contraction phenomena 
(“extra molecular force”)  
“We know that electric forces are affected by the motion of the electrified bodies relative to the ether and it seems a not improbable supposition that the molecular forces are affected by 
the motion and that the size of the body alters consequently.”   FitzGerald, Science, 1889

“One day, our actual knowledge of the composition of the fixed stars sky, the apparent motion of the fixed stars, and the position of the spectral lines as a 
function of the distance will probably have come far enough for us to be able to decide empirically the question whether or not Λ vanishes” (Einstein, 1917, 
letter to de Sitter)

From Relativistic astrometry

From Gravitational astrometry

Conclusions, the Gaia Legacy and its legacy science
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