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General Relativity:
foundations and predictions



General Relativity

GR describes gravitational interaction
by the spacetime curvature

The theory successfully passes
the Solar System Tests

Static and spherically
Background: the paradigm

Schwarzschild Solution
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* Black Holes




General Relativity:
shortcomings



Shortcomings in GR

Large Scales No theory is capable of solving
these problems at once so far

» Universe accelerated expansion
» Inflation
» Galaxy Rotation Curve
» Mass-Radius diagram of Neuton Stars
» Fine-tuning cosmological parameters
Small Scales
» Renormalizability
» GR cannot be quantized
» GR cannot be treated under the same
standard of the other gauge interactions
» Discrepancy between theoretical
and experimental value of A
» Spacetime singularities



Cosmological issues
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Alternative Theories of Gravity

Classification

» Extended Theories: f(R) gravity. GRis recovered for f(R) =R
* Modified Theories: f(T) teleparallel gravity. Torsion T instead of curvature R
* Non-minimaly coupled scalar fields @ R. Effective gravitational couplings

Motivations

e Could account for UV quantum corrections?

Could reproduce IR cosmic evolution?
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* Could account for the Mach Principle?
* Could address Dark Matter and Dark Energy?
* Could probe Equivalence Principle at quantum scales?

* Key roles of Multimessenger Astronomy and gravitational waves




Modified gravity roadmap Constrained by

GW speed
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Is 1t possible to find out probes and test-beds for other
theories of gravity?

Geodesic motions around compact objects e.qg. SgrA*
Sagnac and Lense-Thirring effects
Exact torsion-balance experiments

Microgravity experiments from atomic physics

Violation of the Equivalence Principle
Effective masses related to further gravitational degrees of freedom

Extra gravitational modes over GR



Sagnac effect

Consider an observer in motion in a general spacetime background.
It is always possible to define the so-called proper reference frame of the observer in
which the spacetime metric reduces to the following form:

y 0 2 o > 1 i —\ 2 1 - - B s 3
ds? = —(dz°)? |1+ a2+ —(a-2)" — = (Q X w) + Ryss-x'x?
+2dz0da? lewﬂjwic — El‘bwazljazic +dz'dad |6 — lR»wm’;azi + o(r?)
c ik g~ 0jik i g ikjl
a (Fgofe:'gcienlelzraa:t'ﬁg surface) ﬁ Angular velocity vector *
= spatial distance from R
T = \|ZT observer’s worldline ,&D&B Riemann tensor components

Independent of background geometry then it is a possible test for any theory of gravity



Sagnac effect

Consider an observer in motion in a general spacetime background.
It is always possible to define the so-called proper reference frame of the observer in
which the spacetime metric reduces to the following form:
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Sagnac effect

t The figure on the left depicts two
counterpropagating light rays:

they follow different null-geodesics with a
common spatial projection.

A stationary observer (d, ( time indep.) on
the optical path measures the following
difference in the roundtrip time intervals:
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Sagnac effect

t The figure on the left depicts two
counterpropagating light rays:

they follow different null-geodesics with a
common spatial projection.

A stationary observer (d, ( time indep.) on
the optical path measures the following
difference in the roundtrip time intervals:
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Light
source

Sagnac effect in a passive interferometer

Detector

In a passive Sagnac interferometer

(e.g. Fiber Optic Gyro) the light
generated from an external source is
injected into two counter-revolving
paths. At the exit port of the
interferometer the beams (or photons)
acquire a relative optical phase
difference:

wavelength of light



Sagnac effect in ring resonators

In ring resonator (i.e. a closed optical
cavity) resonance conditions are
modified by rotation;

the frequency spacing of the lowest
energy counterpropagating modes
sustained in the cavity is proportional to
the rotation rate:
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frequency of the cavity



Sagnac effect in ring resonators
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Sagnac effect in ring resonators

6  colatitude

angle between
area vector and
local normal

angle between
ﬁ area vector and
local South direction

In ring resonator (i.e. a closed optical
cavity) resonance conditions are

modified by rotation;
the frequency spacing of the lowest

energy counterpropagating modes
sustained in the cavity is proportional to

the rotation rate:
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Lense-Thirring Effect

This effect predicted by GR can be obtained starting from a Kerr-like metric.
It can be adopted to test any theory of gravity described by a metric

ds® = A(t,r,0)dt> + B(t,r,0)dr> + C(t,r,0)d6> + D(t,r,0) sin® 0de* + E(t,r,0)dt do
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Gravitomagnetic effects in
theories of gravity




Proper reference frame

Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973)
Gravitation

The proper reference frame of a general observer is
defined according to the following procedure:

1) Let T be the proper time as measured by a clock
carried by the observer; call y(T) the observer’s
worldline parametrized by T;

2) assign at each point of ¥ a set of three arbitrary
normalized vectors {€7, €5, €3} that are:

a) mutually orthogonal,
b) ortoghonal to the four-velocity u = eg;

3) {eg, €1, €3, 3} define an orthonormal tetrad field
along y that we identify with the proper reference
frame of the observer;

4) near the observer, proper reference frame coordinates
are uniquely defined accordingly:

a) the timelike coordinate line is the worldline itself
b) the spacelike coordinate lines are the spatial
geodesics stemming from and tangent to

{e7,e3,e3}
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What kind of information does it provide?
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Equations of motion of inertial guidance gyros

Rotation axis of the gyro
(a spinning top in this case)

The simplest model of a gyroscope is a torque-free
spinning body.

In Newtonian Mechanics, the angular momentum is a
three-vector.

Angular momentum conservation implies that the
orientation of the rotation axis of a gyro is unaffected by
motion, i.e. it does not rotate relative to (the
equivalence class of) inertial reference frames.

Angular
4—,_ momentum of the

d§ gyro
= =0
dt



Equations of motion of inertial guidance gyros

arbitrary spacelike gyro’s 4-velocity

hypersurfaces
In Special Relativity the conserved angular ; | ) l
momentum of a body is an antisymmetric rank 2 . 1 8 7w
(E4) = J™(2 Sy = ——€aguu” J*
tensor J. JH(Ba) = J7(E5) ¢ 9 Pk
dS), 8

The (intrinsic) angular momentum four-vector S dr a”Sguy, =0
(defined in terms of J) is Fermi-Walker I_, ayro’s 4-acceleration
transported along the worldline of the gyro.

y . . s - .
Writing the transport equation is a momentarily — = Qppee X S

dt rr

comoving Lorentz frame, it is possible to show
that gyros precess, in general. The precession rate
is, again, relative to inertial frames, identified
global Lorentz frames in this context.



Equations of motion of inertial guidance gyros

arbitrary spacelike gyro’s 4-velocity

hypersurfaces
| l
¥ & 1 8
J‘U'V(ZA) ZJMU(EB) Sa = _Eeaﬂm/u J
: B _
According to the Equivalence Principle, if a uavaSu —a”Sgu, =0
gyroscopes moves in curved spacetime, its spin is covariant <J L, ,
; . ; : derivative 8Yro's proper
still Fermi-Walker transported along its worldline. 4-
. acceleration
dS - nd

However, we have lost the possibility to define — =W X S
global inertial (Lorentz) frame, in general. dt ®

We expect the gyroscopes to precess, but relative

to what? How to describe it? Is it useful?



Equations of motion of inertial guidance gyros

v

«Lorentz transformation» .
asymptotic

comoving frame =

At least in asymptotically flat spacetimes, it is still
possible to define unambiguously the gyroscopic
precession.

From the Fermi-Walker transport equation it is
possible to derive a precession equation for the
angular momentum of a gyro, where the rotation
vector is relative to an ideal inertial frame located
at infinity. This frame is usually assumed to be tied,
i.e. at rest, relative to far-away fixed stars.

inertial frame

u*V, S, —a’Spu, =0

—

a5 ,
— =0 ec
% pi. x S

contains (also) info on
spacetime geometry



Equations of motion of inertial guidance gyros

The precession angular velocity can be derived in various way, for example adopting the following procedure:

1. Write an asymptotically flat metric (e.g. Lense-Thirring or PPN metrics) adopting rest frame coordinates of the source:

—

2GM 4G z 2GM S 1
d32:_(1_ G >c2dt2+ Gmx‘]-daédt+(1+G—)5ijdxzda:3+0(—)

c?r c: 73 c2r 3

2. Introduce an orthonormal frame field associated to the metric. It is possible to show that the spatial vectors of the
frames are just rescaled by this transformation (up to some order in the multipolar or PN expansion), and they are
not rotated relative to the coordinate frame spatial vectors.

relative to distant stars

+
2 b i
L a a __ _a
ds® = nue’e e’ = e dz" ¢

[ ” H l e : 8

tied” to asymptotic they are functions of r — ®© 5 ?
inertial frame,‘ spacetime coordinates —

hence non-rotating and depends potentials €9 €y = 8y

€1

= 0,



3. Agyrois Fermi-Walker transported along its worldline. Call ¥ its velocity relative to the coordinate grid.

gyroscope’s

, four-velocity
gyroscope’s

angular
momentum

S-u=0

Fermi-Walker transport
equation of a gyro

VaS=u(a-S)

gyroscope’s axis

Tetrad frame

Asymptotic
inertial frame
(fixed stars)



3. Agyrois Fermi-Walker transported along its worldline. Call ¥ its velocity relative to the coordinate grid.

4. In order to compare gyro’s orientation with the asymptotic frame, we define a comoving frame: point by point, this
frame is related to the tetrad frame introduced before by a pure boost of velocity ¥ . The comoving frame is non-
rotating relative to both the not-comoving tetrad frame and the coordinate frame.

e-

- 1
~ —_ ~ —y S .
ut = (1,0) = SH — (0, S) / Comoving frame
T PR
\ €; +
comoving v .\ boos S
frame index t
. e].
@ Tetrad frame
Fermi-Walker transport
equation of a gyro 9l 81:
v Asymptotic
VuS = u (a . S) e- ,I inertial frame
/ (fixed stars)
V4
€3



A gyro is Fermi-Walker transported along its worldline. Call ¥ its velocity relative to the coordinate grid.

In order to compare gyro’s orientation with the asymptotic frame, we define a comoving frame: point by point, this
frame is related to the tetrad frame introduced before by a pure boost of velocity ¥ . The comoving frame is non-
rotating relative to both the not-comoving tetrad frame and the coordinate frame.
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up to v3 or r~% order | I _>l o
v Asymptotic
.I inertial frame
S . \/ (fixed stars)
d(S - S) a5 _ 3
dr 0 a7 8
1. ¢ | this precession angular velocity is
gyros spin at a =

relative to distant stars
constant rate



Consider an arbitrary observer carrying a set of
inertial guidance gyros with mutually orthogonal

/ axis.

7.
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Consider an arbitrary observer carrying a set of
inertial guidance gyros with mutually orthogonal

/ axis.

The local rotation vector of the observer’s proper
frame, point by point along the worldline, is defined
as the rotation vector of its spatial axis relative to the
/ inertial guidance gyros, i.e. rotation of an arbitrary

7.

observer is unambiguously locally defined as the
failure of the proper frame basis vectors to be Fermi-
Walker transported along its worldline.

\
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Consider an arbitrary observer carrying a set of
inertial guidance gyros with mutually orthogonal

/ axis.

The local rotation vector of the observer’s proper
frame, point by point along the worldline, is defined
as the rotation vector of its spatial axis relative to the
/ inertial guidance gyros, i.e. rotation of an arbitrary

7.

observer is unambiguously locally defined as the
failure of the proper frame basis vectors to be Fermi-
Walker transported along its worldline.

\

If the spacetime is asymptotically flat, we have an
alternative «non-local» definition of rotation relative
to the class of ideal asymptotic inertial frames.




Consider an arbitrary observer carrying a set of
inertial guidance gyros with mutually orthogonal

/ axis.

The local rotation vector of the observer’s proper
frame, point by point along the worldline, is defined
as the rotation vector of its spatial axis relative to the
/ inertial guidance gyros, i.e. rotation of an arbitrary

7.

observer is unambiguously locally defined as the
failure of the proper frame basis vectors to be Fermi-
Walker transported along its worldline.

\

If the spacetime is asymptotically flat, we have an
alternative «non-local» definition of rotation relative
to the class of ideal asymptotic inertial frames.

/ / The two definitions are inequivalent:
— — —
.<> Qoo — Qype = 'Qprec
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Gyroscope precession

—

2 prec

Thomas

ﬁTh + ﬁdS + ﬁLT

|

de Sitter

a

precession

This effect is present also in flat
spacetime. It is a manifestation
of Wigner rotation due the
composition of two
infinitesimally separated Lorentz

boosts in different spatial
directions.
o 1
QTh = ———7 X
2c2

velocity relative to
coordinate grid

T

proper
acceleration

Lense-

precession

It is also called geodesic effect. It
manifests  itself when the
gyroscope moves in the
gravitational field of a massive
body. It only depends on the
mass multipoles, so it is present
also for static sources.

1

v

Thirring
precession

It is a manifestation of frame-
dragging , i.e. a distortion of the
spacetime that modifies the
inertia of test-bodies nearby
rotating sources. It depends on
current multipoles and it affects
also gyros placed at a fixed
location. T

l

Gravitomagnetic effects



Gravitoelectromagnetism (GEM)

Linearized General Relativity
in Lorenz gauge
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Gravitoelectromagnetism

GEM precession terms are a gravitational analogue of the Larmor precession:

Grayitomagnetic Induced gravitomagnetic field in
field for an the comoving frame + spatial

observer at rest l curvature correction

! L2
- 3 uvxVe

X A— — 5

I 2 C

Qrr Qs

grav —

— 1—»
Q) = ——V
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Gravitoelectromagnetism

Discarding all except the lowest non-trivial orders in the multipolar expansion of the source,
General Relativity the precession vectors assume the following form:

Q(GR) — (14 1 GNM vxr Vanishing fora gyroscope at

DS 2 62 /',_3 rest in the coordinate grid For a gyroscope at rest
on Earth’s surface both

G (J ) Precession in the same direction of — the vectors are

‘r)r rotation of the source on the axis of : :
Q<LC;R) - 2—]\2 _J -+ 3—2 — rotation of the source, Cont?I?Ed in the
cer r in the opposite direction in the equatorial meridian plane
plane

For a gyro in free-fall the Thomas precession is

vanishing. For a gyroscope at rest on Earth’s surface: M Mass of the source
Y7 r Position relative to
(GR) 1, o 1 (TN*\[ VX o< (GR) the center of mass
Qpp " =—53XVe=—5—75——3 Qps
. & J Angular

momentum



Gravitoelectromagnetism

The Sagnac time delay predicted by General Relativity for an interferometer at rest on Earth’s

surface is given by:

4>,
ATgr) = C—QQ@

I

Earth’s rotation
rate as measured
at spatial infinity

cos (6 +a)+2

1— moment of inertia

5 sin@sina — 53

T— Earth’s radius

(2cosfcosa+sinfsina)

In ideal conditions, i.e. neglecting all sources of error (e.g.
seismic noise, instrumental instabilities, environmental
conditions ecc.) and if Earth’s rotation vector is known by
other means (e.g. VLBI) a system comprising two
independent Sagnac interferometers is enough to determine
and decouple the de Sitter and Lense-Thirring effects (since
their precession vectors are contained in a single plane).



Gravitoelectromagnetism

For a gyroscope at rest on Earth’s surface, adopting the PPN formalism we have:

Q(PPN) _ _S (GR) _ _9 (TYN —J+‘3(Jr)r M Mass of the source
LT _L LT _l (2 113 ) ,2 r Position relative to
the center of mass
QPPN _ (LG v ;e
Ds -2 c? =
b ]
(PPN)  ~(GR) 1V  1GNMvxr B
4’ GyM CGNI
AT(ppNn) = —5 g [cos(f+a)+ (1+7) )N sinfsina +fON7§B (2cosfcosa+sinfsina)
= c“ Rg 4 c*Rg



Gravitoelectromagnetism

In order to measure corrections to General Relativity, we need a very high-sensitivity.

Note that the total contribution of de-Sitter and Lense-Thirring effects, as predicted by General
Relativity, to the Sagnac time delay in a closed interferometer is nearly 9 orders of magnitude

lower than the kinematic effect due to Earth’s rotation:
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I Schwarzschild radius
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Case Studies

Horava-Lifshits Gravity
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General Scalar-Tensor Gravity
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General Scalar-Tensor Gravity

S = / V=0 [f (R,RasR*,¢) + w(¢)VadV0| d'x

Field equations l

+ w (D vad)va@ y o
f ( )9 | Guv — V;L vufR + gl.ll/DfR + 2f) RN RQU

fRR;w -

_Qf)(vavl/]?:: + VQV[JRS) + D (fYR;Lz/) + g;u/vﬁva (f}RQJ) + w(@)vﬁt@vy(p =0

l Klein-Gordon equation

2%0(6)06 + ws($)VadV — f5 =0

Explain late and early time evolution without DM and DE

[ Properties:

Fit the experimental observations at the astrophysical level



Horava-Lifshitz Gravity

Theory of quantum gravity capable of solving
some small-scale shortcomings of GR

[ Properties:] — Lorentz-Invariance emerges at large distances

Saccessfully passes the Solar System Tests

_ —1_ wr? — wr?
A possible spherically goo = (g11) 7= 1+ wr !
symmetric solution:

w — Constant

Schwarzschild solution: | 4M/wrd <« 1




However.....

Exact spherically symmetric solutions in ETGs are very rare

Weak Field Limit



The Weak-Field limat

Often exact solutions in MOGs cannot be found analytically

Motivations:

The typical values of the Newtonian gravitational potential
@ are larger than 10~ in the Solar System (in geometrized
units, @ is dimensionless).

Scheme:

Linearization of the metric tensor R,, — é Rg,, = 87GT,,

. (2) (4) (3)
gﬁtu i 9(3) + _5 + g(z) +
01 i] ij Qv = M + hyw, |h‘w| < 1.

1

Ru - 3

1
Rg,, = 5(608,‘ hg + 8,0,h% — 8,0,h — Dhyy — 1,,0,00h™ + 1, 0h)




Some restults provided by PN limit in ETGs

goo ~ O(6), goi ~ O(5) and gi; ~ O(4)

d=0"'R

=7 { RIL+ f(0)] + (. 1)(06 — R) }d*a

Non-Local Gravity: after constraining the free
parameters, it fits the Keplerian orbit better than GR

K. F. Dialektopoulos, D. Borka, S. Capozziello, V. Borka Jovanovic and P. Jovanovic Phys. Rev. D
99 (2019) no.4, 044053 doi:10.1103/PhysRevD.99.044053
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Galaxy rotation curve for specific values of free parameters. Solid
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ine is the best fit line of the total circular velocity, the dotted and
the dashed lines refer to Newtonian contributions of star and

gaseous components respectively respectively. The non-Newtonian

NGC 4183
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contribution is labeled by the long-dashed line.

C. F. Martins and P. Salucci. Mon. Not. Roy. Astron. Soc 381(2007),
1103-1108 doi:10.1111/j.1365-2966.2007.12273.x




First case: f(R, R*YR,, ) gravity



Weak field limit for f (R, R*' R ,,, @) gravity

Linearization of the metric tensor

Co(2 4 (3)
1+0dog +900 +---  Goi +--
Guv ~ (3) - (2)

gOZ + o« oo _Ol_] + gZ] + e oo

Three potentials arise: two scalar potentials and one vector potential

@, Y are proportional to the power c? (Newtonian limit) while A; is proportional to ¢3 and = to c*

(post-Newtonian limit)

ds® = A(t,r,0)dt> + B(t,r,0)dr*> + C(t,r,0)d0? + D(t,r,0) sin? 0d¢? + E(t,r,0)dt do

goo = Al(t,r,0)
goi = E(t,r,0)

9;;6" = B(t,r,0) + C(t,r,0) + D(t,r,0)

Kerr spacetime




Application of the PN limit to
f(R,RY"R,, @) gravity

By means of the decomposition of the metric hoo ~ O(2
Gpv = Tw + hmn Ihlw| < L > h’Oi ~ 0(3
The function f, up to the c** order, can be developed as:
_ (0) 0.0. 99 -
f(R.RaﬂRaﬂ.QS) =fR(O,O,¢(O-))R+fRR(O’ O’¢ )R2 _+_f¢¢’( ¢ )(¢_¢(0))‘_

2 2
+ frp(0.0,¢ )R + fy(0,0,¢)RsRY,




Weak field limit for f(R, R*VR,,, @) gravity

Result:
* Form of the vector potential » |A(x) = |)f_| [1 — (1 + my|x]|) e—m*’]xl] %= J
. 4 éj\[ —mpkpr
* Form of the scalar potential > lo(r) = ——— |1+ g(&,m)e” RER
T

~':'r 4 —myrmT
+11/3 - g(emle R - o]

with the definitions:
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The circular velocity of a ball source of mass M and radius R, with the
potentials of Table I. We indicate case A by a green line, case B by a yellow line,
case D by a red line, case C by a blue line, and the GR case by a magenta

line. The black lines correspond to the Sanders model for —0.95<a<-0.92.

The values of free parameters are w(p ©).. . —1/2,

E==5n=3 my=15*my m=15 *mg mgz=1% R



Lense-Thirring precession in f(R, R"'R,,, ¢) gravity

EG 1 P Ny . 1' - - 2 T |
Dy = 5(€770; A) (€eni0°A*) = r—3\/(€ckm()’”€”"']i$j) = —e™" (1 +myr +mir?) Q"
Alx) = i 1 — (14 my|x|) (’_'"Y:x] x=xJ Y = RHR
by |x"_) /= - ’ v
Q(GR) _ 7_5 J 7713— — 1
LT = 4My3 fy (0,0,6®)

For fy — 01.e. my — *, we obtain the same outcome for the gravitational

potential of f(R, ¢)-theory



Gravitoelectromagnetism jn f(R, R*'R uv @) gravity

For a gyroscope at rest on Earth’s surface in a higher-order scalar tensor theory we have:

(ST) (GR)
Qps —ps =

5

. ~ ~ AR .
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{9(& 1) (‘mR’:’R‘T’ + 1) F ('m.RI:fRR%) e_mlfi"'h’" _
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Capozziello et al. PRD, 91 (2015) 044012



Weak-field limat in
Horava-Lifshitz Gravity

. 2 . K2 P a1 :
S = ‘/d‘}a’dt N {? ([&i,j]i J — /\]&2) ~ o (V;‘R_jkv Ri* _ ViR;:V'R k_ gViRV R)}
Iﬂ—ij - 2*% (g,-j - Vz-]\"j — Vj!\",-_) I(Q = gij]'\“—‘ij
Linearization of the metric tensor
L (2) 1) (3)
v ™~ (3) - (2)
goz +... _01]+glj +...

With similar computations as the previous case, the ratio between the
Horava-Lifshitz and General Relativity Gyroscopic precession is

P
<

0 G a :
HL _ (1 +2—a; — '2—2) . > a4, A, constants to be constrained
Gn aq with

G .
Wr

| -

Y

Qi . — Gyroscopic precession

G — " effective gravitational constant




Constraining aq, a,

It has been shown that, in order for the matter
coupling to be consistent with solar system tests,
the gauge field and the Newtonian potential must
be coupled to matter in a specific way, but there are
no indication on how to obtain the precise
prescription from the action principle. Recently
such a prescription has been generalised and a
scalar-tensor extension of the theory has been
developed to allow the needed coupling to emerge
in the IR without spoiling the power-counting
renormalizability of the theory.

Vector

T

A-A
N

o =

0% ; .
"#:i(u‘z “ . —22)
Qe 3 Gn a

Matter action

Sy = /dtd%N\/E L (N, Ny, §ijy ¥n)

Lapse function

/

N = (1-a0)N, _~Scalar Potential
N* = N'+ Ng“V;¢,
g; = (1- _0:2_0)2.92'9"

: . 1 .
. with A= —¢+N'Vig+ NV'¢Vig,

aq, a, are then related to the potentials and can be constrained by GINGER measurements



Gravitoelectromagnetism in H-L gravity

For a gyroscope at rest on Earth’s surface in Horava-Lifshitz gravity we have:

J

oHL) _ GHL o(GR) _ GHL {_J . (J'P)I‘}

LT GN LT CQTS TQ
Q<HL):—<1—I—GHLCL _CLQ) GNMv Xr
D5 2 Gy a1/ ¢ 3

(HL) ~(GR) — 1GNMvXr
QTh _QTh __5 2 3

S. Capozziello, et al., Eur. Phys. J. Plus 136 (2021), p. 394



Experimental constraints




Experimental constrains: GP-B

Q(LETG) = —e™™"(1 + myr + myz”z)Q(L(%R) and Q(L(;R)

G
277

A\ 4

(GR) (EG)
Qi = Q'+ Q7

The Gravity Probe B (GP-B) four gyroscopes aboard an Earth-orbiting satellite
allowed to measure the frame-dragging effect with an error of about 19%.

Extended Gravity(EG).
! OLT QL‘T
Measured Predicted ||—ebs — GRI _ 0.05
Effect (mas/y) (mas/y) **GR
Geodesic precession 6602 + 18 6606
Lense-Thiring 37.2+7.2 39.2
precession

The changes in the direction of spin gyroscopes, contained in the satellite

orbiting at h = 650 km of altitude and crossing directly over the poles, have

been measured with extreme precision




Experimental constrains: GP-B

Results:

1) (1 +myr® + myzr*")) e~ mYT < OS2ur| ~0.19

~ 1o(CR)
Q|

Q(LETG) = —e7"™7(1 4+ myr + myz”z)Q(L(%R)

Capozziello et al. PRD, 91 (2015) 044012

my-

~ v (0,0,60)




Experimental constrains: LARES

The Laser Relativity Satellite (LARES) massion of the Italian Space Agency 1is
designed to test the frame dragging and the Lense-Thirring effect, to within 1%

of the value predicted in the framework of GR

The body of this satellite has a diameter of about 36.4 cm and weights
about 400 kg i

It was inserted in an orbit with
1450 km of perigee, an inclination
of 69.5 t 1 degrees and eccentricity
9.54 X 10~*

It allows to obtain a stronger
constraint
for my:

_ oo

(1 4+ myr* + my?r*?)e ™" < oG®) = (.01
e

From which we obtain my 2 1.2 X107°m™!



LARES vs GP-B

Summang up, using data from the Gravity Probe B and LARES missions, we

obtain constraints on my.

(GR) (EG EG _ GR - 1
r = Y40l QY = e (14 myr 2R =
GP-B LARES
hzy > 7.3 x 10-"m—1 my > 1.2 x 10 °m™!

Thais result shows that space-based experiments can be used
to test extensively parameters of fundamental theories

Perspective:

Put a further limit to the mass by GINGER




GINGER: the case of
Horava-Lifshitz Gravity




Terrestrial experiment: GINGER

GINGER measures the difference in frequency of light of two beams circulating in a laser cavity in
opposite directions. This translates into a time difference between the right-handed beam
propagation time and the left-handed one

The difference in time can be linked to the Sagnac frequency 25, measured by GINGER

Perimeter Laser wavelength

7

ch:N(A+—)\_):Nc(f —J+ :P—’\af——ﬂs

\ J

£2
Wavelength difference \/

Splitting in terms of frequency
between the two beams




GINGER in Horava-Lifshitz Gravity

= —2\/90 fQOz dS ” QS e P

262 i .
v900 | goi ds'

900

In Horava-Lifshitz gravity, it is

Qg = ;13—1;1\ 955 [cos(@ +a) — (1 + G?'_N a; — —) i—ﬁé sin asin 6 — g;ﬁ; (2 cos 6 cos o + sin 6 sin )
Sagnac term /
Lense-Thirring term
c A > Area encircled by the light beams
. a > Angle between the local radial direction and the normal to the plane of the array-laser ring
e B » Colatitude of the laboratory
° QE » Rotation rate of the Earth as measured in the local reference frame
e I » Momentum of Inertia
e P » Perimeter
e A » Laser wavelength




Horava-Lifshitz vs General Relativity

G = GN
General Relativity | °
4A GNM .
Qg = ﬂQE [cos(&-i—a)— 2R sin asin 0
I |
—g;; (2cos€cosoz—|—sin951na)] ZQ

G =Gy Horava-Lifshitz Gravity

_4A G as GM
Qg = ﬂQE [cos(@—l—a)— (1—}-@@— a) 2R

sin «x sin @

Glg
2R3

(2 cosf cos a + sinf sin ) ]




Perspectives:

Free parameters constrained by GINGER

(2 cos @ cos a + sin @ sin )

_ 4A G az\ GM . , Glg
Qg = P Qg [cos(@—l—a) — (1-|— Gn ai — 01) 2R sin arsin 6 — 2R3



GINGER advantages

* The actual precision of GINGERINO is 1/1000 in the geodesic term, 1/100 in the LT term

* GINGER experiment should overcome such uncertainty providing a precision of 1/1000 in
the LT term

* The presence of two rings yields a dynamic measure of the angle a

2R sin asin 6 — 2R3 (2 cos @ cosa + sinHSina)]

J |
f |

Geodesic Term LT Term

4A G as
Qs = P—AQE [cos(ﬁ—l—a)— (1+ Eal_ a)

Notice that:

o While the measure of the LT term can constrain the value of G, from the
measure of the geodesic term we can get the value of a, and a-

« The precision of GINGERINO is 10~1° rad/s, which corresponds to a precision of 1.4 - 10~°
with respect to the dominant term.




Conclusions

In the context of metric theories of gravity, linearized field equations can be studied in the
weak field limit and small velocities generated by rotating gravitational sources, aimed at
constraining the free parameters, which can be modeled as effective masses (or lengths).

The precession of spin of a gyroscope orbiting around a rotating gravitational source can
be studied.

Gravitational field gives rise, according to GR predictions, to geodesic and Lense-Thirring
processions, the latter being strictly related to the off-diagonal terms of the metric tensor
generated by the rotation of the source (Kerr metric)

The gravitational field generated by the Earth can be tested by Gravity Probe B and
LARES satellites. These experiments tested the geodesic and Lense-Thirring spin
precessions with high precision.

The corrections on the precession induced by scalar, tensor and curvature corrections can
be measured and confronted with data.

Earth-based experiments can improve satellite constraints in view to probe alternative
theories of gravity (Extended Gravity and Modified Gravity).



Conclusions

In f (R, R" Ry, @) gravity, GP-B and LARES satellites provide

— .

my > 7.3 x 10-"m-1 my >1.2x 10 °m™!

Perspective: constraint on m,, by GINGER

Perspective: constraints on a;, a, by GINGER

In Horava-Lifshitz gravity, the weak-field limit provide

sin @ sin «v

1A M
coT E cos(f + o) — 1-%—£Cll—a—2 ¢
c Gn ay ) c?
I
_ gRE; (2 cos @ cos v + sin O sin a)]




