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General Relativity: 
foundations and predictions



General Relativity

GR describes gravitational interaction 
by the spacetime curvature

The theory  successfully passes 
the Solar System Tests

Static and spherically 
Background: the paradigm

Schwarzschild  Solution



• Black Holes

• Gravitational Waves



General Relativity: 
shortcomings



Shortcomings in GR

Large Scales                                                                     No theory is capable of solving 
        these problems at once so far

Ø Universe accelerated expansion                                   
Ø Inflation
Ø Galaxy Rotation Curve
Ø Mass-Radius diagram of  Neuton Stars
Ø Fine-tuning cosmological parameters

Small Scales
Ø Renormalizability
Ø GR cannot be quantized
Ø GR cannot be treated under the same 
       standard of the other gauge  interactions
Ø Discrepancy between  theoretical
       and experimental value of Λ
Ø Spacetime singularities



Cosmological  issues

Extra scalar fields for  
inflationary expansion

Extra scalar fields and new 
particles  for Dark Side

Cosmological constant puzzle



Alternative Theories of  Gravity
Classification

• Extended Theories: 	𝑓 𝑅 	gravity. 	GR	is	recovered	for	 𝑓 𝑅 = 𝑅
• Modified Theories:  𝑓 𝑇 	teleparallel	gravity. Torsion T instead of curvature R
• Non-minimaly coupled  scalar fields φ	𝑅. Effective gravitational couplings

Motivations
•  Could account for UV  quantum corrections?

• Could reproduce  IR cosmic evolution?

• Could account for the Mach Principle?

• Could address Dark Matter and Dark Energy?

• Could probe Equivalence Principle at quantum scales?

• Key roles of Multimessenger Astronomy and gravitational waves





Is it possible to find out probes and test-beds for other 
theories of  gravity?

Ø Geodesic motions around compact objects e.g.  SgrA*

Ø Sagnac and Lense-Thirring effects

Ø Exact torsion-balance experiments

Ø Microgravity experiments from atomic physics

Ø Violation of the Equivalence Principle 

Ø Effective masses related to further  gravitational  degrees of freedom

Ø Extra gravitational modes over GR



Sagnac effect

Consider an observer in motion in a general spacetime background.
It is always possible to define the so-called proper reference frame of the observer in 
which the spacetime metric reduces to the following form:

spatial distance from 
observer’s worldline Riemann tensor components

proper acceleration 
(𝑎⃗ ≈ −𝑔⃗ on Earth’s surface)

Angular velocity vector *

Independent of background geometry then it is a possible test for any theory of gravity
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Sagnac effect

The figure on the left depicts two 
counterpropagating light rays:
they follow different null-geodesics with a 
common spatial projection.

A stationary observer (𝑎⃗, Ω time indep.) on 
the optical path measures the following 
difference in the roundtrip time intervals:

Sagnac time delay

Angular velocity vector *

Area vector
of the enclosed path
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In a passive Sagnac interferometer
(e.g. Fiber Optic Gyro) the light
generated from an external source is
injected into two counter-revolving
paths. At the exit port of the
interferometer the beams (or photons)
acquire a relative optical phase
difference:

Sagnac effect in a passive interferometer

wavelength of light



In ring resonator (i.e. a closed optical 
cavity)  resonance conditions are 
modified by rotation;
the frequency spacing of the lowest 
energy counterpropagating modes 
sustained in the cavity is proportional to 
the rotation rate:

Sagnac effect in ring resonators

perimeter 
of the cavity

Sagnac
frequency

𝑓! 𝑓!
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In ring resonator (i.e. a closed optical 
cavity)  resonance conditions are 
modified by rotation;
the frequency spacing of the lowest 
energy counterpropagating modes 
sustained in the cavity is proportional to 
the rotation rate:

Sagnac effect in ring resonators

perimeter 
of the cavity

Sagnac
frequency

𝑓" < 𝑓! 𝑓# < 𝑓!

𝜃 colatitude

𝛼 angle between
area  vector and
local normal

𝛽
angle between
area  vector and
local South direction



Lense-Thirring Effect

Correction to the precession of a 
gyroscope near a large rotating mass, 
due to the dragging of the spacetime!

Rµ⌫ � 1

2
gµ⌫R =

8⇡G

c4
Tµ⌫
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This effect predicted by GR can be obtained starting from a Kerr-like metric. 
It can be adopted to test any theory of gravity described by a metric

Angular 
Momentum



Gravitomagnetic effects in  
theories of  gravity 



The proper reference frame of a general observer is 
defined according to the following procedure:

1) Let 𝜏 be the proper time as measured by a clock 
carried by the observer; call 𝛾(𝜏) the observer’s 
worldline parametrized by 𝜏;

2) assign at each point of 𝛾 a set of three arbitrary 
normalized vectors e!", e!#, e!$ that are: 

a) mutually orthogonal,
b) ortoghonal to the four-velocity u = e!%;

3) e!%, e!", e!#, e!$ define an orthonormal tetrad field 
along 𝛾 that we identify with the proper reference 
frame of the observer;

4) near the observer, proper reference frame coordinates
are uniquely defined accordingly:

a) the timelike coordinate line is the worldline itself
b) the spacelike coordinate lines are the spatial 

geodesics stemming from and tangent to 
e$%, e$&, e$'

Proper reference frame

Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) 
Gravitation



Area vector

How to interpret it?
What kind of information does it provide?

Proper reference frame

proper acceleration local rotation vector



Equations of  motion of  inertial guidance gyros

The simplest model of a gyroscope is a torque-free 
spinning body. 

In Newtonian Mechanics, the angular momentum is a 
three-vector. 

Angular momentum conservation implies that the 
orientation of the rotation axis of a gyro is unaffected by 
motion, i.e. it does not rotate relative to (the 
equivalence class of) inertial reference frames.

Angular 
momentum of the 

gyro

Rotation axis of the gyro 
(a spinning top in this case)



In Special Relativity the conserved angular 
momentum of a body is an antisymmetric rank 2 
tensor J.

The (intrinsic) angular momentum four-vector S
(defined in terms of J) is Fermi-Walker 
transported along the worldline of the gyro.

Writing the transport equation is a momentarily 
comoving Lorentz frame, it is possible to show 
that gyros precess, in general. The precession rate 
is, again, relative to inertial frames, identified 
global Lorentz frames in this context. 

arbitrary spacelike 
hypersurfaces gyro’s 4-velocity

gyro’s 4-acceleration

Equations of  motion of  inertial guidance gyros



According to the Equivalence Principle, if a 
gyroscopes moves in curved spacetime, its spin is 
still Fermi-Walker transported along its worldline.

However, we have lost the possibility to define 
global inertial (Lorentz) frame, in general.

We expect the gyroscopes to precess, but relative 
to what? How to describe it? Is it useful?

arbitrary spacelike 
hypersurfaces gyro’s 4-velocity

gyro’s proper
4-

acceleration

covariant 
derivative

Equations of  motion of  inertial guidance gyros



𝑟 → ∞

comoving frame asymptotic 
inertial frame

«Lorentz transformation»

At least in asymptotically flat spacetimes, it is still 
possible to define unambiguously the gyroscopic 
precession.

From the Fermi-Walker transport equation it is
possible to derive a precession equation for the
angular momentum of a gyro, where the rotation
vector is relative to an ideal inertial frame located
at infinity. This frame is usually assumed to be tied,
i.e. at rest, relative to far-away fixed stars.

contains (also) info on 
spacetime geometry

Equations of  motion of  inertial guidance gyros



The precession angular velocity can be derived in various way, for example adopting the following procedure:

1. Write an asymptotically flat metric (e.g. Lense-Thirring or PPN metrics) adopting rest frame coordinates of the source:

2. Introduce an orthonormal frame field associated to the metric. It is possible to show that the spatial vectors of the 
frames are just rescaled by this transformation (up to some order in the multipolar or PN expansion), and they are 
not rotated relative to the coordinate frame spatial vectors.

Equations of  motion of  inertial guidance gyros

they are functions of 
spacetime coordinates 
and depends potentials

𝑟 → ∞“tied” to asymptotic 
inertial frame,

hence non-rotating 
relative to distant stars



Asymptotic 
inertial frame
(fixed stars)

Tetrad frame
(tied to fixed stars)

gyroscope’s axis

𝑣⃗

𝑣⃗

𝑣⃗

3. A gyro is Fermi-Walker transported along its worldline. Call 𝑣⃗ its velocity relative to the coordinate grid.

𝑆)

gyroscope’s 
angular 

momentum

gyroscope’s 
four-velocity

Fermi-Walker transport 
equation of a gyro



Asymptotic 
inertial frame
(fixed stars)

Comoving frame

Tetrad frame

boos
t

𝑣⃗

𝑣⃗

𝑣⃗

𝑆

3. A gyro is Fermi-Walker transported along its worldline. Call 𝑣⃗ its velocity relative to the coordinate grid.

4. In order to compare gyro’s orientation with the asymptotic frame, we define a comoving frame: point by point, this 
frame is related to the tetrad frame introduced before by a pure boost of velocity 𝑣⃗ . The comoving frame is non-
rotating relative to both the not-comoving tetrad frame and the coordinate frame.

Fermi-Walker transport 
equation of a gyro

comoving 
frame index



Asymptotic 
inertial frame
(fixed stars)

Comoving frame

Tetrad frame

𝑣⃗

𝑣⃗

boost

up to 𝑣! or 𝑟"# order

3. A gyro is Fermi-Walker transported along its worldline. Call 𝑣⃗ its velocity relative to the coordinate grid.

4. In order to compare gyro’s orientation with the asymptotic frame, we define a comoving frame: point by point, this 
frame is related to the tetrad frame introduced before by a pure boost of velocity 𝑣⃗ . The comoving frame is non-
rotating relative to both the not-comoving tetrad frame and the coordinate frame.

gyros spin at a 
constant rate

this precession angular velocity is 
relative to distant stars

𝑆



𝑟 → ∞

Consider an arbitrary observer carrying a set of 
inertial guidance gyros with mutually orthogonal 
axis.
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Ω,-.*

𝑟 → ∞

Consider an arbitrary observer carrying a set of
inertial guidance gyros with mutually orthogonal
axis.

The local rotation vector of the observer’s proper
frame, point by point along the worldline, is defined
as the rotation vector of its spatial axis relative to the
inertial guidance gyros, i.e. rotation of an arbitrary
observer is unambiguously locally defined as the
failure of the proper frame basis vectors to be Fermi-
Walker transported along its worldline.

If the spacetime is asymptotically flat, we have an
alternative «non-local» definition of rotation relative
to the class of ideal asymptotic inertial frames.

The two definitions are inequivalent:

Ω* −Ω+,- = Ω./0-

Ω()*

Ω+



Sagnac gyros
(FOG, RLG …)

Ω!

Ω"#$

Lunar Laser Ranging

VLBI

Satellites
(LARES, GP2 …)

Fixed stars
(quasars)

Ω%&'$



Gravitomagnetic effects

de Sitter 
precession

Thomas 
precession

Lense-
Thirring 

precession
This effect is present also in flat
spacetime. It is a manifestation
of Wigner rotation due the
composition of two
infinitesimally separated Lorentz
boosts in different spatial
directions.

It is also called geodesic effect. It
manifests itself when the
gyroscope moves in the
gravitational field of a massive
body. It only depends on the
mass multipoles, so it is present
also for static sources.

It is a manifestation of frame-
dragging , i.e. a distortion of the
spacetime that modifies the
inertia of test-bodies nearby
rotating sources. It depends on
current multipoles and it affects
also gyros placed at a fixed
location.

proper 
acceleration

velocity relative to 
coordinate grid

Gyroscope precession



Gravitoelectromagnetism (GEM)

Linearized General Relativity 
in Lorenz gauge



Gravitoelectromagnetism

GEM precession terms are a gravitational analogue of the Larmor precession:

Gravitomagnetic 
field for an 

observer at rest

Induced gravitomagnetic field in 
the comoving frame + spatial 

curvature correction



Gravitoelectromagnetism

Discarding all except the lowest non-trivial orders in the multipolar expansion of the source, 
General Relativity the precession vectors assume the following form: 

For a gyro in free-fall the Thomas precession is 
vanishing. For a gyroscope at rest on Earth’s surface: Mass of the source

Position relative to 
the center of mass

Angular 
momentum

Precession in the same direction of 
rotation of the source on the axis of 

rotation of the source,
in the opposite direction in the equatorial 

plane

Vanishing for a gyroscope at 
rest in the coordinate grid

∝

For a gyroscope at rest 
on Earth’s surface both 

the vectors are 
contained in the 
meridian plane



Gravitoelectromagnetism

The Sagnac time delay predicted by General Relativity for an interferometer at rest on Earth’s 
surface is given by:

moment of inertia

Earth’s rotation 
rate as measured 
at spatial infinity

Earth’s radius

In ideal conditions, i.e. neglecting all sources of error (e.g.
seismic noise, instrumental instabilities, environmental
conditions ecc.) and if Earth’s rotation vector is known by
other means (e.g. VLBI) a system comprising two
independent Sagnac interferometers is enough to determine
and decouple the de Sitter and Lense-Thirring effects (since
their precession vectors are contained in a single plane).



Gravitoelectromagnetism

For a gyroscope at rest on Earth’s surface, adopting the PPN formalism we have:

Mass of the source

Position relative to 
the center of mass

Angular 
momentum

𝐶 = 1 + 𝛾**+



Gravitoelectromagnetism

In order to measure corrections to General Relativity, we need a very high-sensitivity.

Note that the total contribution of de-Sitter and Lense-Thirring effects, as predicted by General 
Relativity, to the Sagnac time delay in a closed interferometer is nearly 9 orders of magnitude 
lower than the kinematic effect due to Earth’s rotation:

(calculated assuming 𝜃 = −𝛼	45°)

Schwarzschild radius



Case Studies

Horava-Lifshits Gravity General Scalar-Tensor Gravity

Kinetic term: general function of φ

Both provide Schwarzschild solution as a particular case



General Scalar-Tensor Gravity

Field equations

Klein-Gordon equation

Properties:

Explain late and early time evolution without DM and DE

Fit the experimental observations at the astrophysical level



Horava-Lifshitz Gravity

Properties:

Theory of quantum gravity capable of solving 
some small-scale shortcomings of  GR

Lorentz-Invariance emerges at large distances

Saccessfully passes the Solar System Tests

A possible spherically 
symmetric solution:

𝑔77 = (𝑔88) 98=

Constant

Schwarzschild solution:



Weak	Field	Limit

Exact spherically symmetric solutions in ETGs are very rare

However…..



The typical values of the Newtonian gravitational potential 
Φ are larger than 10−5 in the Solar System (in geometrized 
units, Φ is dimensionless).

Linearization of the metric tensor

The Weak-Field limit

Motivations:
Often exact solutions in MOGs cannot be found analytically

Scheme:



Some restults provided by PN limit in ETGs

Non-Local Gravity: after constraining the free 
parameters, it fits the Keplerian orbit better than GR

Galaxy rotation curve for specific values of free parameters. Solid 
line is the best fit line of the total circular velocity, the dotted and 
the dashed lines refer to Newtonian contributions of star and 
gaseous components respectively respectively. The non-Newtonian 
contribution is labeled by the long-dashed line.

C. F. Martins and P. Salucci. Mon. Not. Roy. Astron. Soc 381(2007), 
1103-1108 doi:10.1111/j.1365-2966.2007.12273.x 

K. F. Dialektopoulos, D. Borka, S. Capozziello, V. Borka Jovanovic and P. Jovanovic Phys. Rev. D 
99 (2019) no.4, 044053 doi:10.1103/PhysRevD.99.044053 



First case: f(R, R!"R!", φ) gravity



Linearization of the metric tensor

• Three potentials arise: two scalar potentials and one vector potential 

• Φ, Ψ are proportional to the power c−2 (Newtonian limit) while Ai is proportional to  c−3 and Ξ to c−4
(post-Newtonian limit)

Weak field limit for 𝒇(𝑹,𝑹𝝁𝝂𝑹𝝁𝝂, 𝝋) gravity

Kerr spacetime



The function f, up to the c−4 order, can be developed as:

Application of the PN limit to 
𝑓(𝑅, 𝑅!"𝑅!", φ) gravity

By means of the decomposition of the metric



Weak field  limit for 𝒇(𝑹, 𝑹𝝁𝝂𝑹𝝁𝝂, 𝝋) gravity

Result:

•  Form of the vector potential

• Form of the scalar potential

with the definitions:



The circular velocity of a ball source of mass M and radius R, with the 
potentials of Table I. We indicate case A by a green line, case B by a yellow line, 
case D by a red line, case C by a blue line, and the GR case by a magenta
line. The black lines correspond to the Sanders model for −0.95<α<−0.92. 
The values of free parameters are ω(ϕ (0)).. . −1/2,
Ξ = −5, η=.3, mY = 1.5 * mR, mS=1.5 * mR, mR =.1* R−1.



Lense-Thirring precession in 𝒇(𝑹, 𝑹𝝁𝝂𝑹𝝁𝝂, 𝝋) gravity

For fY→ 0 i.e. mY→ ∞, we obtain the same outcome for the gravitational 
potential of  f(R, ϕ)-theory



Gravitoelectromagnetism

For a gyroscope at rest on Earth’s surface in a higher-order scalar tensor theory we have:

Capozziello et al. PRD, 91 (2015) 044012

𝒊𝒏	𝒇(𝑹,𝑹𝝁𝝂𝑹𝝁𝝂, 𝝋) gravity



Weak-field limit in 
Horava-Lifshitz Gravity

Linearization of the metric tensor

With similar computations as the previous case, the ratio between the 
Horava-Lifshitz and General Relativity Gyroscopic precession is

with 𝑎8, 𝑎:	constants to be constrained
Gyroscopic precession 

G effective gravitational constant



𝑎8, 𝑎:	 are then related to the potentials and can be constrained by GINGER measurements

Constraining 𝒂𝟏, 𝒂𝟐	

It has been shown that, in order for the matter 
coupling to be consistent with solar system tests, 
the gauge field and the Newtonian potential must 
be coupled to matter in a specific way, but there are 
no indication on how to obtain the precise 
prescription from the action principle. Recently 
such a prescription has been generalised and a 
scalar-tensor extension of the theory has been 
developed to allow the needed coupling to emerge 
in the IR without spoiling the power-counting 
renormalizability of the theory.

Matter action

Lapse function

Scalar Potential

Vector



Gravitoelectromagnetism in H-L gravity 

For a gyroscope at rest on Earth’s surface in Horava-Lifshitz gravity we have:

S. Capozziello, et al., Eur. Phys. J. Plus 136 (2021), p. 394



Experimental constraints



Experimental constrains: GP-B

The  changes in the direction of spin gyroscopes, contained in the satellite 
orbiting at h = 650 km of altitude and crossing directly over the poles, have 
been measured with extreme precision

and 

The Gravity Probe B (GP-B) four gyroscopes aboard an Earth-orbiting satellite
allowed to measure the frame-dragging effect with an error of about 19%. 
Extended Gravity(EG).



Experimental constrains: GP-B

Results:

1)

2)

Capozziello et al. PRD, 91 (2015) 044012



The Laser Relativity Satellite (LARES) mission of the Italian Space Agency is
designed to test the frame dragging and the Lense-Thirring effect, to within 1%
of the value predicted in the framework of GR

The body of this satellite has a diameter of about 36.4 cm and weights
about 400 kg

It was inserted in an orbit with
1450 km of perigee, an inclination
of 69.5 ± 1 degrees and eccentricity
9.54 × 10−4

It allows to obtain a stronger 
constraint
for mY:

From  which we obtain          mY ≥ 1.2 ×10−6m−1

Experimental constrains: LARES



Summing up, using data from the Gravity Probe B and LARES missions, we 
obtain  constraints on mY.

This result shows that  space-based experiments can be used 
to test extensively parameters of fundamental theories

LARES vs GP-B 

GP-B LARES

Perspective:
Put a further limit to the mass by GINGER



GINGER: the case of 
Horava-Lifshitz Gravity



Terrestrial experiment: GINGER
GINGER measures the difference in frequency of light of two beams circulating in a laser cavity in 
opposite directions. This translates into a time difference between the right-handed beam 
propagation time and the left-handed one 

The difference in time can be linked to the Sagnac frequency 𝞨𝑺, measured by GINGER

Splitting in terms of frequency 
between the two beams

Perimeter Laser wavelength

Wavelength difference



Sagnac term
Lense-Thirring term• A

• α
• θ
• Ω;
• 𝐼;
• P
• 𝞴

Area encircled by the light beams

Angle between the local radial direction and the normal to the plane of the array-laser ring
Colatitude of the laboratory

Rotation rate of the Earth as measured in the local reference frame
Momentum of Inertia
Perimeter

Laser wavelength

GINGER in Horava-Lifshitz Gravity

In Horava-Lifshitz   gravity, it is



Horava-Lifshitz vs General Relativity

General Relativity

Horava-Lifshitz Gravity

𝐺 = 𝐺<

𝐺
=
𝐺
<

𝐺 = 𝐺<



Perspectives:

Free parameters  constrained by GINGER



GINGER advantages

• The actual precision of GINGERINO is 1/1000 in the geodesic term, 1/100 in the LT term 

• GINGER experiment should overcome such uncertainty providing a precision of 1/1000 in
the LT term

• The presence of two rings yields a dynamic measure of the angle 𝛂

Geodesic Term LT Term

While the measure of the LT term can constrain the value of G, from the 
measure of the geodesic term we can get the value of 𝑎8	and 𝑎:
The precision of GINGERINO is 1098= rad/s, which corresponds to a precision of 1.4 0 109>
with respect to the dominant term. 

Notice that:

•

•



• In the context of metric theories of gravity,  linearized field equations can be studied in the 
weak  field limit and small velocities generated by rotating gravitational sources, aimed at 
constraining the free parameters, which can be modeled as effective masses (or lengths).

• The precession of spin of a gyroscope orbiting around  a rotating gravitational source can 
be studied.

• Gravitational field gives rise, according to GR predictions, to geodesic and Lense-Thirring
processions, the latter being strictly related to the off-diagonal terms of the metric tensor 
generated by the rotation of the source (Kerr metric)

• The gravitational field generated by the Earth can be tested  by  Gravity Probe B and 
LARES  satellites. These experiments tested the geodesic and Lense-Thirring spin 
precessions with high precision.

• The corrections on  the precession induced by scalar, tensor and curvature corrections can 
be measured and confronted with data.

• Earth-based experiments can improve satellite constraints in view to probe alternative 
theories of gravity (Extended Gravity and Modified Gravity).

Conclusions



Conclusions

In 𝑓(𝑅, 𝑅?@𝑅?@, φ) gravity, GP-B and LARES satellites provide

Perspective: constraint on 𝒎𝒚 by GINGER

In Horava-Lifshitz gravity, the weak-field limit provide

Perspective: constraints on 𝑎8, 𝑎: by GINGER


