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OUTLINE

Our work aims to develop robust Al- driven
algorithms for space experiments capable of

handling real-world experimental data.

Test beam dataset as test bench for the Al

tracking algorithm

GNN algorithm and the implementation on

FPGA/GPU

The application to the HERD experiment
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Beam test setup for developing Al tracking algorithm

A range of models inspired by computer vision applications were investigated, which operated on data from tracking detectors in
a format resembling images.
— Promising but limited by the high dimensionality and sparsity of the data

Tracking data are naturally represented as graph by identifying hits as nodes and tracks segments as (in general) directed
edges.
— Geometric deep learning approach.

We implemented an algorithm which exploits the potentials of the Graph Neural Networks (GNN), a subset of GDL algorithm, for
the task of track reconstruction in a model of space experiment.

Beam test set up at CERN T10
The set up has been simulated by using Geant4 toolkit.

Sfidi\’iew A beam of - of 10 GeV/c with inclined tracks of 0.5 deg has been simulated.
ot soael) o e w1 o MO,M1,M2,M3 are fiber tracking layers:
™ Y X YX oYX XY 10 v * Fibers are 10 cm long with a radius of 0,25 mm.

1

»  Strip pitch read-out: 0.25 mm

- @ 10 GeV M2 consists of WLS with a 100mm x 100mm x 3mm LYSO crystal in
Dump Beam S X between.
material ] ——— The simulation includes the LYSO crystal but considers the fiber as the

Beam
direction

scintillating ones.
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Random noise hits have been added to simulate properly the electronic
noise, spurious hits related to low-energy particles in orbit, backscattering
hits...
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Graph Neural Network for tracks reconstruction
The journey to the algorithm

A

GNN tracking
Graph algorithm
A construction ‘.

A

Clustering .
4 .

Data ’04

simulations

‘What do your neighbors say
about this track?’
That’s what a GNN does : it
listens locally to understand
globally

Simulation of the data set

Clustering
Graph construction
GNN-based tracking algorithm, which consists of a GNN classification of noise clusters from signal clusters and a

final linear fit to retrieve the track parameter (angular coefficient and intercept)
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Brief review of the GNN architecture

A graph represents the relations (edges or links) between a collection of entities (nodes).
Graph Neural Networks (GNNSs) are a class of deep learning models that are designed to operate on graph-structured data.
They have shown remarkable success in tasks such as node classification, link prediction, and graph classification.

The key idea behind GNNs is to learn representations for nodes and edges in a graph by aggregating information from their

local neighborhood.
yaS SN | .
¢ e ;,*m QQ * A Gentle Introduction to Graph Neural
B e+ Networks, https://distill.pub/2021/gnn-
A e

intro/
* Hands-On Graph Neural Networks Using
The representation of each node is typically a w ¢ ;1O @ Python, M.Labonne, Packt Publishing Ltd.

__strong_ g
low-dimensional vector that encodes the node’s q‘ /‘ o
properties and its relationships with other nodes. @ (N

Chemical compounds

A GNN consists of a number of layers, each of
which updates the representation of each node
based on its local neighborhood.

Brain networks

The key component of a GNN layer is the
aggregation function, which takes as input the
representations of a node’s neighbors and
produces a new representation for the node.

O Node: Subway Station

—— Edge: Transportation Connectivity

b
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Preprocessing phase: from row data to a graph
structure

The hits inside tracking layers are clustered by applying a traditional clustering algorithm, where neighboring silicon strips
with activated signals are grouped together and the barycenter of charge is calculated.
Starting by the clusters, data have been organized in a graph format, where nodes are represented by the clusters position

and links by the inter layer connections between clusters.

Event 123 x-z view Event 123 y-z view
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SageConv algorithm: the GNN architecture

The SageConv architecture is a variant of GNN architecture.
The aggregation function takes into account the degrees of the nodes in the neighborhood.

SageConv uses the average of the representations of the neighbors, normalized by the degree of each neighbor, as the aggregate
representation.

This allows it to capture more fine-grained information about the structure of the graph.

SageConv algorithm:

4 million event,

550 epochs,

lr =0.0001,

7 GNN layer

Mean aggregation function

True labels

train data 0.972+0.007

validation data 0.972+0.007

Confusion Matrix

o] 1
Predicted labels
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True Positive Rate

0.968 +0.009

0.968 +0.009

0.9902 £ 0.0014

0.9862+0.0024

Receiver Operating Characteristic (ROC) Curve
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Event display: the tracks identification

The traditional tracking pipeline minimizes the chi-square between the clusters inside each events, then fit the track with a linear
function.

The Al pipeline performs the selection of good clusters and fit the track with the same linear function.
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Entries

The SageConv algorithm: comparison with traditional
pipeline of the director cosines
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To process 5000 tracks the analytical pipeline takes 102 min, the Al pipeline takes 240 ms!
Spartan project with Nuclear Instrument
We are developing an “on-board tracker” by implementing the trained network on low consumption GPUs.
The Al-tracker will work as a filter which:
+* Reduces the amount of data
s Performs a first rough tracking
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Spartan project: Challenges in Full GNN Implementation on FPGA

Architectural Constraints

* Non-pipelined Design: The structure of the SAGEConv-based GNN is not easily pipelined, making it unsuitable for direct
implementation on pure FPGA without significant performance penalties.

* Resource Usage: The complexity of Graph Neural Networks requires a large number of logic gates and memory blocks,

which scales poorly with the number of nodes and channels in the graph

Performance Bottlenecks
* Sequential Computation

Unlike CNNs, GNNs require message passing and aggregation steps that are inherently sequential, limiting the

effectiveness of parallel execution on FPGA.

Toolchain Limitations

* Existing tools like Vitis Al and hls4dml are not fully optimized for implementing complex GNN layers, especially when
dynamic graph structures and attention mechanisms are involved

Due to the limitations above, a hybrid architecture was chosen: FPGA (Zynq Ultrascale+) for preprocessing, and NPU

(Jetson Orin Nano) for inference, achieving high throughput and low power consumption.
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Spartan project: Hardware Implementation Strategy

System Architecture

* Hybrid Solution: FPGA + NPU
A mixed architecture combines a Xilinx Zynqg Ultrascale+ FPGA
with an NVIDIA Jetson Orin Nano to optimize the execution of the
GNN model.

*  Functional Roles:

* FPGA (Zynq) handles:
* Front-end data acquisition
* Preprocessing (e.g., cluster building, filtering)
* Real-time data preparation and formatting

* NPU (Jetson Orin Nano) performs:
* GNN inference (SageConv model)
* Track reconstruction
» Data packaging for acquisition PC
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Spartan project: Inference system: Performance

7W

Zynqg UP

Jetson Orin

v

Node/Edge

; Inference
calculation

5k pre-processing/sec 10k inference/sec

Simulation

output file
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HERD EXPERIMENT: more complex use case

To test our algorithm on more complex data, we decided to analyze HERD simulated data.
The HERD (High Energy cosmic-Radiation Detection) experiment is a space mission designed to directly detect cosmic rays,
and itis setto be installed on the Chinese Space Station (CSS) in 2027.

The main goals of the mission:

* enhance our understanding of high-energy cosmic rays,

* search for indirect signals of dark matter,

* probe sources of high-energy particles such as protons, electrons, and photons.

Fiber Tracker (FIT): The HERD simulation dataset e ke
e Surrounds CALO on top and The full dataset, generated using the custom
sides. HerdSoftware simulation framework.
* Particle tracking and charge It consists proton tracks simulated within a
measurements power-law energy spectrum E™1, spanning an
* b5 sectors, each with 7 X-Y energy range from: o o
scintillating fiber layers.
* Provides 7 precise position * 1GeV-100 GeV (66293 tracks)
measurements. e 100 GeV-10TeV (204229 tracks)
Tracks are distributed within a spherical region
surrounding the HERD detector
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Proton tracks: backscattering and primary tracks

Protons’ tracks reconstruction is a complicated challenge due to the high ; ;
number of backscattering tracks! .

Tracker Calorimeter Tracker Calorimeter

Duranti, M.; et al. Advantages and Requirements in Time Resolving Tracking for
Astroparticle 337Experiments in Space. Instruments 2021, 5, 20. 338

GG$“
A\
5 X0 {\‘“«\
e®” g0 1 |BIGNN tracking
St [ o\ !
« .(\% o Graph algorithm
(X (60\‘\ o construction
e
X! . ustering
Data
simulations
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Preprocessing phase for protons’ tracks

Tracks passing through the fiber tracker produce energy deposits

identified as "hits."

Event 102 x-z view-TOP

Hits are grouped using a traditional clustering algorithm that 22 4 ® Backscattering
@ Signal
A MC direction

aggregates neighboring activated silicon strips. oy

The charge barycenter of each cluster is then computed. 15

Taking as reference the reconstructed shower calorimeter axis, 6

clusters lying outside a cylindrical region of 3.5 cm radius are

Z [em]

14
discarded.
12 1
Data are structured in a graph format, where each node
10 ~
corresponds to a cluster and edges represent inter-layer

connections between clusters.

Only tracks traversing the top side of the FIT have been —300 —475 —4.50 _4215[:::1'1]_4-0“ =355 =350 -3.35

considered.
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The Interaction Network: a variant of Graph Neural
Network

The Interaction network architecture developed is inspired by the one developed by the HEP.TrkX project
(https://heptrkx.github.io/).
It consists of:

* Feature encoder stage to initializes the graph representation
* two core modules: an edge network and a node network.

The edge network computes edge weights using the features of the start and end nodes;
The node network updates each node’s features based on the aggregated edge-weighted features of neighboring nodes.
Both the EdgeNetwork and NodeNetwork are implemented as Multi-Layer Perceptrons.

Two version of the feature encoder stage have been tested.

* thefirstversion applies two independent layer fully connected networks to transform the raw input features of the
nodes and edges,

* the second version uses a Multi-Head Feature Attention mechanism. Instead of directly projecting input features
through fully connected layers, this encoder employs a multi-head attention module to learn more expressive
representations of the input node features.

The node and edge network are applied recursively for a fixed number of iterations N.

At each iteration, edge weights are recomputed by the edge network, and node features are updated by the node
network using the aggregated information from neighboring nodes.

After a fixed number of iterations, the final node representations are passed to the output module, which consists of a
linear classifier with dropout regularization.
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The loss function

Strong class imbalance: backscattering clusters dominate over the signal ones in high energy
range

Solution: Focal Loss

L = —a. (1 — p)Y¥log(py)

p: is the model’s predicted probability for the correct class:

p: low > the model is uncertain, the scaling factor (1 — p.)¥ will be large, making the loss higher

for this sample.

y is the focusing parameter

« y = 0~ standard cross-entropy

* Largery = the contribution of well-classified examples, with high predicted probability is
progressively down-weighted, while misclassified or hard examples receive greater emphasis

a, class-balancing factor

* Higher a for minority class

* Lower a; for majority class

In this work, a; computed dynamically per batch to:

* Better handling of imbalance

* Stronger focus on difficult samples

* Improved learning efficiency & robustness ADAPT Collaboration meeting 4-7 November 2025

mean %

100

80+

60 4

40 4

204

Hit class distribution

71.446%

28.554%

Class

17




The training procedure
Ray Tune framework for hyperparameters search!

The hyperparameter which have been tuned are:

* the number of iteration of edge and node network

* the activation function

* the gamma parameter for the focal loss

* the number of layer inside node and edge network

* the hidden dimension of each layer

* the number of heads for the Multi-Head Feature Attention approach,

* thelearning rate

* the batch size

The training process integrates a learning rate scheduler: it reduces the learning rate by a factor of 0.5 whenever the loss does not improve over a
5 of epochs.

The best model has been chosen as the one that maximize the f1 score among 50 trials.

Two distinct hardware setups were employed to test the model's scalability and efficiency.
* distributed training across three NVIDIA A100 GPUs, each with 40 GB of memory
e asingle NVIDIA H100 GPU with 94GB of memory
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PRELIMINARY RESULTS

Evaluation metrics for the 100 GeV - 10 TeV energy range Event_1, TOP FIT (y-z view)
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Conclusions

At low energies (1-100 GeV), both models achieve competitive and balanced performance. The attention encoder shows the
highest recall (86.67 %), demonstrating a stronger ability to correctly identify signal hits and higher precision (81.15%),
reflecting a better suppression of false positives.

In the higher energy range (100 GeV-10 TeV), both models maintain stable performance, with the attention encoder achieving
slightly higher accuracy (82.11% vs. 81.85%) and precision (79.65% vs. 77.68%).

Recall values remain nearly identical (around 71%), indicating that both approaches struggle to recover all true signal hits in the
presence of the intense backscattering environment.

Good!
.... but we can do better...
...but...

* The simulation framework used to generate the dataset (HERDSoftware) is currently no longer maintained:
* the clustering procedure is not optimized, and the labeling of signhal and backscattering clusters lacks precision.
* thereis no any kind of traditional tracking algorithm for comparison.

* The current approach also stops at node-level classification, i.e. the pattern recognition stage, without yet including the final
track fitting step (e.g., linear regression for trajectory extraction).

Progetto ICSC Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing - CN00000013 PNRR Missione 4, Componente 2, Investimento 1.4 - CUP
153C21000340006 . Progetto ICSC Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing - CN00000013 PNRR Missione 4, Componente 2, Investimento 1.4 -
CUP153C21000340006 .
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Preprocessing phase: prepare data for the GNN—electron tracks

3D view

Data are highly imbalanced, since there are many bacskattering tracks
originating from the calorimeter, which interfere with the correct
identification of the primary particle's trajectory .

To mitigate the imbalance:

1. Clustering algorithm

2. Cutof noise clusters “far away” from the primary track
3. Adding simulated events without calorimeter

Global hit class distribution (dataset with calo) Global hit class distribution (combined dataset)

54.6%

92.9%

50 A
45.4%

40 -

||||||
||||||||
|||||

[T

30

Percentuale (%)

204

10 A

7.1%

Classe 0 Classe 1 Classe 0 Classe 1
Classe Classe
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The GNN algorithm: Al hardware
Tools for GNN training algorithm

* SageConv * 128 hidden size

architecture  Adam optimizer - :
. 18 lavers . Binarv cross entro 4,5 million simulated track data
y . y CTO; Py 75% train-15% validation-10% test
* Mean aggregation loss function
function

To enhance the time consuming we performed the distributing training
by using:

* the JupyterLab instance with 3 A100 NVIDIA GPUs

* the Leonardo Hub instance with 4 A100 NVIDIA GPUs

| GPU  Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

| |

| 8 NVIDIA A108-SXM-64GB On | oeoEEeeR:1D:08.0 Off | e |

| nN/A aac [2¢] 83W / 459W|  7771MiB / 6€5536MiB | 1% Default |

| | | Disabled |

GPU UTILIZATION (PER DEVICE) [%] e o e +

| 1 NVIDIA A1@8-SXM-64GB On | oPEEEERR:56:00.0 Off | 2|

! | n/&  asc e 86W / 461W|  3999MiB / 65536MiB | 70% Default |

100%7 & | \ | Disabled |
f MW A e ——_———— N — +

25% | 2 NVIDIA A18@-SXM-64GB On | 20EEEERE:8F:08.8 OFf | 2|
f J T T T T T T T ! | n/a asc PO 88W / 458W|  3957MiB / 65536MiB | 86% Default |
12:29:30 12:29:31 12:29:31 12:29:31 12:29:31 12:29:31 12:29:32 12:29:32 12:29:32 12:29:3: | | | Disabled |
A Fom e i +

GPU USAGE (PER DEVICE) [B] | 3 NVIDIA A16@-SXM-64GB On | GPEEEERE:(8:00.0 OFf | 0|

| n/a aac pPo 82W / 457W|  4103MiB / 65536MiB | 10% Default |

- GPU 2 | \ [ Disabled |

&.0CEB" B et e e e LT e e it e e +
1.5GB T M
T T T T T T T T | | Processes: |

12:29:30 12:29:31 12:29:31 12:29:31 12:29:31 12:29:31 12:29:32 12:29:32 12:29:32 12:29:3 | v e PID  Type Process name GPU Memory |
| ID ID Usage |

| |

s s +
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Main Results: GNN algorithm evaluation

Model Training and Validation Loss per Epoch
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Event_0, TOP FIT (y-z view) Event_0, TOP FIT (x-z view)
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ROC Curve: IN with linear encoder for 100 GeV 10 TeV energy range
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Conclusions and next steps

The GNN shows promising performance for tracking tasks compared to traditional analytical approaches, both in
terms of accuracy and time efficiency.

Spoiler alert: the perfect classifier? It doesn’t exist!

The algorithm's validity is limited beyond a certain energy range!
Between 100 TeV and 1 PeV, the information from the FIT alone is insufficient to distinguish between
backscattering and primary tracks.

What can we do???

1) Find the precise validity limits
2) Incorporate additional data from other subdetector (heterogeneous graph neural network and more
sophisticated data preprocessing)

No worries, we’ll handle it! Stay tuned!

Progetto ICSC Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing - CN00000013 PNRR
Missione 4, Componente 2, Investimento 1.4 - CUP 153C21000340006 . Progetto ICSC Centro Nazionale di Ricerca in High-Performance
Computing, Big Data and Quantum Computing - CN0O0000013 PNRR Missione 4, Componente 2, Investimento 1.4 - CUP

153C21000340006 . ADAPT Collaboration meeting 4-7 November 2025 29



Cross-Entropy vs. Focal Loss

Standard Cross-Entropy

sLoss: L =—) ylog(p)

*All samples contribute equally

*Biased toward the majority class in imbalanced datasets
*Easy examples keep dominating the loss

Focal Loss

sLoss: L = —a, (1 — p)Y? log(py)

*Down-weights easy, well-classified samples
*Focuses on hard and misclassified examples
*Class-balancing factor a; gives more weight to minority class

*Designed forimbalanced and noisy data
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GAT algorithm

Graph Attention Networks (GATSs) are a variant of Graph Neural Networks (GNNs) that leverage attention mechanisms for feature learning on
graphs.

In standard GNNSs, such as Graph Convolutional Networks (GCNSs), the feature update of a node is typically the average of the features of its
neighbors. This approach does not differentiate between the contributions of different neighbors.

GATSs, on the other hand, assign an attention coefficient to each neighbor, indicating the importance of that neighbor’s features for the feature
update of the node. These coefficients are computed using a shared self-attention mechanism, which calculates an attention score for each pair of
nodes. The scores are then normalized across each node’s neighborhood using a SoftMax function.

I T T ] 600 epochs

train data 0.941+ 0.024 0.926 + 0.033 0.0860+ 00038 20 million events
learning rate: 1e-4

validation data 0.941 £ 0.024 0.926 + 0.033 0.9859 + 0.0038
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GCN algorithm
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The general idea of GCN is to apply convolution over a graph. Instead of having a 2-D array as input as in the classical CNN algorithm,

GCN takes a graph as an input

True labels

Confusion Matrix

Predicted labels

True Positive Rate

Receiver Operating Characteristic (ROC) Curve
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Accuracy: 0,8662
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Event 123 x-z view
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Aspect

Data Structure

Application in Particle
Tracking

Advantages

Limitations

Convolutional Neural Networks (CNNs)

Operate on regular, grid-like data
structures (e.g., images), where spatial
relationships are fixed.

Transform detector hits into 2D or 3D
images; apply convolutional filters to
detect patterns corresponding to particle
trajectories.

- Well-established architectures with
extensive tooling and support.

- Efficient for data with regular spatial
structures.

- May struggle with sparse data and
complex topologies.

Graph Neural Networks (GNNs)

Operate on graph-structured data,
accommodating arbitrary sizes and complex
topologies, ideal for irregular detector
geometries.

Model detector hits as nodes in a graph; use
message passing to aggregate information
from neighboring nodes, capturing complex
spatial relationships.

- Naturally handle irregular and sparse data.
- Adaptable to complex detector geometries.
- Capture intricate relationships between
hits.

- Potentially higher computational
complexity. - May require more
sophisticated training and tuning.
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