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OUTLINE

Our work aims to develop robust AI- driven 

algorithms for space experiments capable of 

handling real-world experimental data.

• Test beam dataset as test bench for the AI 

tracking algorithm

• GNN algorithm and the implementation on 

FPGA/GPU

• The application to the HERD experiment
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A range of models inspired by computer vision applications were investigated, which operated on data from tracking detectors in 
a format resembling images. 
→  Promising but limited by the high dimensionality and sparsity of the data

Tracking data are naturally represented as graph by identifying hits as nodes and tracks segments as (in general) directed 
edges. 
→ Geometric deep learning approach.

We implemented an algorithm which exploits the potentials of the Graph Neural Networks (GNN), a subset of GDL algorithm, for 
the task of track reconstruction in a model of space experiment.

Beam test set up at CERN T10
The set up has been simulated by using Geant4 toolkit. 
A beam of π- of 10 GeV/c with inclined tracks of 0.5 deg has been simulated.
M0,M1,M2,M3 are fiber tracking layers:
• Fibers are 10 cm long with a radius of 0,25 mm.
• Strip pitch read-out: 0.25 mm 
M2 consists of WLS with a 100mm x 100mm x 3mm  LYSO crystal in 
between. 
The simulation includes the LYSO crystal but considers the fiber as the 
scintillating ones. 

Random noise hits have been added to simulate properly the electronic 
noise, spurious hits related to low-energy particles in orbit, backscattering 
hits…

Beam test setup for developing AI tracking algorithm
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• Simulation of the data set

• Clustering

• Graph construction

• GNN-based tracking algorithm, which consists of a GNN classification of noise clusters from signal clusters and a 

final linear fit to retrieve the track parameter (angular coefficient and intercept)

Graph Neural Network for tracks reconstruction
The journey to the algorithm

Data
simulations

Clustering

Graph
construction

GNN tracking 
algorithm
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‘What do your neighbors say 
about this track?’

  That’s what a GNN does : it 
listens locally to understand 

globally
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A graph represents the relations (edges or links) between a collection of entities (nodes).
Graph Neural Networks (GNNs) are a class of deep learning models that are designed to operate on graph-structured data.
They have shown remarkable success in tasks such as node classification, link prediction, and graph classification.

The key idea behind GNNs is to learn representations for nodes and edges in a graph by aggregating information from their 
local neighborhood.

• A Gentle Introduction to Graph Neural 
Networks, https://distill.pub/2021/gnn-
intro/

• Hands-On Graph Neural Networks Using 
Python, M.Labonne, Packt Publishing Ltd.

A GNN consists of a number of layers, each of 
which updates the representation of each node 
based on its local neighborhood.

The representation of each node is typically a 
low-dimensional vector that encodes the node’s 
properties and its relationships with other nodes. 

The key component of a GNN layer is the 
aggregation function, which takes as input the 
representations of a node’s neighbors and 
produces a new representation for the node.

Brief review of the GNN architecture
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Node

Link

Class 0: noise clusters
Class 1: signal clusters

The hits inside tracking layers are clustered by applying a traditional clustering algorithm, where neighboring silicon strips 

with activated signals are grouped together and the barycenter of charge is calculated.

Starting by the clusters, data have been organized in a graph format, where nodes are represented by the clusters position 

and links by the inter layer connections between clusters.

Preprocessing phase: from row data to a graph 
structure
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SageConv algorithm:
• 4 million event, 
• 550 epochs, 
• lr =0.0001, 
• 7 GNN layer
• Mean aggregation function

The SageConv architecture is a variant of GNN architecture.
The aggregation function takes into account the degrees of the nodes in the neighborhood. 
SageConv uses the average of the representations of the neighbors, normalized by the degree of each neighbor, as the aggregate 
representation. 
This allows it to capture more fine-grained information about the structure of the graph. 

SageConv algorithm: the GNN architecture

CV 5 fold accuracy recall precision

train data 0.972±0.007 0.968 ± 0.009 0.9902 ± 0.0014

validation data 0.972±0.007 0.968 ± 0.009 0.9862±0.0024
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Event display: the tracks identification
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The traditional tracking pipeline minimizes the chi-square between the clusters inside each events, then fit the track with a linear 
function.
The AI pipeline performs the selection of good clusters and fit the track with the same linear function.
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To process 5000 tracks the analytical pipeline takes 102 min, the AI pipeline takes 240 ms!

The SageConv algorithm: comparison with traditional 
pipeline of the director cosines

Spartan project with Nuclear Instrument

We are developing an “on-board tracker” by implementing the trained network on low consumption GPUs.

The AI-tracker will work as a filter which:

 Reduces the amount of data

 Performs  a first rough tracking
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Spartan project: Challenges in Full GNN Implementation on FPGA

Architectural Constraints

• Non-pipelined Design: The structure of the SAGEConv-based GNN is not easily pipelined, making it unsuitable for direct 

implementation on pure FPGA without significant performance penalties.

• Resource Usage: The complexity of Graph Neural Networks requires a large number of logic gates and memory blocks, 

which scales poorly with the number of nodes and channels in the graph

Performance Bottlenecks

• Sequential Computation

Unlike CNNs, GNNs require message passing and aggregation steps that are inherently sequential, limiting the 

effectiveness of parallel execution on FPGA.

Toolchain Limitations
• Existing tools like Vitis AI and hls4ml are not fully optimized for implementing complex GNN layers, especially when 

dynamic graph structures and attention mechanisms are involved

Due to the limitations above, a hybrid architecture was chosen:  FPGA (Zynq Ultrascale+) for preprocessing, and NPU 

(Jetson Orin Nano) for inference, achieving high throughput and low power consumption.
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Spartan project: Hardware Implementation Strategy 

System Architecture

• Hybrid Solution: FPGA + NPU
A mixed architecture combines a Xilinx Zynq Ultrascale+ FPGA 
with an NVIDIA Jetson Orin Nano to optimize the execution of the 
GNN model.

• Functional Roles:

• FPGA (Zynq) handles:
• Front-end data acquisition
• Preprocessing (e.g., cluster building, filtering)
• Real-time data preparation and formatting

• NPU (Jetson Orin Nano) performs:
• GNN inference (SageConv model)
• Track reconstruction
• Data packaging for acquisition PC STORAGE SERVER

Detector

Front end board

NPU/GPU

Concentrator
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Spartan project: Inference system: Performance

Zynq UP

Node/Edge 
calculation

Simulation 
output file

Jetson Orin

Inference

Storage server

5k pre-processing/sec 10k inference/sec
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To test our algorithm on more complex data, we decided to analyze HERD simulated data.
The HERD (High Energy cosmic-Radiation Detection) experiment is a space mission designed to directly detect cosmic rays, 
and it is set to be installed on the Chinese Space Station (CSS) in 2027. 
The main goals of the mission:
• enhance our understanding of high-energy cosmic rays, 
• search for indirect signals of dark matter,
• probe sources of high-energy particles such as protons, electrons, and photons.

Fiber Tracker (FIT):
• Surrounds CALO on top and 

sides.
• Particle tracking and charge 

measurements
• 5 sectors, each with 7 X-Y 

scintillating fiber layers.
• Provides 7 precise position 

measurements.

The HERD simulation dataset
The full dataset, generated using the custom 
HerdSoftware simulation framework.
It consists proton tracks simulated within a 
power-law energy spectrum E−1, spanning an 
energy range from:

• 1 GeV - 100 GeV (66293 tracks) 
• 100 GeV - 10 TeV (204229 tracks)

Tracks are distributed within a spherical region 
surrounding the HERD detector

HERD EXPERIMENT: more complex use case
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Proton tracks: backscattering and primary tracks

Protons’ tracks reconstruction is a complicated challenge due to the high 
number of backscattering tracks!

Duranti, M.; et al. Advantages and Requirements in Time Resolving Tracking for 
Astroparticle 337Experiments in Space. Instruments 2021, 5, 20. 338
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• Tracks passing through the fiber tracker produce energy deposits 

identified as "hits." 

• Hits are grouped using a traditional clustering algorithm that 

aggregates neighboring activated silicon strips. 

• The charge barycenter of each cluster is then computed. 

• Taking as reference the reconstructed shower calorimeter axis, 

clusters lying outside a cylindrical region of 3.5 cm radius are 

discarded. 

• Data are structured in a graph format, where each node 

corresponds to a cluster and edges represent inter-layer 

connections between clusters. 

• Only tracks traversing the top side of the FIT have been 

considered. 

Preprocessing phase for protons’ tracks
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The Interaction network architecture developed is inspired by the one developed by the HEP.TrkX project 
(https://heptrkx.github.io/). 
It consists of:

• Feature encoder stage to initializes the graph representation 
• two core modules: an edge network and a node network. 

The edge network computes edge weights using the features of the start and end nodes; 
The node network updates each node’s features based on the aggregated edge-weighted features of neighboring nodes. 
Both the EdgeNetwork and NodeNetwork are implemented as Multi-Layer Perceptrons.

Two version of the feature encoder stage have been tested.
• the first version applies two independent layer fully connected networks to transform the raw input features of the 

nodes and edges,
• the second version uses a Multi-Head Feature Attention mechanism. Instead of directly projecting input features 

through fully connected layers, this encoder employs a multi-head attention module to learn more expressive 
representations of the input node features.

The node and edge network are applied recursively for a fixed number of iterations N.

At each iteration, edge weights are recomputed by the edge network, and node features are updated by the node 
network using the aggregated information from neighboring nodes. 

After a fixed number of iterations, the final node representations are passed to the output module, which consists of a 
linear classifier with dropout regularization.

The Interaction Network: a variant of Graph Neural 
Network
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The loss function

Strong class imbalance:  backscattering clusters dominate over the signal ones in high energy 

range

Solution: Focal Loss 

𝐿𝐿 =  − 𝛼𝛼ₜ 1 −  𝑝𝑝𝑝 𝛾𝛾 log(𝑝𝑝𝑝)

𝑝𝑝𝑡𝑡 is the model’s predicted probability for the correct class:  

𝑝𝑝𝑡𝑡  low → the model is uncertain, the scaling factor 1 −  𝑝𝑝𝑝 𝛾𝛾 will be large, making the loss higher 

for this sample.

𝛾𝛾 is the focusing parameter 

• 𝛾𝛾 = 0 → standard cross-entropy

• Larger 𝛾𝛾 → the contribution of well-classified examples, with high predicted probability is 

progressively down-weighted, while misclassified or hard examples receive greater emphasis

𝛼𝛼ₜ class-balancing factor 

• Higher 𝛼𝛼ₜ for minority class

• Lower 𝛼𝛼ₜ for majority class

In this work, 𝛼𝛼ₜ computed dynamically per batch to:

• Better handling of imbalance

• Stronger focus on difficult samples

• Improved learning efficiency & robustness 17
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Ray Tune framework for hyperparameters search!

The hyperparameter which have been tuned are: 
• the number of iteration of edge and node network
• the activation function
• the  gamma parameter for the focal loss
• the number of layer inside node and edge network
• the hidden dimension of each layer
• the number of heads for the Multi-Head Feature Attention approach,    
• the learning rate
• the batch size
The training process integrates a learning rate scheduler: it reduces the learning rate by a factor of 0.5 whenever the loss does not improve over a 
5 of epochs.
The best model has been chosen as the one that maximize the f1 score among 50 trials.

The training procedure

18

Two distinct hardware setups were employed to test the model's scalability and efficiency. 
• distributed training across three NVIDIA A100 GPUs, each with 40 GB of memory
• a single NVIDIA H100 GPU with 94GB of memory
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PRELIMINARY RESULTS

Evaluation metrics for the 1 GeV – 100 GeV energy range

Metrics IN with linear IN with attention 
encoder

Accuracy 80.14 80.11

Precision 80.20 81.15

Recall 86.43 86.67

F1-score 80.19 80.18
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Evaluation metrics for the 100 GeV – 10 TeV energy range

Metrics IN with linear 
encoder

IN with attention 
encoder

Accuracy 81.85 82.11

Precision 77.68 79.65

Recall 71.31 71.29

F1-score 74.11 73.97

PRELIMINARY RESULTS
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Conclusions

At low energies (1–100 GeV), both models achieve competitive and balanced performance. The attention encoder shows the 
highest recall (86.67 %), demonstrating a stronger ability to correctly identify signal hits and higher precision (81.15%), 
reflecting a better suppression of false positives. 

In the higher energy range (100 GeV-10 TeV), both models maintain stable performance, with the attention encoder achieving 
slightly higher accuracy (82.11% vs. 81.85%) and precision (79.65% vs. 77.68%). 
Recall values remain nearly identical (around 71%), indicating that both approaches struggle to recover all true signal hits in the 
presence of the intense backscattering environment.

Good!
…. but we can do better…
…but …

• The simulation framework used to generate the dataset (HERDSoftware) is currently no longer maintained: 
• the clustering procedure is not optimized, and the labeling of signal and backscattering clusters lacks precision.
• there is no any kind of traditional tracking algorithm for comparison.

• The current approach also stops at node-level classification, i.e. the pattern recognition stage, without yet including the final 
track fitting step (e.g., linear regression for trajectory extraction).

21
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Thank 
you
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BACKUP
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Data are highly imbalanced, since there are many bacskattering tracks 
originating from the calorimeter, which interfere with the correct 
identification of the primary particle's trajectory .

To mitigate the imbalance:
1. Clustering algorithm
2. Cut of noise clusters “far away” from the primary track
3. Adding simulated events without calorimeter

Preprocessing phase: prepare data for the GNN—electron tracks

3D view

xz view yz view xy view
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The GNN algorithm: AI hardware
Tools for GNN training algorithm

• SageConv 
architecture

• 18 layers
• Mean aggregation 

function

• 128 hidden size
• Adam optimizer
• Binary cross entropy 

loss function

4,5 million simulated track data
75% train-15% validation-10% test

To enhance the time consuming we performed the distributing training 
by using:
• the JupyterLab instance with 3 A100 NVIDIA GPUs
• the Leonardo Hub instance with 4 A100 NVIDIA GPUs 
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Main Results: GNN algorithm evaluation

Metrics Values 

Accuracy 97.80%

Recall 97.65%

Precision 97.81%

F1-score 97.73%

ROC AUC 99.84%
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Main Results: events display
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ROC Curve: IN with linear encoder for 100 GeV 10 TeV energy range



Conclusions and next steps

What can we do??? 

1) Find the precise validity limits
2) Incorporate additional data from other subdetector (heterogeneous graph neural network and more 

sophisticated data preprocessing )

No worries, we’ll handle it! Stay tuned! 
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The GNN shows promising performance for tracking tasks compared to traditional analytical approaches, both in 
terms of accuracy and time efficiency.

Spoiler alert: the perfect classifier? It doesn’t exist!

The algorithm's validity is limited beyond a certain energy range! 
Between 100 TeV and 1 PeV, the information from the FIT alone is insufficient to distinguish between 
backscattering and primary tracks.
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Cross-Entropy vs. Focal Loss

Standard Cross-Entropy

•Loss: 𝐿𝐿 = −∑𝑦𝑦 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝

•All samples contribute equally

•Biased toward the majority class in imbalanced datasets

•Easy examples keep dominating the loss

Focal Loss

•Loss: 𝐿𝐿 =  − 𝛼𝛼ₜ 1 −  𝑝𝑝𝑝 𝛾𝛾 log(𝑝𝑝𝑝)

•Down-weights easy, well-classified samples

•Focuses on hard and misclassified examples

•Class-balancing factor 𝛼𝛼𝑡𝑡 gives more weight to minority class

•Designed for imbalanced and noisy data
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GAT algorithm
Graph Attention Networks (GATs) are a variant of Graph Neural Networks (GNNs) that leverage attention mechanisms for feature learning on 
graphs.
In standard GNNs, such as Graph Convolutional Networks (GCNs), the feature update of a node is typically the average of the features of its 
neighbors. This approach does not differentiate between the contributions of different neighbors.
GATs, on the other hand, assign an attention coefficient to each neighbor, indicating the importance of that neighbor’s features for the feature 
update of the node. These coefficients are computed using a shared self-attention mechanism, which calculates an attention score for each pair of 
nodes. The scores are then normalized across each node’s neighborhood using a SoftMax function.

600 epochs
2,6 million events
learning rate: 1e-4

CV 5 fold accuracy recall precision

train data 0.941± 0.024 0.926 ± 0.033 0.9860 ± 0.0038

validation data 0.941 ± 0.024 0.926 ± 0.033 0.9859 ± 0.0038

Performances on test data
Accuracy: 0.9557
Recall:  0.9493
Precision:  0.9849

31



Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

GCN algorithm
The general idea of GCN is to apply convolution over a graph. Instead of having a 2-D array as input as in the classical CNN algorithm, 
GCN takes a graph as an input

Algorithm performances:
1500 epochs
2 million events
lr 5e-4
Accuracy: 0,8662 
Recall: 0,8326
Precision: 0,9663
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Aspect Convolutional Neural Networks (CNNs) Graph Neural Networks (GNNs)

Data Structure
Operate on regular, grid-like data 
structures (e.g., images), where spatial 
relationships are fixed.

Operate on graph-structured data, 
accommodating arbitrary sizes and complex 
topologies, ideal for irregular detector 
geometries. 

Application in Particle 
Tracking

Transform detector hits into 2D or 3D 
images; apply convolutional filters to 
detect patterns corresponding to particle 
trajectories. 

Model detector hits as nodes in a graph; use 
message passing to aggregate information 
from neighboring nodes, capturing complex 
spatial relationships. 

Advantages

- Well-established architectures with 
extensive tooling and support. 
- Efficient for data with regular spatial 
structures.

- Naturally handle irregular and sparse data. 
- Adaptable to complex detector geometries. 
- Capture intricate relationships between 
hits. 

Limitations - May struggle with sparse data and 
complex topologies.

- Potentially higher computational 
complexity. - May require more 
sophisticated training and tuning.
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