Frontend Computation for ADAPT/APT

Marion Sudvarg, Chenfeng Zhao, Meagan Konst, Thomas Lang, Nick
Song, Blake Bal, Longhao Huang, Boran Yang, Kelli Liang, Ruoxi Wang

ADAPT Roger Chamberlain

On-Instrument Computational Pipeline
ASICs to FPGAs to multicores

X&Y- encrot GA CPU
SiPM SMART Y ALPHA pedestal | | compute zZero island compute] | event
ASIC ASIC subtract | | integrals | |suppress| | detect centroids| | build

 SMART ASIC from INFN — Bari, Italy

* ALPHA ASIC from UH Manoa — Honolulu, HI, US
» Now most are HDSoC ASICs

* FPGA and multicore functions from WashU — St. Louis, MO, US

L
>

Pedestal Subtraction

Pedestal Subtraction

Algorithm is not very complicated — C code is below:

void ped_subtract(Packet *pkt, unsigned *peds, unsigned a) {
mmmm) for (unsigned s = 0; s < NUM_SAMPLES; ++s) {
unsigned idx = (pkt->starting_sample + s) % NUM_SAMPLES;
mmmm) for (unsigned c = 0; c < NUM_CHANNELS; ++c) {
unsigned ped_idx = pkt->bank * NUM_SAMPLES * NUM_CHANNELS +
idx * NUM_CHANNELS + c;
results[a][s][c] = pkt->samples][s][c] - peds[ped_idx];

1) I

* Just some index computations and one subtraction, looping samples and channels
e Can we use High-Level Synthesis (HLS) to implement it , and rest of front-end pipeline?

L
>

Compute Integrals — Photon Counting

15t Approach — Integration

Output from pedestal subtraction

Integrals * Integrate portions of waveform

* Two approaches:
* Unrolled looping sum
* Parallel prefix sum

ADC Counts

* Scale to determine photon count

* In Compton regime — lots of noise relative
to actual signal

Pedestal
Time

and Approach — Threshold Photon Count

More realistic output from pedestal subtraction (i.e., noise included)

—owmsme | o Count photo electron peaks
* Better noise suppression between peaks
* Thresholds are challenge

* Multiple needed for different conditions
* E.g., peak split across two samples

e Difficult to tune

ADC Count

0 100 200 300 400
Sample Index

2nd Approach — Threshold Photon Count

How good are the localization results?

Comparison between peak count program and With no noise, 1st and 2nd approaches
AMEEETOklof ambiass are similar in performance

* With noise, threshold photon count has
substantially better performance

10

Angular deviation

oise(95%

M peak count program M integration

3rd Approach — Local Filter
(1) Threshold (2) Filter

* Threshold test to check if sample is above noise level

* Filter small window around sample above threshold
* Current filter is a simple box filter

* Need to seriously investigate additional filters
e E.g., matched filter to impulse response

* Good photon counts with less sensitivity to threshold values

L
>

Zero Suppression

Zero Suppression

Only needed for integral approach

void zero_suppress(int32_t * integrals, const int32_t * thresholds) {
mmm for (unsigned i = 0; i < NUM_INTEGRALS; ++i) {
mmmm) for (unsigned c = 0; c < NUM_CHANNELS; ++c) {
if (integrals[i*NUM_CHANNELS+c] < thresholds][i]) {
integrals[i*NUM_CHANNELS+c] = 0;

11} I

 Just some index computations and one test, looping integrals and channels

* Photon counting approaches already have effectively done zero suppression

L
>

Island Detection

Island Detection

Contiguous set of fibers with non-zero photons

* Initially, graph resulted in 2 islands

* Revised to allow single fiber with
zero photons

| | | I * Revised approach gives better

Photon number

localization results

o B N W kU O

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16
Fiber ID

L
>

Centroiding

Centroiding

Compute centroid of each island

* Dot product of fiber ID and photon
count

e Corresponds to 15t moment
| | I e Centroids and width of islands are

Photon number

reported downstream

o B N W kU O

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16
Fiber ID

L
>

So, what about HLS?

HLS Results

Initial results aren’t very promising

Implementation Initiation Interval

Naive 1 502 829 clocks 1 254 924

» And there is a race condition! &

HLS Results

Fix the race condition

Implementation Initiation Interval

Naive 1 502 829 clocks 1 254 924 clocks
Functional 1 399 745 clocks 1 254 840 clocks

* Not much faster, though ®

HLS Results

Perform several optimizations to HLS code

* Move pedestal values to BRAM

* |[nsert #pragmas
* Pipelining
e Loop unrolling
* Code modifications

e Copy data to local variables
* Swap loop order

HLS Results

We’re finally getting somewhere

Implementation Initiation Interval

Naive 1 502 829 clocks 1 254 924 clocks
Functional 1 399 745 clocks 1 254 840 clocks
HLS Optimizations 40 056 clocks 22 412 clocks

» Over 50 times faster! ©

HLS Results

Can we do better?

* Dataflow pipeline
* Move data from stage to stage in FIFO queues

* VVectorization
* Operate on vector of 16 channels simultaneously

HLS Results

This is our best performance

Implementation Initiation Interval

Naive 1 502 829 clocks 1 254 924 clocks
Functional 1 399 745 clocks 1 254 840 clocks
HLS Optimizations 40 056 clocks 22 412 clocks
Dataflow & Vectors 440 clocks 299 clocks

e Another 75 times faster! ©

HLS Results

Are there better tools?

* Previous result is from vendors HLS compiler

* There are 3 academic HLS compilers

 HIDA-ScaleHLS from UIUC
e Bambu from Politecnico di Milano
* Dynamatic from EPFL

* We have students attempting to use the first two

Conclusions and Future Work

* HLS gives good
implementations

* Requires non-trivial
optimizations

* Plenty fast enough

* Doesn’t overly consume
FPGA resources

* Does it all fit on FPGA along
with configurations?

* Can academic HLS compilers
simplify design effort?

* Algorithm tuning underway

* Also adding 2" and 3™

moments for pair-production
events

Questions?
URL: adapt.physics.wustl.edu

My contact info:

roger@wustl.edu

(Credit: Mark Garlick/ U. Warwick)

