
Frontend Computation for ADAPT/APT
Marion Sudvarg, Chenfeng Zhao, Meagan Konst, Thomas Lang, Nick

Song, Blake Bal, Longhao Huang, Boran Yang, Kelli Liang, Ruoxi Wang

Roger Chamberlain

On-Instrument Computational Pipeline

• SMART ASIC from INFN – Bari, Italy
• ALPHA ASIC from UH Manoa – Honolulu, HI, US
 Now most are HDSoC ASICs

• FPGA and multicore functions from WashU – St. Louis, MO, US

ASICs to FPGAs to multicores

Pedestal Subtraction

Pedestal Subtraction
Algorithm is not very complicated – C code is below:

void ped_subtract(Packet *pkt, unsigned *peds, unsigned a) {
for (unsigned s = 0; s < NUM_SAMPLES; ++s) {

unsigned idx = (pkt->starting_sample + s) % NUM_SAMPLES;
for (unsigned c = 0; c < NUM_CHANNELS; ++c) {

unsigned ped_idx = pkt->bank * NUM_SAMPLES * NUM_CHANNELS +
idx * NUM_CHANNELS + c;

results[a][s][c] = pkt->samples[s][c] - peds[ped_idx];
} } }

• Just some index computations and one subtraction, looping samples and channels
• Can we use High-Level Synthesis (HLS) to implement it , and rest of front-end pipeline?

Compute Integrals – Photon Counting

1st Approach – Integration
Output from pedestal subtraction

• Integrate portions of waveform
• Two approaches:

• Unrolled looping sum
• Parallel prefix sum

• Scale to determine photon count
• In Compton regime – lots of noise relative

to actual signal

2nd Approach – Threshold Photon Count
More realistic output from pedestal subtraction (i.e., noise included)

• Count photo electron peaks
• Better noise suppression between peaks
• Thresholds are challenge

• Multiple needed for different conditions
• E.g., peak split across two samples

• Difficult to tune

2nd Approach – Threshold Photon Count
How good are the localization results?

• With no noise, 1st and 2nd approaches
are similar in performance

• With noise, threshold photon count has
substantially better performance

3rd Approach – Local Filter

• Threshold test to check if sample is above noise level

• Filter small window around sample above threshold
• Current filter is a simple box filter
• Need to seriously investigate additional filters

• E.g., matched filter to impulse response

• Good photon counts with less sensitivity to threshold values

(1) Threshold (2) Filter

Zero Suppression

Zero Suppression
Only needed for integral approach

void zero_suppress(int32_t * integrals, const int32_t * thresholds) {
for (unsigned i = 0; i < NUM_INTEGRALS; ++i) {

for (unsigned c = 0; c < NUM_CHANNELS; ++c) {
if (integrals[i*NUM_CHANNELS+c] < thresholds[i]) {

integrals[i*NUM_CHANNELS+c] = 0;
} } }

• Just some index computations and one test, looping integrals and channels
• Photon counting approaches already have effectively done zero suppression

Island Detection

Island Detection
Contiguous set of fibers with non-zero photons

• Initially, graph resulted in 2 islands
• Revised to allow single fiber with

zero photons
• Revised approach gives better

localization results

Centroiding

Centroiding
Compute centroid of each island

• Dot product of fiber ID and photon
count

• Corresponds to 1st moment
• Centroids and width of islands are

reported downstream

So, what about HLS?

HLS Results

• And there is a race condition! 

Initial results aren’t very promising

Initiation IntervalLatencyImplementation
1 254 9241 502 829 clocksNaïve

HLS Results

• Not much faster, though 

Fix the race condition

Initiation IntervalLatencyImplementation
1 254 924 clocks1 502 829 clocksNaïve
1 254 840 clocks1 399 745 clocksFunctional

HLS Results

• Move pedestal values to BRAM
• Insert #pragmas

• Pipelining
• Loop unrolling

• Code modifications
• Copy data to local variables
• Swap loop order

Perform several optimizations to HLS code

HLS Results

• Over 50 times faster! 

We’re finally getting somewhere

Initiation IntervalLatencyImplementation
1 254 924 clocks1 502 829 clocksNaïve
1 254 840 clocks1 399 745 clocksFunctional

22 412 clocks40 056 clocksHLS Optimizations

HLS Results

• Dataflow pipeline
• Move data from stage to stage in FIFO queues

• Vectorization
• Operate on vector of 16 channels simultaneously

Can we do better?

HLS Results

• Another 75 times faster! 

This is our best performance

Initiation IntervalLatencyImplementation
1 254 924 clocks1 502 829 clocksNaïve
1 254 840 clocks1 399 745 clocksFunctional

22 412 clocks40 056 clocksHLS Optimizations
299 clocks440 clocksDataflow & Vectors

HLS Results

• Previous result is from vendors HLS compiler
• There are 3 academic HLS compilers

• HIDA-ScaleHLS from UIUC
• Bambu from Politecnico di Milano
• Dynamatic from EPFL

• We have students attempting to use the first two

Are there better tools?

Conclusions and Future Work

• HLS gives good
implementations

• Requires non-trivial
optimizations

• Plenty fast enough
• Doesn’t overly consume

FPGA resources

• Does it all fit on FPGA along
with configurations?

• Can academic HLS compilers
simplify design effort?

• Algorithm tuning underway
• Also adding 2nd and 3rd

moments for pair-production
events

Questions?

My contact info:
roger@wustl.edu

URL: adapt.physics.wustl.edu

(Credit: Mark Garlick/ U. Warwick)

