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MOTIVATIONS
NATURE IS FRACTAL… AND COMPOSITE!

[https://timwatersart.com][https://www.treehugger.com/amazing-fractals-found-in-nature-4868776]

Evolutionary tinkering [Jacobs, 1977]

We address typical anomalous behaviours of bundled 
structures through notions of dimensionality of a graph.

Diffusion in bundles

NATURE IS FRACTAL…

https://timwatersart.com
https://www.treehugger.com/amazing-fractals-found-in-nature-4868776
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THE MATHEMATICAL TOOLKIT
LAPLACIAN RENORMALISATION GROUP

Laplacian      L̂ = D̂ − ̂A

Heat kernel      e−τL̂

Entropy      S(τ) = − Tr[ ̂ρ(τ)log ̂ρ(τ)]
Canonical ensemble      ̂ρ(τ) =

e−τL̂

Z(τ)

Heat capacity      C(τ) ≡ −
dS

d log τ Peak in structural transition 

Ability to reveal multi-scale organisation 

Extension of RG to complex networks

C(τ) ⇒



[https://commons.wikimedia.org/w/index.php?curid=12042048]

THE MATHEMATICAL TOOLKIT
TWO DIFFERENT DIMENSIONS
Fractal dimension df

0 75 150
miles

0 75 150 km

Related to the growth rate of neighbouring nodes. 

The mean mass  of a cluster with radius  satisfies N r

N(r) ∼ rdf

https://commons.wikimedia.org/w/index.php?curid=12042048
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THE MATHEMATICAL TOOLKIT
TWO DIFFERENT DIMENSIONS
Fractal dimension df

Spectral dimension ds

0 75 150
miles

0 75 150 km

Related to the growth rate of neighbouring nodes. 

The mean mass  of a cluster with radius  satisfies N r

N(r) ∼ rdf

Related to how fast or slow diffusion happens over the 
manifold. 

The spectral density  of the Laplacian for small 
eigenvalues satisfies 

P(λ)

P(λ) ∼ λ
ds
2 −1

https://commons.wikimedia.org/w/index.php?curid=12042048


Sierpinski gasket

THE MATHEMATICAL TOOLKIT
SCALE INVARIANCE

Sierpinski carpet

[Burioni, Cassi, Fontana, Vulpiani, 2004]

N(n) =
3
2

(3n − 1)

ds = 2
log 3
log 5

≃ 1.37

[Hilfer, Blumen, 1984]

ds, Fiedler = 1.37(1)

N(n) = 2n+3

ds ≈ 1.81
[Barlow, Bass, Sherwood, 1990]

ds, Fiedler = 1.81(1)

Constant heat capacity        scale-invariant sector 

Value of the plateau        

⟶

⟶
ds

2

Scaling of the Fiedler eigenvalue: 

λF ∼ N− 2
ds as N → + ∞



HETEROGENEOUS STRUCTURES
BUNDLED LATTICES

Dirac comb

dg = 1.334(1)

Dirac brush

dg = 2.01(1)

Two 1-dimensional sectors        two distinct plateaux⟶

Global Fiedler dimension

2-dimensional bulk        2-dimensional plateau⟶
1-dimensional fiber          1-dimensional plateau⟶

Global Fiedler dimension



HETEROGENEOUS STRUCTURES
BUNDLED NETWORKS

Write the eigenvalue 
equation in a basis 

where the Laplacian of 
the base is diagonal.

∑
j2

L̂f
i2, j2

ψk
n1, j2 + lb

n1
δ0, i2ψ

k
n1, i2 = λkψk

n1, i2 (1)
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HETEROGENEOUS STRUCTURES
BUNDLED NETWORKS

Write the eigenvalue 
equation in a basis 

where the Laplacian of 
the base is diagonal.

Implement a 
perturbative approach 

to extract the Fiedler 
eigenvalue of the graph.

Exploit the scaling of the 
Fiedler eigenvalue and 
of the size of the graph.

∑
j2

L̂f
i2, j2

ψk
n1, j2 + lb

n1
δ0, i2ψ

k
n1, i2 = λkψk

n1, i2 (1)

ψk
n1, i2 = C + lb

n1
ψk (1)

n1, i2
, λn1

= Alb
n1

(2)

dg = 2
df, f + df, b

df, f + 2
df, b

dg, b

⇒ λF =
lb
F

Nf
(3)

lb
F ∼ L−2

df, b
dg, b

Nf ∼ Ldf, f

N ∼ Ldf, f+df, b

⇒ λF ∼ N−
df, f + 2

df, b
dg, b

df, f + df, b ⇒ (4)



HETEROGENEOUS STRUCTURES
BUNDLED NETWORKS



What we have done so far

SUMMARY
Study of anomalous diffusive behaviours. 

Introduction of a non-trivial notion of dimension. 

Analytical characterisation of the Fiedler dimension for a wide class of graphs.



What we have done so far

Possible developments

SUMMARY
Study of anomalous diffusive behaviours. 

Introduction of a non-trivial notion of dimension. 

Analytical characterisation of the Fiedler dimension for a wide class of graphs.

Recursive use of our result allows for the understanding of even more complex 
structures, provided that we know the fundamental constituents. 

Inverse problem: can we use the knowledge of the whole graph to identify 
individual sectors?

What happens when the fractal dimension of a sector of the graph is infinite?

Multifractals are known to display a range of fractal dimensions, changing with the 
considered scale. 

Is there a notion of multifractal spectral dimension?



One-loop mass 
corrections of 

interacting string states
Based on

Part II

M. Bianchi, M. Firrotta, LG, in preparation (2025) 

Presented through an oral contribution in

XIV Young Researcher 
Meeting, L’Aquila, Italy

and soon in

XXI Avogadro 
Meeting on 
Strings, 
Supergravity and 
Gauge Theories, 
Catania, Italy



MOTIVATIONS

String Theory was born as a theory of nuclear interactions, which display level 
repulsion. Resonance energies are described by random matrix statistics. 

Similar behaviour for strings        new holographic descriptions of hadrons?⟶

Highly excited string states are suitable candidates for microstates of black 
holes. The great degeneracy of such states might play a role in the study of 
the complexity of black holes.

[https://www.pinterest.com/pin/276338127110271146/]

FERTILE GROUND FOR COMPLEXITY

https://www.pinterest.com/pin/276338127110271146/
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SELECTION OF STATES
NS-NS STRING SPECTRUM

Worldsheet theory

Neveau-Schwarz (NS) sector  antiperiodic boundary conditions for ⟷ ψ

Spacetime theory

(boson† fermion†) |0⟩

|boson⟩ | fermion⟩

Worldsheet scalar  creation and annihilation operators, XM⟷ n ∈ ℕ
, αM

−n α̃M
−n , αM

n α̃M
n

Worldsheet spinor  creation and annihilation operators, ψM
i ⟷ r ∈ ℕ +

1
2

, bM
−r b̃M

−r , bM
r b̃M

r
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NS-NS STRING SPECTRUM

Worldsheet theory

Neveau-Schwarz (NS) sector  antiperiodic boundary conditions for ⟷ ψ

Spacetime theory

(boson† fermion†) |0⟩

|boson⟩ | fermion⟩

Worldsheet scalar  creation and annihilation operators, XM⟷ n ∈ ℕ
, αM

−n α̃M
−n , αM

n α̃M
n

Worldsheet spinor  creation and annihilation operators, ψM
i ⟷ r ∈ ℕ +

1
2

, bM
−r b̃M

−r , bM
r b̃M

r

Bosonic occupation number:                   (and similarly for )Nb ≡ ∑
n>0

αM
−nαM

n Nf

Level matching condition:         Nb
left + Nf

left
= Nb

right + Nf
right

Mass of a state:         M2 =
4
α′￼

(Nb
left + Nf

left
− 1) ≡

4
α′￼

(N − 1)

Massless ground state graviton , Kalb-

Ramond field , dilaton 

≡ { gMN
BMN ϕ}

Infinite tower of massive states, with 
increasing degeneracy ∼ eβH N

Spectrum



[https://bigthink.com/starts-with-a-bang/what-every-layperson-should-know-about-string-theory/]

AMPLITUDES IN STRING THEORY
TREE-LEVEL INTERACTIONS

Quantum Field Theory

The interactions are pointlike. 
We integrate over the 
coordinates of the vertex. 

The number of legs of a 
vertex depends on the 
Lagrangian.

String Theory

The interactions are spread 
over the worldsheet, acting 
as a natural UV cutof. We 
integrate over the related 
coordinates. 

The vertices have 3 legs.

https://bigthink.com/starts-with-a-bang/what-every-layperson-should-know-about-string-theory/
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We integrate over the 
coordinates of the vertex. 

The number of legs of a 
vertex depends on the 
Lagrangian.

String Theory

The interactions are spread 
over the worldsheet, acting 
as a natural UV cutof. We 
integrate over the related 
coordinates. 

The vertices have 3 legs.

Different channels are allowed. All the channels are encoded 
by a single diagram.
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AMPLITUDES IN STRING THEORY
TREE-LEVEL INTERACTIONS

Quantum Field Theory

The interactions are pointlike. 
We integrate over the 
coordinates of the vertex. 

The number of legs of a 
vertex depends on the 
Lagrangian.

String Theory

The interactions are spread 
over the worldsheet, acting 
as a natural UV cutof. We 
integrate over the related 
coordinates. 

The vertices have 3 legs.

Different channels are allowed. All the channels are encoded 
by a single diagram.

[Firrotta, 2024]

At the tree-level, closed strings can be thought to hit a -sphere. The information on 
the states is carried in the vertex operators  entering with each string, where 

 parametrise the worldsheet.

D
Vi(z, z̄)

z, z̄ ∈ ℂ

https://bigthink.com/starts-with-a-bang/what-every-layperson-should-know-about-string-theory/
https://www.researchgate.net/figure/Scattering-string-amplitude-can-be-seen-in-two-ways_fig2_242357918


AMPLITUDES IN STRING THEORY

Quantum Field Theory

Particles carry momenta along loops. 

Many diagrams may arise, depending on 
the Lagrangian.

String Theory

We consider interaction manifolds with an 
ever-increasing number of handles - that is, 
an increasing genus. 

We only have to consider the inequivalent 
manifolds with the same genus, at each 
order.

[https://www.quantumuniverse.nl/string-gravity]

Closed strings  genus-         torus 

In addition, we have to integrate over the 
modular parameter , characterising 
the different tori.

+ 1 ⟶

τ ∈ ℂ

ONE-LOOP AMPLITUDES

https://www.quantumuniverse.nl/string-gravity


ONE-LOOP MASS CORRECTIONS
AN INTEGRAL FOR EVERY MASS LEVEL

We focus on NS-NS states in the leading Regge trajectory - that 
is, with maximal allowed spin.

The aim is to compute one-loop corrections to the mass of such 
states, at a generic mass level .N

[https://ysfine.com/feynman/chewfrau.html]

https://ysfine.com/feynman/chewfrau.html


ONE-LOOP MASS CORRECTIONS
AN INTEGRAL FOR EVERY MASS LEVEL

We focus on NS-NS states in the leading Regge trajectory - that 
is, with maximal allowed spin.

The aim is to compute one-loop corrections to the mass of such 
states, at a generic mass level .N

,ℳ1-loop ∝ ∫ℱ

d2τ
τ5

2

1
η6(N−1)η6(N−1) ∫𝒯2

d2z e−4πτ2y2(N−1) (ϑ1(z)ϑ1(z))2(N−1) (∂2
zG(z))N−2 (∂2

zG(z))
N−2

The computation involves one integral over the torus  (after a 
trivial one) and one integral over the fundamental domain  of 
modular parameters:

𝒯2
ℱ

where  and we have set , with . G(z, z̄) = − log
θ1(z |τ)
θ′￼1(0 |τ)

2

+ 2π
z2
2

τ2
z = x + τy x, y ∈ [0,1]

[https://ysfine.com/feynman/chewfrau.html]

https://ysfine.com/feynman/chewfrau.html


ONE-LOOP MASS CORRECTIONS
CLASS OF INTEGRALS

The worldsheet integral is always in the form

, with .IN1, N2, N1, N2
= ∫𝒯2

d2z e−4πτ2(N−1)y2ϑ1(z)2N1ϑ2(z)2N2ϑ1(z)2N1ϑ2(z)2N2 N1 + N2 = N1 + N2 = N − 1



ONE-LOOP MASS CORRECTIONS
CLASS OF INTEGRALS

The worldsheet integral is always in the form

, with .IN1, N2, N1, N2
= ∫𝒯2

d2z e−4πτ2(N−1)y2ϑ1(z)2N1ϑ2(z)2N2ϑ1(z)2N1ϑ2(z)2N2 N1 + N2 = N1 + N2 = N − 1

Relations between the s and the lattice sums  allow for a recasting of  into a Gaussian integral, yielding 
the result

ϑi ΛSU(2n)
r IN1, N2, N1, N2

IN1, N2, N1, N2
=

τ2(N − 1)
2

0, 2Ni−1

∑
r1,r2,r1,r2

( − )r1+r1ΛSU(2N1)
r1

ΛSU(2N2)
r2

Λ̄SU(2N1)
r1

Λ̄SU(2N2)
r2

1 + ( − )r1+r2−r1−r2

2
⋅

,⋅ ∑
m, m̄∈ℤ

q( 1
N1

+ 1
N2 )Δ2(m, r1, r2)q̄( 1

N1
+ 1

N2 )Δ̄2(m, r1, r2)
N−1

∑
k=1

e− 2πi
N − 1 k(N1m + r1 + r2 − r1 − r2

2 − N1m)

where .q = e2πiτ



ONE-LOOP MASS CORRECTIONS
REGULARISATION AND RENORMALISATION

[Manschot, Wang, 2024]

The integral over the fundamental domain is always in the form

.ℳ1-loop ∝ ∫I2

d2τ
τ5

2

F(τ, τ)
η6(N−1)η6(N−1)

IN1, N2, N1, N2
(τ, τ)

The real part of the integral diverges. This is cured by an extension of 
the -prescription to String Theory [Manschot, Wang, 2024]. In a 
nutshell: 

Expand the integrand in powers of  and ; 

Identify the dangerous region of the domain (the red one, for negative 
powers); 

Remove the divergent contribution.

iε

q q̄



ONE-LOOP MASS CORRECTIONS
RESULTS AT LOW MASS LEVELS

      mass correction 

      decay width

ℜ(ℳ1-loop) ⟶

ℑ(ℳ1-loop) ⟶
These correction vanish for massless 
states ( ), but not for massive states!N = 1

Manschot and Wang relied on previous results [Stieberger, 2023] to check their procedure at . Our result agrees 
with theirs:

N = 2

         ✅ℳ1-loop, N=2 ∝ − (27.85 + 59.37i)
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RESULTS AT LOW MASS LEVELS

      mass correction 

      decay width

ℜ(ℳ1-loop) ⟶

ℑ(ℳ1-loop) ⟶
These correction vanish for massless 
states ( ), but not for massive states!N = 1

Manschot and Wang relied on previous results [Stieberger, 2023] to check their procedure at . Our result agrees 
with theirs:

N = 2

         ✅ℳ1-loop, N=2 ∝ − (27.85 + 59.37i)

We carried out the full computation at , finding .N = 3 ℳ1-loop, N=3 ∝ − (1306 + 3363i)



What we have done so far

SUMMARY
Analysis of one-loop mass corrections for a set of NS-NS states. 

Derivation of the mass corrections at any mass level , with the possibility to extract 
numerical results.

N



What we have done so far

Possible developments

SUMMARY
Analysis of one-loop mass corrections for a set of NS-NS states. 

Derivation of the mass corrections at any mass level , with the possibility to extract 
numerical results.

N

Away from the leading Regge trajectory, polynomials in  appear. The presence of 

the integral  is not manifest anymore. 

Moreover, mixing might be involved! At  we have both  and  from two 
distinct states… 

Possible way out: use the Weierstrass  function!        Work in progress…

∂2l
z G

IN1, N2, N1, N2

N = 4 (∂2
zG)2 ∂4

zG

℘(z |τ)

We expect complexity to emerge at large . Still, level repulsion at  would be a 
major hint!

N N = 4



THANK YOU!



Backup slides



HETEROGENEOUS STRUCTURES
BUNDLED LATTICES

Write the eigenvalue 
equation in a basis 

where the Laplacian of 
the base is diagonal.

∑
j2

L̂f
i2, j2

ψk
n1, j2 + lb

n1
δ0, i2ψ

k
n1, i2 = λkψk

n1, i2 (1)

2ψk
n1, i2 − ψk

n1, i2+1 − ψk
n1, i2−1 + δ0, i2l

b
n1

ψk
n1, i2 = λkψk

n1, i2 (2)

The eigenvalues  are 
those of a ring with an 
impurity. The spatial 

frequency  is fixed by 
a boundary condition.

λk

ωk

λk = 2[1 − cos(ωk)], ωk ≃ 2
lb
k

L
(3)

Exploit the scaling of the 
Fiedler eigenvalue of the 

size of the graph.

lb
F ∼ L−2

df, b
dg, b ⇒ λF ∼ L−1−2

df, b
dg, b ∼ N−

1 + 2
df, b
dg, b

1 + df, b ≡ N− 2
dg (4)

dg = 2
1 + df, b

1 + 2
df, b

dg, b

(5)



AMPLITUDES IN STRING THEORY
MODULAR INVARIANCE

[https://reu.dimacs.rutgers.edu/~cjf151/dimacs/]

The torus is invariant under the transformations  

and , which generate the modular group 

. Hence, we only have to integrate over the 
inequivalent tori - that is, the fundamental domain . 

The resulting amplitude must be a modular invariant.

T : τ → τ + 1
S : τ → −

1
τ

SL(2, ℤ)
I2

[https://tikz.net/plane-to-torus/]

      Mapping the torus to the fundamental 
cell in the complex plane
⟵

https://reu.dimacs.rutgers.edu/~cjf151/dimacs/
https://tikz.net/plane-to-torus/


ONE-LOOP AMPLITUDES
RECURRING FUNCTIONS

Jacobi  functions 

 with  and  

Dedekind function                                     Lattice sums              

Weierstrass elliptic function             

ϑ

ϑ1(z |τ) = i ∑
n∈ℤ

( − )nq
1
2 (n + 1

2 )
2

ζn+ 1
2 ,

ϑ2(z |τ) = ∑
n∈ℤ

q
1
2 (n + 1

2 )
2

ζn+ 1
2 ,

ϑ3(z |τ) =
∞

∑
n=−∞

q
n2
2 ζn,

ϑ4(z |τ) =
∞

∑
n=−∞

( − )nq
n2
2 ζn,

q = e2iπτ ζ = e2iπz

η(τ) = q
1

24 ∏
n∈ℕ

(1 − qn) ΛSU(2n)
r = ∑

m∈ℤ2n

q
1
2 ∑i (mi − r

2n )2

δ (∑
i

mi = r)

℘(z |τ) =
1
z2

+ ∑
(n,m)≠0

[ 1
(z + n + mτ)2

−
1

(n + mτ)2 ]



ONE-LOOP AMPLITUDES
RECURRING RELATIONS

Differential equation for  

,                          with  and  

Bargman kernel in terms of  and                    

Jacobi  in terms of lattice sums              ,             with                        

Derivatives of            ,        with 

℘(z |τ)

(∂z℘)2 = 4℘3 − g2℘ − g3 g2 =
4
3

π4E4(τ) g3 =
8

27
π6E6(τ)

℘(z |τ) η(τ) ∂2
zG = ℘(z) − 4iπ∂τ log (η(τ) τ2)

ϑ1, 2 ϑ2n
a =

∑
r

( − )rΛSU(2n)
r ∑

l∈ℤ

q
1
2 2nQ2e2πiz2nQ if a = 1

∑
r

ΛSU(2n)
r ∑

l∈ℤ

q
1
2 2nQ2e2πiz2nQ if a = 2

Q = l +
1
2

−
r

2n

℘(z |τ) ℘(2n)(z |τ) =
n+1

∑
k=0

c(2n)
k ℘k

c(2n+2)
k = −g3(k + 1)(k + 2)c(2n)

k+2 k∈[0, n−1]
−

g2(k + 1)(2k + 1)
2

c(2n)
k+1

k∈[0, n]

+ 2(k − 1)(2k − 1)c(2n)
k−1 k∈[2, n+2]


