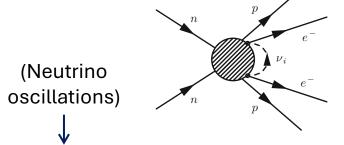


Radiopure crystal scintillators for rare-event searches: my PhD work recognized by the SIF "Ettore Pancini" Prize



Alice Leoncini

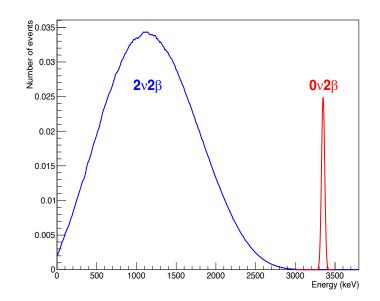
The 2β decay

- 2ν2β decay is a rare process allowed in the SM → lepton number L conserved
- $0v2\beta$, if observed, could open a new window beyond the SM \rightarrow L violated ($\Delta L = 2$) \rightarrow massive Majorana neutrino

$$2\nu 2\beta^{-}$$
 : ${}_{Z}^{A}X \rightarrow {}_{Z+2}^{A}Y + 2e^{-} + 2\bar{\nu}_{e}$

$$2\nu 2\beta^{+}$$
 : ${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A}Y + 2e^{+} + 2\nu_{e}$

$$2\nu\varepsilon\beta^{+}$$
 : $e^{-} + {}^{A}_{Z}X \rightarrow {}^{A}_{Z-2}Y + e^{+} + 2\nu_{e}$

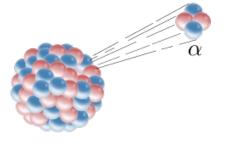

$$2\nu 2\varepsilon$$
 : $2e^- + {}^A_ZX \rightarrow {}^A_{Z-2}Y + 2\nu_e$

$$0\nu 2\beta^{-}$$
 : ${}_{Z}^{A}X \rightarrow {}_{Z+2}^{A}Y + 2e^{-}$

$$0\nu 2\beta^{+}$$
 : ${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A}Y + 2e^{+}$

$$0\nu\varepsilon\beta^+: e^- + {}^A_ZX \rightarrow {}^A_{Z-2}Y + e^+$$

$$0\nu 2\varepsilon$$
 : $2e^- + {}^A_Z X \rightarrow {}^A_{Z-2} Y + \gamma$


Current sensitivity for $2\nu 2\beta^-$ decay: $T_{1/2} \sim 10^{18}$ - 10^{24} yr ; for $0\nu 2\beta^-$: $T_{1/2} \sim 10^{24} - 10^{26} \text{ yr}$

Positive channels: less studied but easier to identify. Current experimental sensitivities: T_{1/2} $\sim 10^{16} - 10^{21} \text{ yr.}$

Complementary information to $0v2\beta^-$ + resonant effect

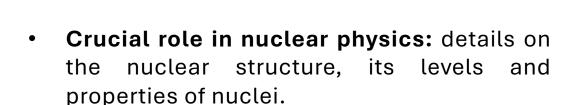
$$(T_{1/2}^{0\nu})^{-1} = g_A^4 G^{0\nu}(Q,Z) \Big| M_{GT}^{0\nu} - \frac{g_V^2}{g_A^2} M_F^{0\nu} \Big|^2 |m_{\beta\beta}|^2 \qquad \text{where } m_{\beta\beta} = \sum_i U_{ei}^2 m_i = \sum_i M_{ei}^2 m_i = \sum_i M_$$

where
$$m_{etaeta} = \sum_i U_{ei}^2 m_i$$

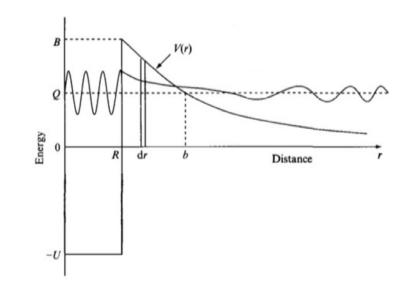
 $T_{1/2}$ ranges between 10^{-8} s of 217 Ac to 10^{19} yr of 209 Bi

Rare α decay: $T_{1/2} > 10^{14}$ yr (e.g. ¹⁸⁴Os, ¹⁸⁰W, ¹⁷⁴Hf, ¹⁵²Gd, ¹⁴⁷Sm, ¹⁴³Nd)

Extremely difficult to detect with conventional techniques

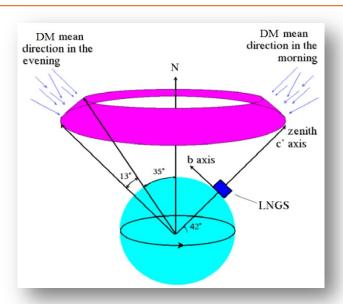

The rare α decay

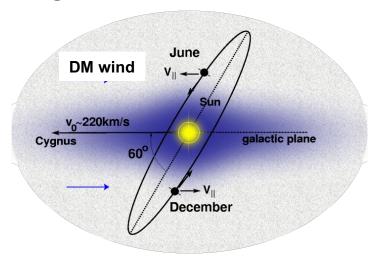
α decay corresponds to a very asymmetric spontaneous fission:


$$\alpha: {}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}Y + {}_{2}^{4}\mathrm{He}$$

• less-energetic α decays are always accompanied by the emission of γ quanta:

$${}^A_ZX \rightarrow {}^{A-4}_{Z-2}Y^* + {}^4_2\mathrm{He},$$
 with ${}^{A-4}_{Z-2}Y^* \rightarrow {}^{A-4}_{Z-2}Y + \gamma \mathrm{'s}.$


• Essential also for **nuclear and particle astrophysics studies** (α -capture reactions, β -delayed fission, nucleosynthesis).

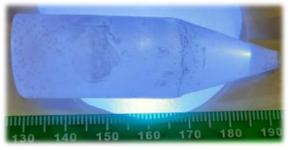

The directionality approach to study *Dark Matter* candidate particles

Based on the study of the correlation between the arrival direction of DM <u>candidates able to induce a nuclear recoil</u> and the Earth motion in the galactic frame.

Impinging direction of DM particle is (preferentially) opposite to the velocity of the Sun in the Galaxy...

The direction of the induced nuclear recoil is expected to be strongly correlated with the direction of the impinging DM particle.

...and due to the Earth's rotation around its axis, the DM particles average direction with respect to an observer on the Earth changes with a period of a sidereal day


A direction-sensitive detector is needed

Inorganic crystal scintillators for the search of rare processes

Large mass and enrichment possible (e.g. for 2β decay investigations)

Many isotopes and decay modes explorable thanks to the presence of certain chemical elements or variety of elements

Competitive and profitable choice for further experiments on rare processes

Cheaper than other considered technique

High radiopurity by selections, chemical/physical purifications protocols reachable

Crystal scintillators & scintillation technique

Continuos improvements in performance, technology and radiopurity

Ecologically clean setup, no safety problems and well controlled operational condition feasible

Possibility of high light response in many cases

bottom No. 3 No. 2 No. 1 the growth cone

DAMA set-ups

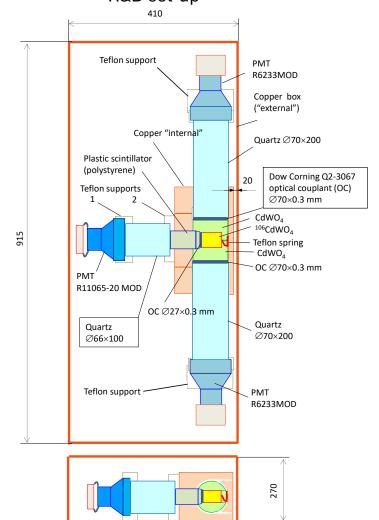
an observatory for rare processes @ LNGS

DAMA/Nal

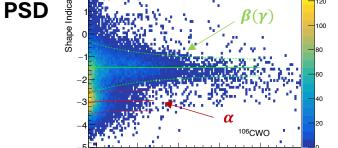
DAMA/LIBRA-phase1

DAMA/LIBRA-phase2 + empowered DAMA/R&D
DAMA/R&D

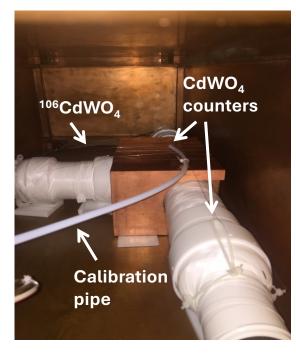
low bckg DAMA/Ge for sampling meas. & activities in Stella facility


Roma Tor Vergata, Roma La Sapienza, LNGS, IHEP/Beijing

- + by-products and small scale expts.: INR-Kiev, Queen's University + other institutions
- + neutron meas.: ENEA-Frascati, ENEA-Casaccia
- + in some studies on 2β decays (DST-MAE and Inter-Universities project): IIT Kharagpur and Ropar, India


web site: https://dama.web.roma2.infn.it/

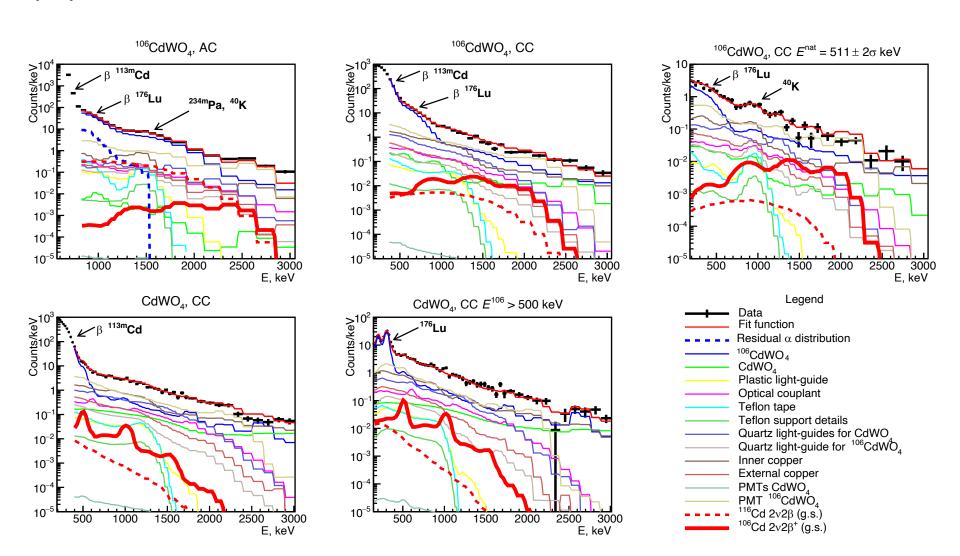
Search for $2\beta^+$ decays in enriched ¹⁰⁶CdWO₄ crystal scintillator


Detector system with the ¹⁰⁶CdWO₄ scintillator at the R&D set-up

- ▶ DAMA/R&D: high-purity copper 10 cm thick, 15 cm of low-radioactive lead, a 1.5 mm layer of cadmium and from 4 to 10 cm of polyethylene/ paraffin.
- 106 CdWO₄ is housed in a cylindrical cut-out of the two CdWO₄ (\varnothing 70 mm x 38 mm) scintillators which almost completely envelop the enriched crystal.
- An event-by-event DAQ records pulses in case of:
 - an event with E \gtrsim 500 keV in $^{106}\text{CdWO}_4$ detector;
 - 106CdWO₄ detector in coincidence with at least one of the CdWO₄ counters.

DAMA/R&D setup at LNGS

$\beta(\gamma)$ spectra in different modes


√ 1075 days of data taking

Anticoincidence mode (AC):

An event in the 106 CdWO₄ detector with an energy > 500 keV.

Coincidence mode (CC):

An event in the 106 CdWO $_4$ detector with an energy > 50 keV in coincidence with at <u>least one</u> of the CdWO $_4$ counters with E > 50 keV.

• The main background contributions arise from the PMT, the light guide and the internal contamination of the ¹06CdWO₄ crystal.

Results of half-life limits on 2 decay processes in 106 Cd

Decay	Level of ¹⁰⁶ Pd,	Theoretical $T_{1/2}$, Years	$\lim T_{1/2}$, Years	
	keV		Previous Result	Present Work
$-2\nu 2\beta^+$	g.s.	$(5.4-880) \times 10^{25} [47,48,50], >2.4 \times 10^{27} [49]$	4.4×10^{21} [54]	1.7×10^{22}
,	512	$(1.5-25) \times 10^{27} $ [47,55,56]	$4.1 \times 10^{21} [54]$	1.5×10^{22}
$0\nu2\beta^+$	g.s.	$(1.4-32) \times 10^{27} [47,55-61]$	5.9×10^{21} [62]	2.2×10^{22}
	512		$4.1 \times 10^{21} [54]$	1.5×10^{22}
$2\nu EC\beta^+$	g.s.	$(1.4-240) \times 10^{21}$ [47,48,50–53], >2.7 × 10 ²² [49]	2.1×10^{21} [62]	7.7×10^{21}
	512	$(5.3-24) \times 10^{25} [51,52], >1.1 \times 10^{25} [49]$	$3.3 \times 10^{21} [54]$	9.9×10^{21}
	1128	3.7×10^{30} [51]	$2.0 \times 10^{21} [54]$	1.2×10^{22}
	1134	$(1.3-13) \times 10^{26} [51,52], >1.1 \times 10^{27} [49]$	$2.5 \times 10^{21} [54]$	1.3×10^{22}
$0\nu EC\beta^+$	g.s.	$(1.0-17) \times 10^{26} [32,47,55,56]$	1.4×10^{22} [62]	1.5×10^{22}
	512		9.7×10^{21} [62]	2.1×10^{22}
	1128		1.0×10^{22} [62]	1.9×10^{22}
	1134	$(1.0-21) \times 10^{29}$ [32,55,57,58]	$2.7 \times 10^{21} [54]$	2.1×10^{22}

[32] Suhonen, J. Phys. Lett. B 2011, 701, 490-495.

[47] Stoica, S.; Klapdor-Kleingrothaus, H.V. Eur. Phys. J. A 2003, 17, 529–536.

[48] Shukla, A. et al. Eur. Phys. J. A 2005, 23, 235-242.

[49] Domin, P. et al. Nucl. Phys. A 2005, 753, 337-363.

[50] Raina, P.K. et al. Eur. Phys. J. A 2006, 28, 27–36.

[51] Suhonen, J. AIP Conf. Proc. 2011, 1417, 115–119.

[52] Pirinen, P.; Suhonen, J. Phys. Rev. C 2015, 91, 054309.

[53] Ejiri, H. J. Phys. G 2017,44, 115201.

[54] Leoncini, A. et al. Phys. Scr. 2022, 97, 064006.

[55] Suhonen, J.; Aunola, M. Nucl. Phys. A 2003, 723, 271–288.

[56] Rath, P.K. et al. Phys. Rev. C 2009, 80, 044303.

[57] Suhonen, J. J. Phys. Conf. Ser. 2012,

338, 012030.

[58] Suhonen, J. Phys. Scripta T 2012, 150, 014039.

[62] Belli, P. et al. Universe 2020, 6, 182.

+ other channels

Results of half-life limits on 2β decay processes in ^{106}Cd

Decay			$\lim T_{1/2}$, Years	
2ν2	The se	nsitivity obtained on the	evious Result $4 \times 10^{21} [54]$	Present Work 1.7×10^{22}
		ne case $2 \nu arepsilon eta^+$ is within the	$1 \times 10^{21} [54]$ $1 \times 10^{21} [54]$	1.7×10 1.5×10^{22}
0ν2			$9 \times 10^{21} [62]$ $1 \times 10^{21} [54]$	2.2×10^{22}
2νΙ		oretical predictions:	1×10-10-1	$ \begin{array}{c} 1.5 \times 10^{22} \\ \hline 7.7 \times 10^{21} \end{array} $
	T_1	$_{1/2}$ ~ $10^{21} - 10^{22}$ yr.	$3 \times 10^{21} [54]$ $0 \times 10^{21} [54]$	$9.9 \times 10^{21} \\ 1.2 \times 10^{22}$
	1134	$(1.3-13) \times 10^{20} [51,52], >1.1 \times 10^{27} [49]$	$2.5 \times 10^{21} [54]$	1.3×10^{22}
$0\nu EC\beta^+$	g.s. 512 1128	$(1.0-17) \times 10^{26} [32,47,55,56]$	1.4×10^{22} [62] 9.7×10^{21} [62] 1.0×10^{22} [62]	1.5×10^{22} 2.1×10^{22} 1.9×10^{22}
	1134	$(1.0 - 21) \times 10^{29} [32,55,57,58]$	$2.7 \times 10^{21} [54]$	2.1×10^{22}

[32] Suhonen, J. Phys. Lett. B 2011, 701, 490-495.

[47] Stoica, S.; Klapdor-Kleingrothaus, H.V. Eur. Phys. J. A 2003, 17, 529–536.

[48] Shukla, A. et al. Eur. Phys. J. A 2005, 23, 235-242.

[49] Domin, P. et al. Nucl. Phys. A 2005, 753, 337–363.

[50] Raina, P.K. et al. Eur. Phys. J. A 2006, 28, 27–36.

[51] Suhonen, J. AIP Conf. Proc. 2011, 1417, 115–119.

[52] Pirinen, P.; Suhonen, J. Phys. Rev. C 2015, 91, 054309.

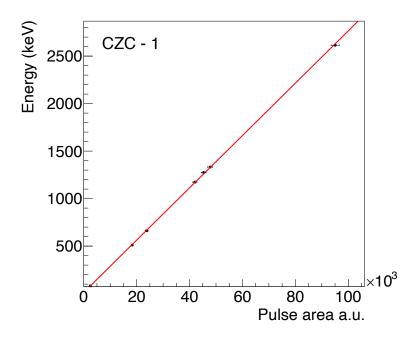
[53] Ejiri, H. J. Phys. G 2017,44, 115201.

[54] Leoncini, A. et al. Phys. Scr. 2022, 97, 064006.

[55] Suhonen, J.; Aunola, M. Nucl. Phys. A 2003, 723, 271–288.

[56] Rath, P.K. et al. Phys. Rev. C 2009, 80, 044303.

[57] Suhonen, J. J. Phys. Conf. Ser. 2012, 338, 012030.


[58] Suhonen, J. Phys. Scripta T 2012, 150, 014039.

[62] Belli, P. et al. Universe 2020, 6, 182.

+ other channels

Some general properties	Cs ₂ HfCl ₆	Cs ₂ ZrCl ₆
Effective atomic number	58	46.6
Density (g/cm³)	3.9	3.4
Melting point (°C)	820	850
Crystal structure	Cubic	Cubic
Emission maximum (nm)	400 - 430	450 - 470
Scintillation time constants (µs)	0.4; 5.1; 15.2 *	0.4; 2.7; 12.5*
Light Yield	up to 30000 photons/MeV**	up to 41000 photons/MeV**
Linearity of the energy response	Excellent, down to 100 keV	Excellent, down to 100 keV
Energy resolution (FWHM, %) @ 662 keV	3.2 - 3.7***	3.5 - 7.0***
Pulse-shape discrimination ability	Excellent	Excellent
Mass fraction of isotope of interest (%)	27	16

The Cs_2HfCl_6 (CHC) and Cs_2ZrCl_6 (CZC) crystal scintillators for the search of rare α and 2β decays

^{*} for alpha events at room temperature (Dalton Trans. 2022, 51, 6944-6954)

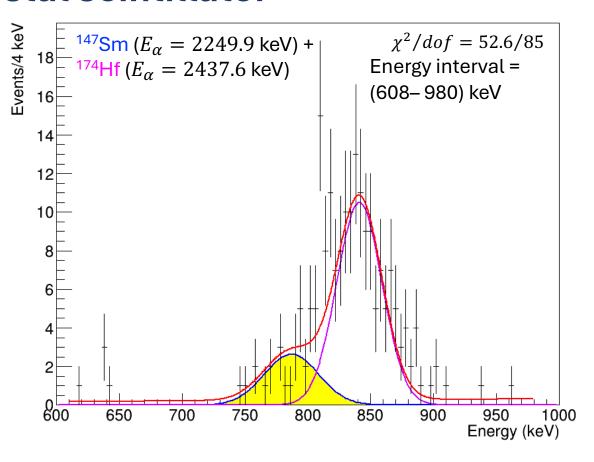
^{**} for gamma quanta at room temperature *** depends on the crystal quality, surface treatment and readout system

New measurement of the lpha decay of 174 Hf to the g.s. of 174 Yb using a CHC crystal scintillator

Mass = 16.87 g \emptyset 21.20(5)×12.8(1) mm

DAMA/CRYS setup at LNGS

ICP-MS measurements


Concentration (ppb)
0.73(22)
0.16(5)
440(130)
2(1)
1900(570)

Activity of 147 Sm = (0.25 \pm 0.10) mBq/kg,

corresponding to a concentration of (2.0 \pm 0.8) ppb of ^{nat}Sm, in agreement with ICP-MS measurements.

$$T_{1/2} = 3.8^{+1.7}_{-0.9} \times 10^{16} \, \mathrm{yr} \, \mathrm{of} \, \alpha \, \mathrm{decay} \, \mathrm{of} \, ^{174} \mathrm{Hf}$$
 to the g.s. of ¹⁷⁴Yb

Pata analysis on 4 CHC crystals (\varnothing 26 ×20 mm³) encapsulated in silicone-based sealant, **is ongoing** to improve sensitivity on α decay of ¹⁷⁴Hf.

Q.F. =
$$0.350 \pm 0.008$$
 for ¹⁴⁷Sm Q.F. = 0.345 ± 0.001 for ¹⁷⁴Hf

dof = 52.6/85

v interval =

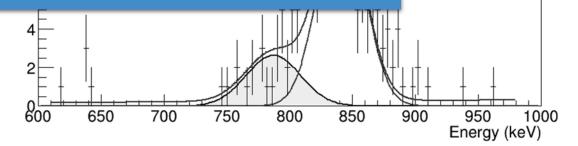
980) keV

New measurement of the α decay of ¹⁷⁴Hf to the g.s. of ¹⁷⁴Yb

Mass = 16.87 g \emptyset 21.20(5)×12.8(1) mm

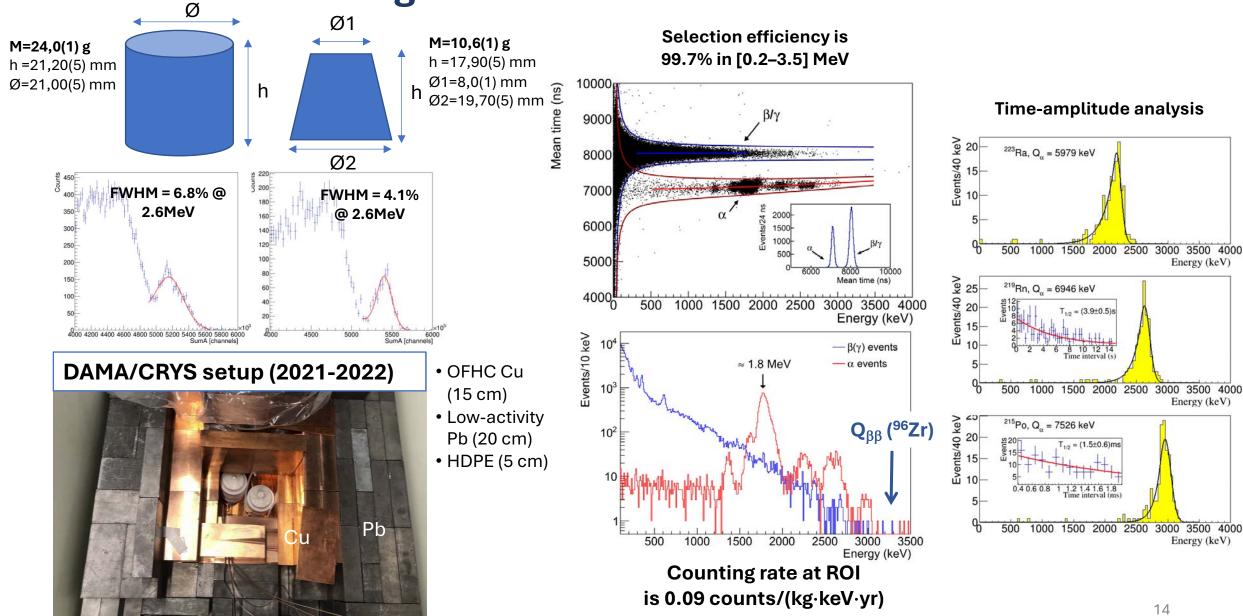
DAMA/CRYS setup at LNGS

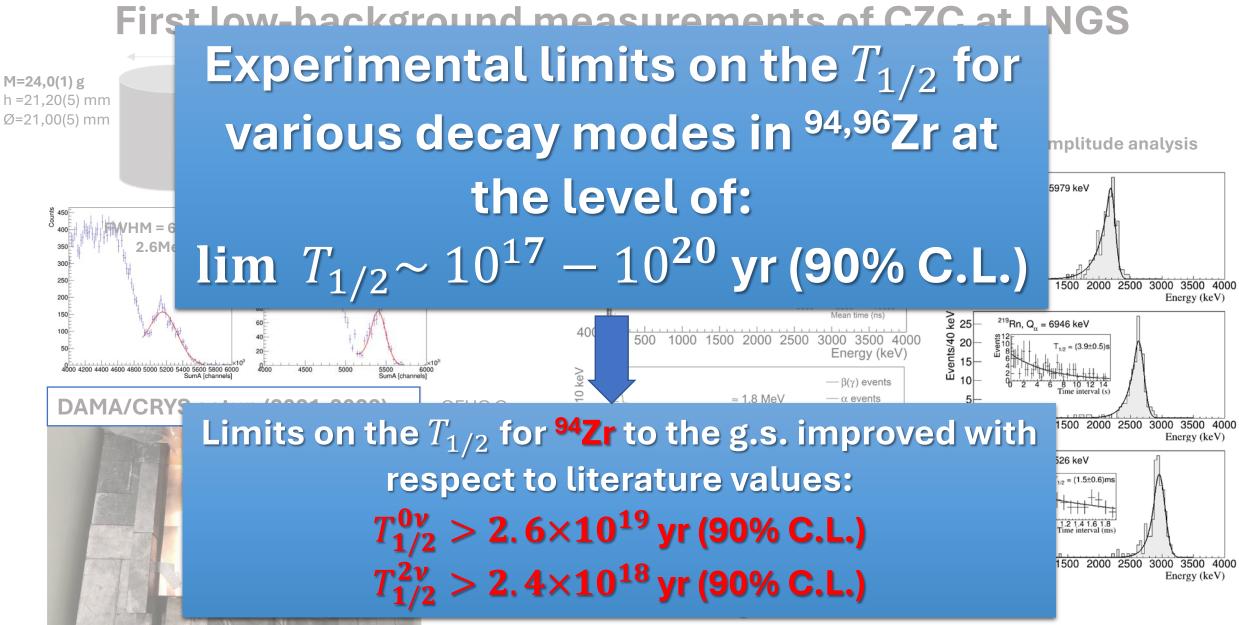
Activity of 147


The sensitivity obtained on the $T_{1/2}$ for the α decay of ¹⁷⁴Hf is within the theoretical predictions:

 $T_{1/2} \sim (3.5 - 7.4) \times 10^{16}$ yr.

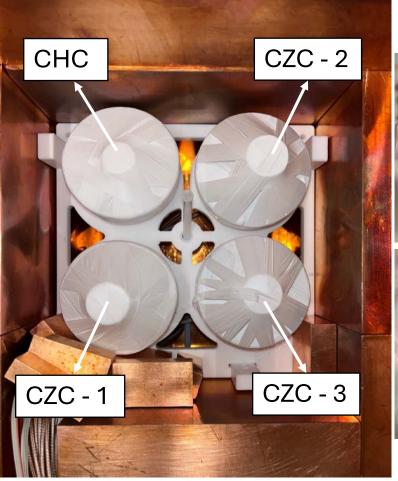
of natSm, in agreement with IC IS measurements.

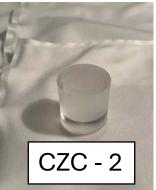

$$T_{1/2} = 3.8^{+1.7}_{-0.9} \times 10^{16} \text{ yr}$$
 of α decay of ¹⁷⁴Hf to the g.s. of ¹⁷⁴Yb


Pata analysis on 4 CHC crystals (\varnothing 26 ×20 mm³) encapsulated in silicone-based sealant, **is ongoing** to improve sensitivity on α decay of ¹⁷⁴Hf.

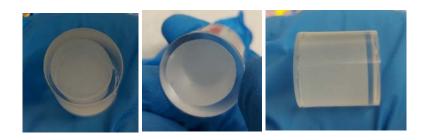
Q.F. =
$$0.350 \pm 0.008$$
 for ¹⁴⁷Sm Q.F. = 0.345 ± 0.001 for ¹⁷⁴Hf

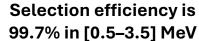
First low-background measurements of CZC at LNGS

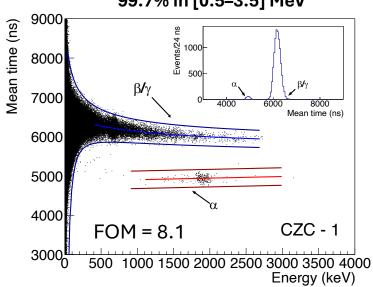


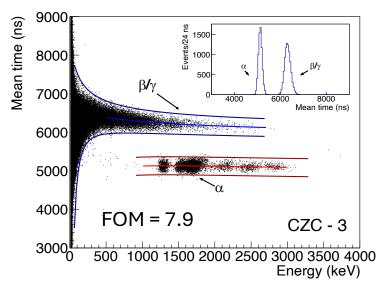


New low-background measurements in DAMA/CRYS setup (LNGS)

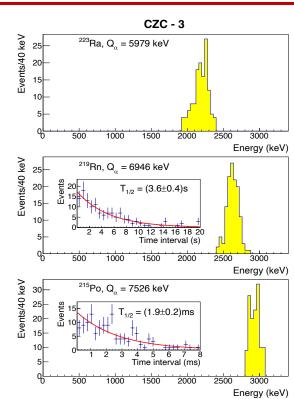


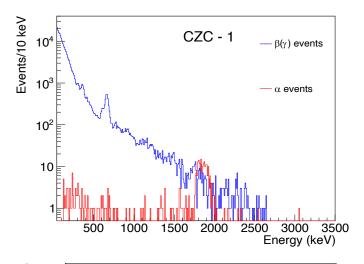


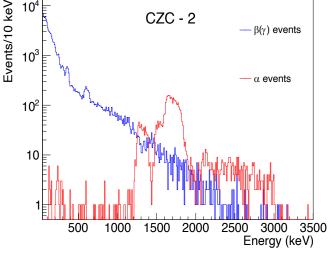



- ✓ Three new Cs_2ZrCl_6 crystals + one Cs_2HfCl_6
- ✓ Total mass of 3 CZC = 59.5 g, mass of CHC= 16.87 g.
- ✓ FWHM = 6-8% @ 662keV
- ✓ Produced from high purity and purified raw materials (> 99.99%)
- ✓ CZC crystals are encapsulated in a silicon-based resin + quartz window
- ✓ Modified experimental setup
- ✓ Measurements started on June 30th, 2023, for a total of 97.7 days live time

Data analysis of the Cs₂ZrCl₆ crystals





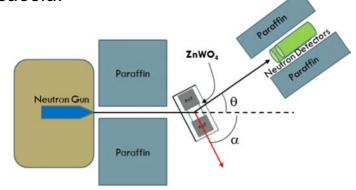

Time-amplitude analysis

A(²²⁷Ac) < 0.020 mBq/kg in CHC < 0.017 mBq/kg in CZC - 1 = 0.56(6) mBq/kg in CZC -2 = 0.88(8) mBq/kg in CZC - 3

Measured energy spectra over 97.7 days of data taking

+ Background model considering ²³⁸U, ²³⁵U and ²³²Th chains with their daughters.

Study of *Dark Matter* with directionality approach using ZnWO₄ crystal scintillators


Advantages in the use of ZnWO₄ crystal scintillators

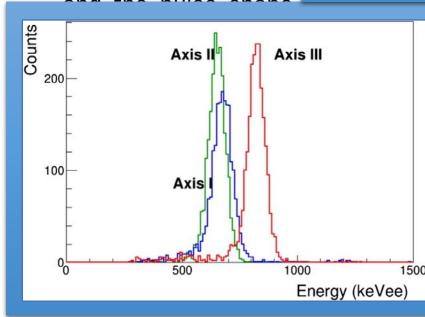
- Very good anisotropic features: for <u>heavy</u> **particles** (p, α, nuclear recoils), the light output and the pulse shape depends on the particle impinging direction with respect to the crystal axes.
- High level of radio-purity.
- High light output, that is low energy threshold feasible.
- High stability in the running conditions.
- Sensitivity to small and large mass DM candidate particles. 23-4-5cc6-7-8-9 10 11 12 13 11 15 16 17 18 19 21
- Detectors with \sim kg masses.

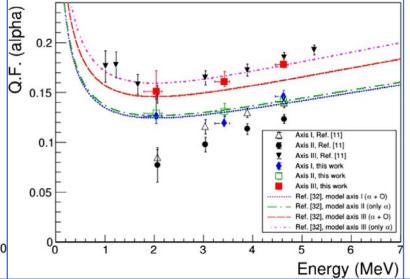
The experiment with ZnWO₄ crystal scintillator within ADAMO

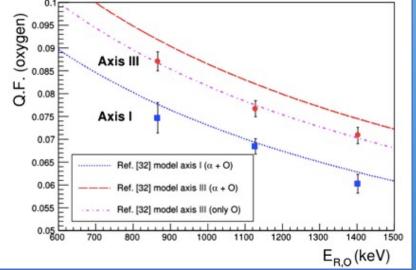
In the framework of the ADAMO project, recent measurements [Eur. Phys. J. A 56 (2020) 83] were performed to verify the anisotropic response of a ZnWO₄ crystal scintillator to:

- 1. α particles : a small ZnWO₄ crystal (10×10× $10 \, mm^3$, with mass of 7.99 g), irradiated by a collimated beam of α particles from an ²⁴¹Am source in the directions along the crystal axes I, II and III.
- 2. Oxygen nuclear recoils: neutron beam of 14 MeV produced by a neutron generator at ENEA-Casaccia.

Study of *Dark Matter* with directionality

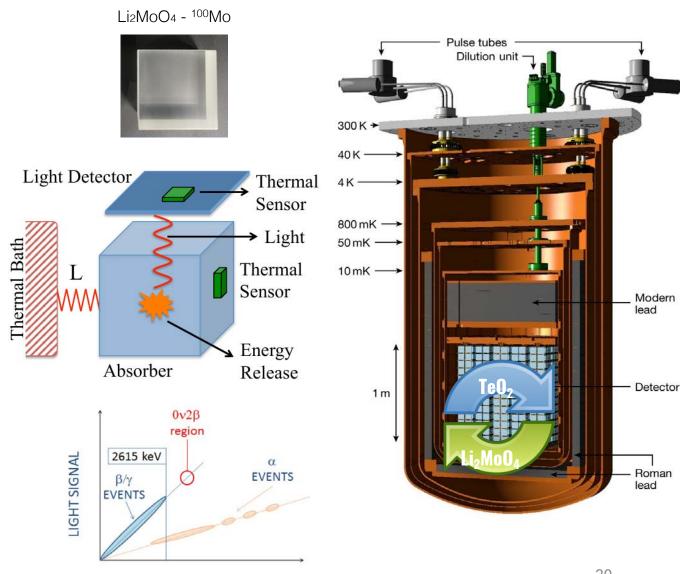

For the first time, the anisotropy for oxygen nuclear recoils in the energy region down to 100 keV was measured at 5.4 σ C.L.


h ZnWO₄ crystal :hin ADAMO


ADAMO project, recent J. A 56 (2020) 83] were the anisotropic response

Advantages in the u scintil

 Very good anisotrop particles (p, α, nuclea



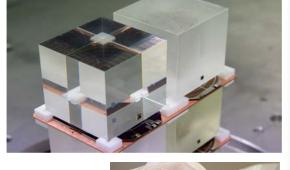
CUORE Upgrade with Particle IDentification

HEAT SIGNAL

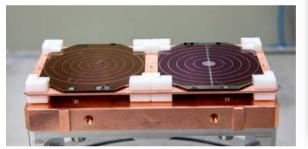
- Near future bolometric $0v2\beta$ experiment in existing CUORE infrastructure at LNGS.
- Replace CUORE TeO₂ detector with an array Li₂¹⁰⁰MoO₄ of scintillating crystals bolometers, to exploit ${}^{100}\text{Mo}$ (Q₂₈ = 3034 keV) as 2β candidate.
- New detector array:
 - 1596 Li₂MoO₄ scintillating crystals (280 g each)
 - 240 kg ¹⁰⁰Mo (95% enrichment)
 - 1710 light detectors (Ge wafer + NTD Ge thermistor) → scintillation signal read-out
- Sensitivity goal: $T_{1/2}^{0\nu} > 1 \times 10^{27}$ yr, $m_{\beta\beta} =$ 12 - 20 meV.

CUORE Upgrade with Particle IDentification

HallC


VSTT (Vertical Slice Test Tower):

full integrated test in CUPID HallA facility @LNGS (2025)


- Mechanical assembly with upgraded tower design
- Test of the assembly-line (glueing, mounting, bonding,...)
- NTL light detectors
- Optical fibers along the tower
- New electronics and DAQ

VSTT cooled down in **early August 2025**, at T~7mK. Currently taking data for characterizing the detectors response!

VSTT will prove the overall readiness to CUPID detector construction

- The effective value of g_A in finite nuclei is uncertain: $g_A^{free} \simeq 1.2723$, but inside a nucleus $g_A \sim A^{-\alpha}$, with $\alpha = 0.15 0.25$, depending on the nuclear model adopted to infer the g_A value.
- \rightarrow Key parameter in modeling β and 2β decays.
- \rightarrow Directly impacts predictions for $0\nu2\beta$ decay sensitivity.
- ightarrow The quenching of g_A can depend on the process type and momentum transfer.
- * Forbidden non-unique β decays are especially informative: study electron spectral shapes of β decays can be used to extract the value of g_A .

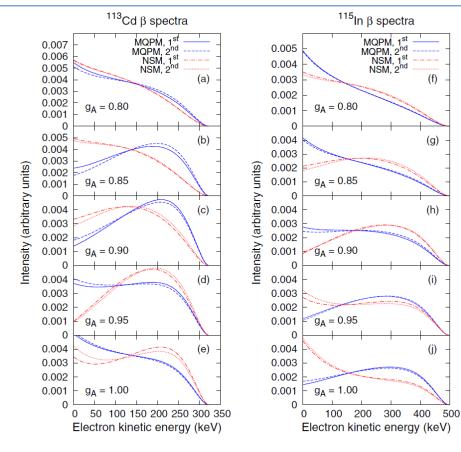
Transition type	$\Delta J^{\Delta\pi}$	$\Delta\pi$	Forbiddeness
Allowed	0+,1+		
Forbidden non- unique	0 ⁻ ,1 ⁻ ,2 ⁺ ,3 ⁻ ,4 ⁺ , 	$(-1)^{\Delta J}$	ΔJ
Forbidden unique	2-,3+,4-,	$(-1)^{\Delta J-1}$	$\Delta J - 1$

GAxIal Analysis with Scintillators

The half-life of the a β transition can be obtained from:

$$T_{1/2} = \kappa/\tilde{C}$$

where κ is a constant and \tilde{C} is the integrated shape function C, containing phase-space factors and NMEs.


The complexity of the shape function \mathcal{C} can, however, be condensed to a simple dependence on the weak couplings by writing:

$$C(w_e) = g_V^2 C_V(w_e) + g_A^2 C_A(w_e) + g_V g_A C_{VA}(w_e)$$

where w_e is the total (rest-mass plus kinetic) energy of the emitted electron.

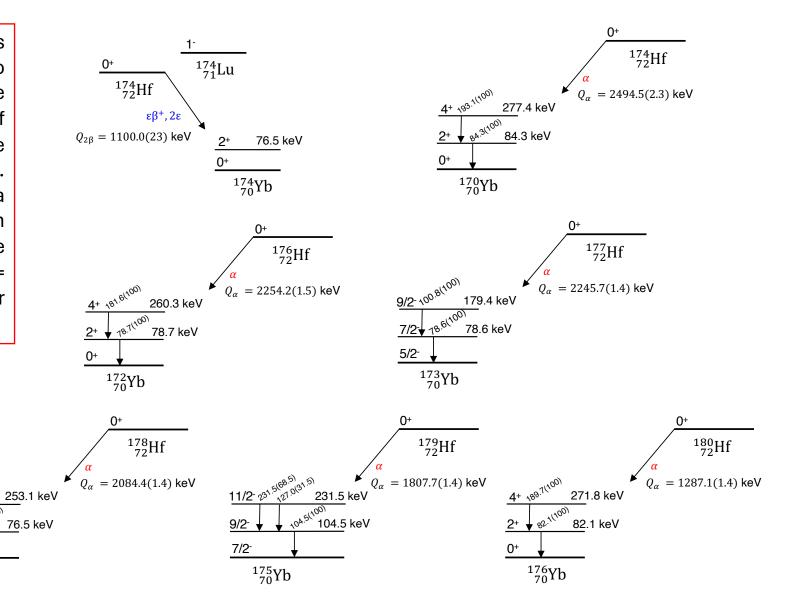
Example of β spectra of the two fourth-forbidden decays for ¹¹³Cd and ¹¹⁵In for g_A = 0.8 – 1.0. The spectra show the theoretical expectation of the spectral shape for different values of g_A calculated with the MQPM and NSM nuclear models.

GAXIal Analysis with **Scintillators**

Transition	Forbidness	Q _β (keV) δ (%)	Half-life	Activity ¹	Possible scintillator,
		0 (70)			Note
¹¹³ Cd → ¹¹³ In	1/2⁺→ 9/2⁺	323.84(27)	8.04(5) ×10 ¹⁵ yr	1.8 mBq/g of Cd	CdWO₄
440	(100%, 4 FNU)	12.2227(7)			1060 0440
^{113m} Cd→ ¹¹³ In	$11/2^{-} \rightarrow 9/2^{+}$	587.38(27) Synthetic	13.58(32) yr	65-130 mBq/g of 106CdWO₄	¹⁰⁶ CdWO₄
87Rb → 87Sr	(~100%, 1 FNU) 3/2 ⁻ → 9/2 ⁺	282.275(6)	4.97(3)×10 ¹⁰ yr	867 Bq/g of Rb	Csl(Na,Rb),
ND → SI	3/2 → 9/2 (100%, 3 FNU)	27.83(2)	4.97(3)×10 yi	an 10 grpd 100	Nal(Tl,Rb)
⁹⁹ Tc → ⁹⁹ Ru	$9/2^+ \rightarrow 5/2^+$	297.5(9)	2.111(12) ×10 ⁵ yr	6.33×10 ⁸ Bq/g of ⁹⁹ Tc	NaI(Tl, ⁹⁹ Tc),
	(100%, 2 FNU)	Synthetic			CsI(Na, ⁹⁹ Tc)
¹¹⁵ In → ¹¹⁵ Sn	$9/2^+ \rightarrow 1/2^+$	497.489(10)	4.41(25) ×10 ¹⁴ yr	0.25 Bq/g of In	CsI(In), LiInSe ₂ ,
	(100%, 4 FNU)	95.719(52)			Inl
²¹⁰ Bi → ²¹⁰ Po	$1^- \rightarrow 0^+$	1162.2(8)	5.012(5) d	4.6×10 ¹⁵ Bq/g of ²¹⁰ Bi	CaWO ₄ , PbI ₂
	(100%, 1 FNU)	daughter of ²¹⁰ Pb (²³⁸ U			
		chain)			
¹³⁵ Cs → ¹³⁵ Ba	7/2⁺ →3/2⁺	268.70(29)	2.3(3)×10 ⁶ yr	4.3×10 ⁷ Bg/g of ¹³⁵ Cs	CsI(Tl)
Co / Du	(100%, 2 FNU)	Synthetic	2.0(0)×10 y1	4.0 10 24/201 00	35.(1.1)
¹³⁷ Cs → ¹³⁵ Ba	$7/2^+ \rightarrow 3/2^+$	1175.63(17)	30.04(4) y	3.2×10 ¹² Bq/g of ¹³⁷ Cs	CsI(Tl)
	(5.6%, 2 FNU)	Synthetic			
¹²⁹ I→ ¹²⁹ Xe*	$7/2^{\scriptscriptstyle +} \rightarrow 3/2^{\scriptscriptstyle +}$	189(3)	1.57(4)×10 ⁷ yr	0.7-7 μBq/g of I	Csl
	(100%, 2 FNU)	(10 ⁻¹³ -10 ⁻¹²)			
³⁶ Cl→ ³⁶ Ar	$2^+ \rightarrow 0^+$	709.53(4)	3.013(15)×10⁵ yr	≈1 mBq/g of Cl	CeCl₃
	(98.1%, 2 FNU)	(~7×10 ⁻¹³)		40	0.11/0.11.1/70
²¹⁴ Bi → ²¹⁴ Po	$1^- \rightarrow 0^+$	3269(11)	19.71(2) min	1.6×10 ¹⁸ Bq/g of ²¹⁴ Bi	CaWO ₄ , NaI(Tl),
	(19.2%, 1 FNU)	daughter of ²²⁶ Ra (²³⁸ U			CsI(Tl), SrI ₂ (Eu), LaCl ₃ ,,
		chain)			LaOt3,,
⁷⁴ As→ ⁷⁴ Se	2- → 0+	1352.8(18)	17.77(2) d	3.7×10 ¹⁵ Bq/g of ⁷⁴ As	Highly effective
	(18.6%, 1 FU)	Synthetic	, ,	10.	organic scintillation
					material with an external synthetic
					source
⁹⁴ Nb→ ⁹⁴ Mo	$6^+ \rightarrow 4^+$	2045.0(15)	2.03(16)×10 ⁴ yr	6.9×109 Bq/g of 94Nb	Highly effective organic scintillation
	(100%, 2 FNU)	Synthetic			material with an
					external synthetic
					source

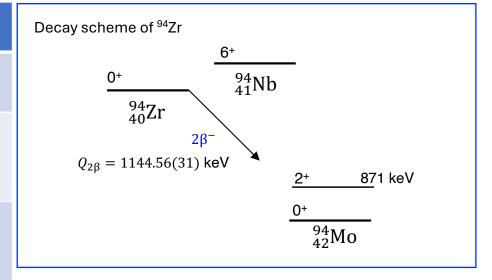
Conclusions

- ❖ Novel crystal scintillators: thanks to their high radiopurity and low-background measurements possible, they represent one of the best solution to search for rare processes.
- Assembling, data taking and analysis of a $^{106}\text{CdWO}_4$ detector enriched in ^{106}Cd (66%) to search for $2\beta^+$ in ^{106}Cd . The sensitivity obtained on the $T_{1/2}$ for the case $2\nu\varepsilon\beta^+$ is well inside the theoretical predictions: $T_{1/2}\sim 10^{21}-10^{22}$ yr.
- Assembling, data taking and analysis of two next-generation ${\rm Cs_2ZrCl_6}$ crystal scintillators for the study of 2β decay in Zr isotopes. Set limits $T_{1/2} \sim 10^{18}-10^{20}$ yr for 94 Zr and 96 Zr isotopes.
- Assembling, data taking and analysis of three Cs_2ZrCl_6 and one Cs_2HfCl_6 to search for rare α and 2β decays in Hf and Zr isotopes. New measurement of α decay of ¹⁷⁴Hf to the g.s.: $T_{1/2} = 3.8^{+1.7}_{-0.9} \times 10^{16}$ yr.
- Measurements of $ZnWO_4$ anisotropic response to α particles and nuclear recoils to study Dark Matter with the directionality approach. Study of optical and scintillation properties to improve the performances of such inorganic crystal scintillators.
- ❖ Thanks to the experience I gained during my PhD, I am now working in **CUPID**, where I perform data analysis and tests on new LMO scintillating bolometers, and in **GAIAS**, focusing on the study of the axial coupling constant g_A .

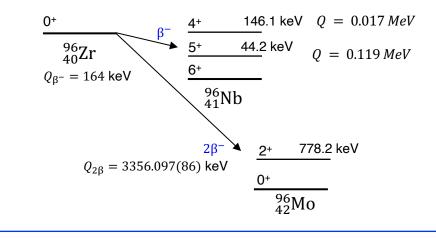

Thanks for attention!

BACKUP SLIDES

Simplified decay schemes of naturally occurring Hf isotopes


decays of Hf isotopes considering the first two excited energy levels of the daughter nuclei. Energies of the excited levels and of the emitted y quanta are shown. Relative probabilities single energy level are given in parentheses. The ¹⁷⁵Yb isotope decays via β^- with $T_{1/2}$ = 4.185(1) d, while all the other Yb nuclei are stable.

 $^{174}_{70}$ Yb



Search for 2β decay in ^{94,96}Zr and for ⁹⁶Zr's β decay

Experiment	Transition	T _{1/2} 90% C.L. (y)	Technique	Ref.
ZICOS, (Kamioka Observatory, Japan)	⁹⁶ Zr 0 ⁺ → ⁹⁶ Mo 0 ⁺ ₁ (g.s.)	under construction	Organic liquid scintillator	[1]
NEMO I, II, III, Frejus (France) (next: SuperNEMO)	96 Zr 0+ \rightarrow 96 Mo 0+ $_{1}$ (g.s.)	>9.2×10 ²¹ >1.29×10 ²²	Tracker detector	[2] [3]
Kimballton Underground Research Facility, (USA)	⁹⁶ Zr 0+→ ⁹⁶ Mo 2+ ₁	>3.1×10 ²⁰	HP-Ge	[4]
Collaboration at Fréjus Underground Laboratory	96 Zr 0 ⁺ → 96 Mo 2 ⁺ ₁ , 0 ⁺ ₁ , 2 ⁺ ₂ , 2 ⁺ ₃	>(2.6 – 7.9) ×10 ¹⁹	HP-Ge	[5]
Collaboration at LNGS	⁹⁶ Zr 0+→ ⁹⁶ Mo 2+ ₁	>3.8×10 ¹⁹	HP-Ge	[6]
TILES (TIFR, Mumbai)	94 Zr 0+→ 94 Mo 2+ ₁	>5.2×10 ¹⁹	HP-Ge	[7]
Kimballton Underground Research Facility, (USA)	⁹⁶ Zr 0+→ ⁹⁶ Mo 6+	>2.4×10 ¹⁹	HP-Ge	[8]

 β and 2β decay of $^{96}\rm{Zr}.$ The decay Q-values and excitation energies of the first three states of Nb are also indicated.

^[1] EPS-HEP (2019) 437

^[2] NPA 847 (2010) 168

^[3] PhD U. Coll. London (2015)

^[4] S.W. Finch et W. Tornow, Phys, Rev. C 92 (2015) 045501

^[5] J. Phys. G: Nucl. Part. Phys. 22 (1996) 487

^[6] C. Arpesella et al. Lett. 27 (l) (1994) pp. 29-34

^[7] N. Dokania et al. J. Phys. G: Nucl. Part. Phys. 45 (2018) 075104

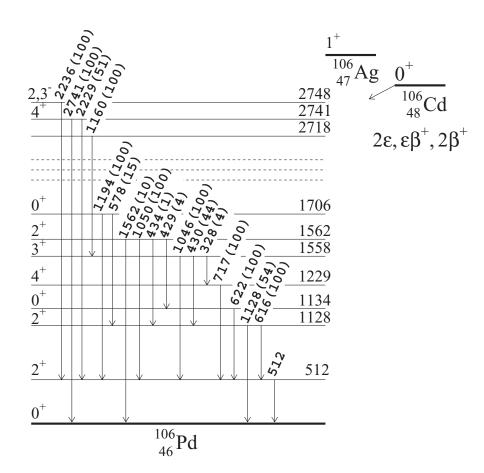
^[8] S.W. Finch, W. Tornow, Nucl. Inst. Meth. A 806(2016)70-74

^[9] J. Heeck and W. Rodejohann 2013 EPL 103 32001

CdWO₄ crystal scintillators

Some general properties	CdWO ₄
Effective atomic number	66
Density (g/cm³)	7.9
Melting point (°C)	1325
Refractive index	2.2 – 2.3
Emission maximum (nm)	475 – 490
Scintillation time constants (μs)	~15 (89%), ~4.6 (9%), ~0.8 (2%), ~0.15 (0.5%) [1]
Light Yield	≈ 15000 photons/MeV
Linearity of the energy response	Excellent, down to ~100 keV
Energy resolution (FWHM, %) @ 662 keV	~ 7.0 – 10
Pulse-shape discrimination ability	Excellent

Boule of ¹⁰⁶CdWO₄ single crystal grown by low-thermal-gradient Czochrlaski technique and crystal scintillator obtained by cutting a boule and grinding its surface.



[2] Belli, P. et al., NIMA 2010, 615, 301-306.

2β decay in ¹⁰⁶Cd

Advantages in the use of ¹⁰⁶Cd:

- One of the biggest $2\beta^+$ decay energy : $Q_{2\beta}=(2775.39\pm0.10)$ keV;
- Relatively high isotopic abundance: $\delta = (1.245 \pm 0.022)$ %;
- Possibility of enrichment by gas centrifugation;
- Favorable theoretical predictions for half-lives for some 2ν modes $(T_{1/2}\sim 10^{21}-10^{22}~\rm yr)$ that could be reached by modern low-counting techniques;
- Possibility of «near resonant» $0\nu2\varepsilon$ to excited levels of ¹⁰⁶Pd;
- Existing technologies of cadmium purification and availability of Cd-containing detectors to realize calorimetric experiments with a high detection efficiency.

Estimation of half-lives limits

$$\lim T_{1/2} = \ln 2 \cdot N \cdot \epsilon \cdot t / \lim S$$

- N is the number of nuclei of interest in the crystal;
- ϵ is the detection efficiency for the process of decay (calculated as a ratio of the events number in the signal model which satisfies the investigated experimental condition, to the number of generated events);
- *t* is the time of measurements;
- lim S is the number of events of the effect searched for, which can be excluded at a given confidence level (C.L.; in the present study all limits are given at the 90% C.L.).

Half-life of α decay of ¹⁷⁴Hf to the g.s. of ¹⁷⁴Yb

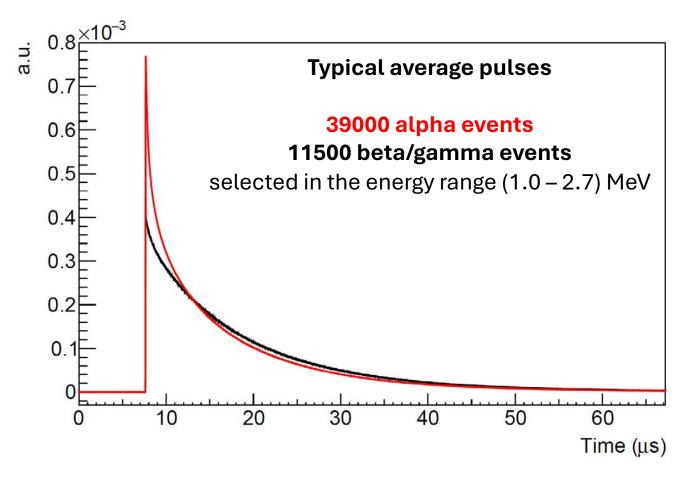
Area of 2^{nd} peak = 118 ± 11 (stat) ± 35 (sys) = 118 ± 37

Half-life:

$$T_{1/2} = \ln 2 \cdot N \cdot \epsilon \cdot t/S$$

- $T_{1/2} = \ln 2 \cdot N \cdot \epsilon \cdot t/S$ N (number of nuclides) = $\frac{M}{W} \cdot \delta \cdot N_A = 2.412 \times 10^{19}$
- ϵ is the PSD efficiency which corresponds to 99%;
- t is the measurement time (= 2344.8 h = 0.26767 yr);

M = 16.87 g;
W(Cs₂HfCl₆) = 657 g/mole;


$$\delta$$
(174Hf) = 0.156(6) %

$$\Rightarrow T_{1/2} = [3.8^{+0.4}_{-0.3}(stat)^{+1.6}_{-0.9}(sys)] \times 10^{16} = 3.8^{+1.7}_{-0.9} \times 10^{16}$$
 yr of α decay of ¹⁷⁴Hf

Comparing with result in [NPA 1002 (2020) 121941]: $\frac{|3.8-7.0|}{\sqrt{(1.7)^2 + (1.2)^2}} = 1.5$

Theoretical predictions: $(3.5 - 7.4) \times 10^{16} yr$.

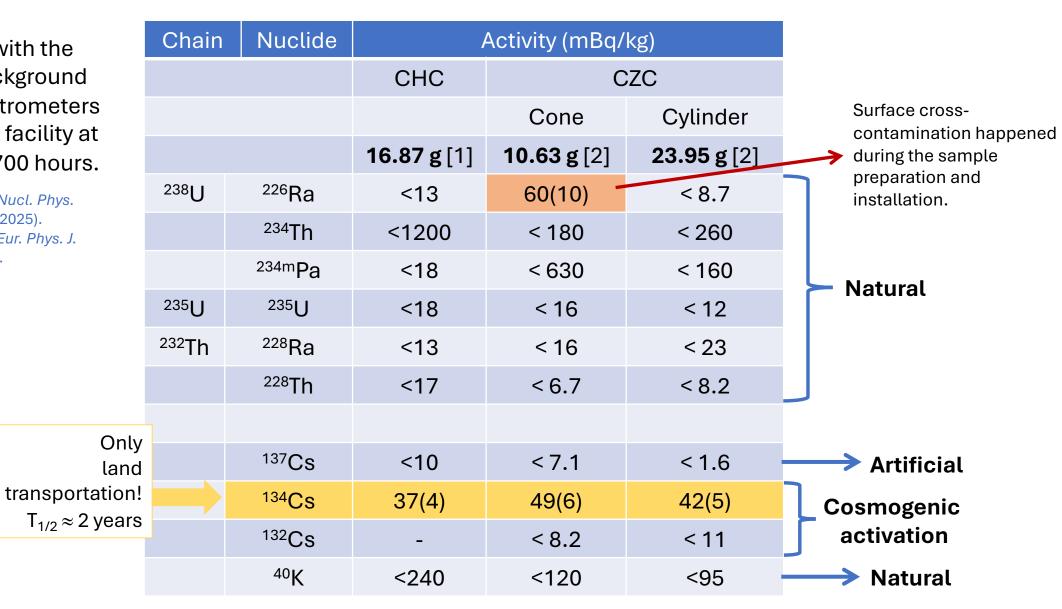
Pulse-shape discrimination ability

The difference in scintillation pulse time profile for different type of particles allows for an effective pulse-shape discrimination.

The "mean-time" ($\langle t \rangle$) method [2] was used, and this parameter was determined according to:

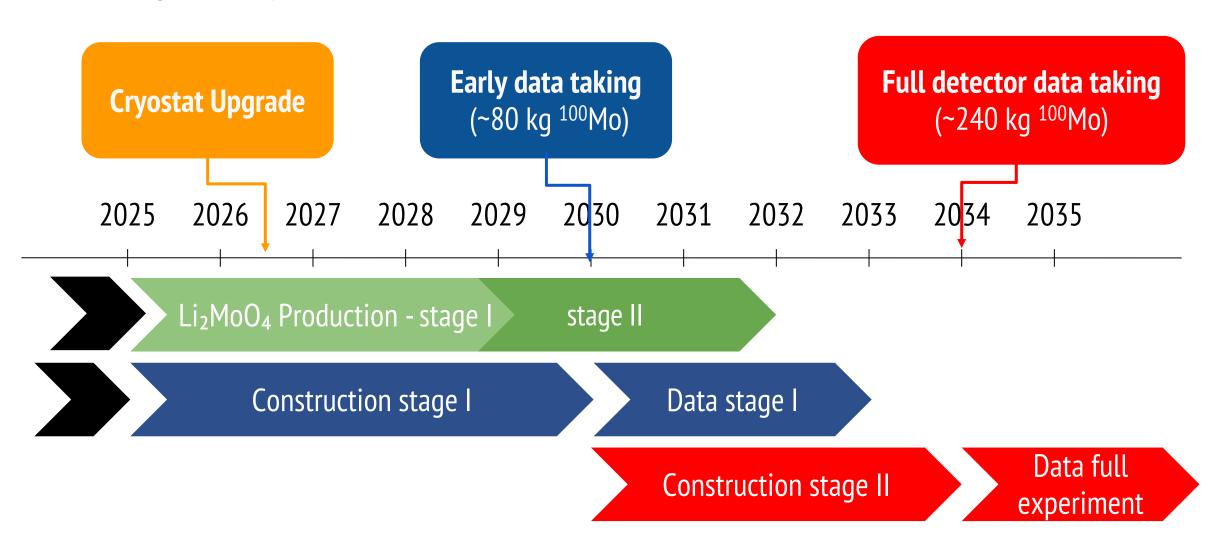
$$\langle t \rangle = \sum f(t_k) t_k / \sum f(t_k)$$

where the sum is over the time channels (k), starting from the origin of pulse up to 24 μ s, f(t) is the digitized amplitude (at the time t) of a given signal.


Mean-time for the presented pulses are:

 $\langle t \rangle$ = 7.07 and 8.00 μs , for alpha and beta/gamma events respectively

Cs₂HfCl₆ and Cs₂ZrCl₆ crystal radiopurity


measured with the ultra-low background **HP-Ge** γ spectrometers of the **STELLA** facility at LNGS over \sim 700 hours.

[1] P. Belli et al. *Nucl. Phys.* A 1053,122976 (2025).[2] P. Belli et al. *Eur. Phys. J.* A 59, 176 (2023).

CUPID timeline

CUPID staged deployment

Accelerated Depletion of RadioactivE wAste in Metals (A-DREAM)

- Aim to investigate whether the half-life of the α-decay of ²²⁶Ra can be significantly reduced when the isotope is embedded in a metallic matrix and cooled to cryogenic temperatures (~2.4 K).
- If confirmed, this effect could revolutionize the management of radioactive waste, drastically shortening its storage time and mitigating environmental impact.

Measurements with a metallic Ga-Hg alloy samples incorporating trace amounts of ²²⁶Ra, prepared through an electrolytic reduction process, <u>are ongoing</u> in our laboratory in Tor Vergata.

