









# Wetting problems with advanced computational techniques



Elisa Bellantoni – 39th Cycle

bellanto@roma2.infn.it





#### Second-year Overview



- MSCA European Joint Doctorate programme (AQTIVATE, <a href="https://aqtivate.ucy.ac.cy/">https://aqtivate.ucy.ac.cy/</a>)
- 1<sup>st</sup> year at The Cyprus Institute
   2<sup>nd</sup> year at Tor Vergata University of Rome
   3<sup>rd</sup> year at Télécom Paris
- Paper published on *Physical Review E*
- 3 talks and 2 poster presentations at international conferences & workshops
- •Three month secondment at Hewlett-Packard Enterprise HPC/AI EMEA research lab



Talk at the EFDC2 conference (Dublin, August 2025)

### Research project





Spreading of a droplet on a flat surface

#### Complex Wetting Problems Using Neural Networks:

Study of complex wetting phenomena using computational fluid dynamics (CFD) simulations + machine learning

We are interested in reproducing results for complex fluid flows and complex interfaces

#### Multiscale Description







[1] Bonn et al., "Wetting and spreading", 2009 (doi:10.1103/RevModPhys.81.739)

# Immersed Boundary Lattice Boltzmann for Wetting Problems

### Modeling Wetting

 $A = S_{\text{node}} \frac{\sigma}{\xi} \frac{(m-1)(n-1)}{(n-m)} (1 + \cos \theta_{\text{eq}})$ 

Set

contact

angle a

priori

**Surface** tension:

 $\delta$ : Drop-solid separation

 $\xi$ : Wall

length

interaction

$$oldsymbol{arphi}^S = -\sigma \left( oldsymbol{
abla} \cdot \hat{oldsymbol{n}} 
ight) \hat{oldsymbol{n}}$$

Wetting:

$$oldsymbol{arphi}^{ ext{W}} = -\Pi \, \hat{oldsymbol{n}} = A \left[ \left( rac{\xi}{h} 
ight)^n - \left( rac{\xi}{h} 
ight)^m 
ight] \hat{oldsymbol{n}}$$



[2] Bellantoni et al., "Immersed boundary--lattice Boltzmann mesoscale method for wetting problems", PRE, 2025 (doi.org/10.1103/mp3p-8j22)

# Hydrophilic vs Hydrophobic Droplets



$$\frac{t_f}{(\mu R_0/\sigma)} = 20$$

$$\sigma = 10^{-3}$$
  

$$\xi = 3$$
  

$$R_0 = 60$$
  

$$\theta = \pi/4$$

$$\sigma = 10^{-3}$$
  

$$\xi = 3$$
  

$$R_0 = 60$$
  

$$\theta = 3\pi/4$$



#### Equilibrium Shape

We consider Young-Laplace equation:

$$\Delta p = \sigma \nabla \cdot \hat{n} + \Pi$$

and derive analytical solutions for droplet shapes at equilibrium

 $\xi/R_0$  has a higher impact on more hydrophilic droplets, i.e. were curvature changes more abruptly



#### Equilibrium Shape – L2 Error

A more quantitative comparison shows very low errors between theoretical and simulated shape for the drop

#### Reference formula:

$$E_{L2} = \sqrt{\frac{\int_0^{\pi} |G_{\text{sim}}(\phi) - G_{\text{theo}}(\phi)|^2 d\phi}{\int_0^{\pi} |G_{\text{theo}}(\phi)|^2 d\phi}}$$

 $N_t$ : #triangles in the mesh  $G(\phi)$ : droplet's radial profile



# Spreading Dynamics

Analytical and experimental studies describe power-law scalings for the contact radius dynamics r(t) in different regimes



# Comparison with other Numerical Methods

### Investigating the Thin Film Physics



Our method recovers macroscopic results where no thin film layer between the droplet and the substrate is observed ( $\xi/R_0 \ll 1$ ). What is the influence of the thin film on spreading?





The film causes **drag** due to extra pressure

#### Comparison with a Stokes' Solver



We are investigating a similar comparison with a boundary element method (BEM) accounting for the presence of a thin film but no inertia (Stokes' flow)

Work in preparation



# Machine Learning Applications

# Current Plan for ML Implementation



- 1. Generate data with the IBLB
- 2. Train Neural Network with generated data to learn simple spreading dynamics
- 3. Introduce complexities in wetting process:
  - a) visco-elasticity (interface)
  - b) surface heterogeneities (substrate) → straightforward in the IBLB setup
- 4. Wrap everything together

## Chemical Heterogeneity Patterns





Top view Side view

#### Proposed Approach



We are putting our focus on a model aimed at predicting the droplet's shape evolution during spreading.

Right now, two routes seem promising:

- 1. **Input**: h(t),  $\lambda$ ,  $\theta_{eq}$  (IBLB data)

  Derive a rough estimate of the shape of the drop (e.g. assuming equilibrium config)

  Use AI to correct the dynamics (e.g. LNO architecture or similar neural operator)

  Exploit dh/dt as our predictor (e.g. similar to the approach followed in [3]) **Output**: full shape evolution
- 2. Input: h(t),  $\lambda$ ,  $\theta_{eq}$  (IBLB data)
  Take profile shape from simplified, analytical solver (e.g. Stokes flow)
  Train AI model to learn how to add inertia (e.g. transformer or LSTM)
  Output: full shape evolution

Use case: Faster surrogate for wettable surface design, helpful for microfluidics applications

[3] Demou & Savva; "AI-assisted modeling of capillary-driven droplet dynamics", 2023 (doi:10.1017/dce.2023.19)

### IBLB-generated dataset



Multiple simulations with a range of viscosities and equilibrium contact angles



#### Conclusions & Outlook

#### Conclusions



- Thorough validation of an IBLB method for wetting, published in *Physical Review E*
- Comparison of the method with other solvers
- Several conferences and workshops attended (*Smart-Turb Smart-Heart Workshop*, *HSR* 2025, *Droplets* 2025, *Complex Flows & Complex Fluids Workshop*, *EFDC*2)
- Strategy for the development of an ML application using IBLB data
- Secondment on the parallel implementation of a lattice Boltzmann code

#### Outlook for 2025/26



- Wrap up work on thin film role in spreading physics
- Maybe compare IBLB results with MD simulations (separate work)
- Implement and test data-driven tools for complex wetting problems
- Write thesis and prepare for defense (autumn/winter 2026)



**Funded by** 









#### Thank you for your attention!

- [1] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley; "Wetting and spreading", Rev. Mod. Phys., vol. 81, p. 739–805, 2009. doi:10.1103/RevModPhys.81.739
- [2] E. Bellantoni, F. Guglietta, F. Pelusi, M. Desbrun, K. Um, M. Nicolaou, N. Savva, M. Sbragaglia, "Immersed boundary - lattice Boltzmann mesoscale method for wetting problems", Physical Review E, 2025 (doi.org/10.1103/mp3p-8j22)
- [3] A. D. Demou & N. Savva; "AI-assisted modeling of capillary-driven droplet dynamics," Data-Centric Engineering, vol. 4, p. e24, 2023. doi:10.1017/dce.2023.19





Elisa Bellantoni – 39th Cycle

bellanto@roma2.infn.it



PHD DAYS 2025 - ELISA BELLANTONI 08/10/2025

### Conferences & workshops 2025



- Smart-Turb Smart-Heart Workshop, 19-23 May 2025, in Castro (LE, Italy) III Bilateral Workshop Smart-Turb Smart-Heart organized by Prof. Luca Biferale → Talk
- **HSR 2025**, 11-14 June 2025, in Syros (Greece) 11th International Meeting of the Hellenic Society of Rheology in (<a href="https://mathweb.aegean.gr/hsr2025/index.php">https://mathweb.aegean.gr/hsr2025/index.php</a>) → **Talk**
- **Droplets 2025**, 1-3 July 2025, in Liège (Belgium) 6th International Conference on Droplets (<a href="https://droplets2025.org/">https://droplets2025.org/</a>) → **Poster**
- Complex Flows & Complex Fluids Workshop, 8-11 July 2025, Rome (Italy) Satellite StatPhys29 (<a href="https://biferale.web.roma2.infn.it/ComplexFlowsComplexFluids/">https://biferale.web.roma2.infn.it/ComplexFlowsComplexFluids/</a>) → Poster
- EFDC2, 26-29 August 2025, Dublin (Ireland) 2nd European Fluid Dynamics Conference (<a href="https://www.efdc2.com/">https://www.efdc2.com/</a>) → Talk

#### Basilisk-IBLB: Droplet under Shear

For a free droplet under shear, analytical solutions for the deformation index D(t) are available

| Quantity      | Basilisk             | IBLB               |
|---------------|----------------------|--------------------|
| $ ho_{ m in}$ | $4.6 \times 10^{-6}$ | 1.0                |
| λ             | 1                    | 1                  |
| $\mu_{ m in}$ | $0.16\overline{6}$   | $0.16\overline{6}$ |
| σ             | 63.3                 | 0.001              |
| $R_0$         | 19                   | 19                 |
| Re            | 0.01                 | 0.01               |
| Ca            | 0.05                 | 0.05               |

Report on the comparison available at: <a href="https://www.overleaf.com/8895627552rqddhfxttwqx#08c397">https://www.overleaf.com/8895627552rqddhfxttwqx#08c397</a>



#### How do we describe the fluids?





 $\rho$ : fluid density

**u**: fluid velocity

**F**: body force

 $\mu$ : fluid viscosity

f: particle distribution function (PDF)

*v*: particle velocity

**Boltzmann Equation:** 

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} f + \frac{1}{\rho} \boldsymbol{F} \cdot \frac{\partial f}{\partial \boldsymbol{v}} = \Omega[f]$$

Lattice Boltzmann Method Continuity and NSE:

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{u}) = 0$$

$$\rho \left[ \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u} \right] = -\boldsymbol{\nabla} p + \mu \nabla^2 \boldsymbol{u} + \boldsymbol{F}$$

#### Meso to Macro

A finite set of velocity vectors suffices to recover the moments of *f* via a Gauss-Hermite quadrature:

$$\rho(\boldsymbol{x},t) = m \int d\boldsymbol{v} f(\boldsymbol{x},\boldsymbol{v},t) = m \sum_{k=1}^{19} f_k$$

$$\rho(\boldsymbol{x},t)\boldsymbol{u}(\boldsymbol{x},t) = m \int d\boldsymbol{v} f(\boldsymbol{x},\boldsymbol{v},t)\boldsymbol{v} = m \sum_{k=1}^{19} f_k \boldsymbol{v}_k$$

Equilibrium is given by a second-order truncation of the Maxwell-Boltzmann distribution:

$$f_k^{\text{eq}}(\boldsymbol{x},t) = \omega_k \rho \left( 1 + \frac{\boldsymbol{u} \cdot \boldsymbol{c}_k}{c_s^2} + \frac{(\boldsymbol{u} \cdot \boldsymbol{c}_k)^2}{2c_s^4} - \frac{\boldsymbol{u} \cdot \boldsymbol{u}}{2c_s^2} \right)$$

 $\omega_k$ : lattice weights  $c_s$ : lattice speed of pays sound  $\mathbf{v}_k$ 

$$c_k = \frac{\mathbf{v}_k}{c_s}$$

 $c_{16}$ 



D3Q19 velocity stencil employed in our model

#### Lattice Boltzmann Method



Based on the Lattice Boltzmann Equation:



#### How do we describe the droplet?



Two reference frames:

- **x** : Eulerian nodes (fluid nodes)
- $\mathbf{r}(t)$ : Lagrangian nodes (boundary markers)

Two-way coupling via **no-slip** boundary condition (velocity interpolation):

$$\dot{\mathbf{r}}(t) = \mathbf{u}(\mathbf{r}(t), t) = \int d^3x \, \mathbf{u}(\mathbf{x}, t) \delta(\mathbf{x} - \mathbf{r}(t))$$

and interface-fluid momentum exchange (force spreading):

$$\mathbf{F}(\mathbf{x},t) = \int \mathrm{d}^2 r \, \boldsymbol{\varphi}(\mathbf{r},t) \delta(\mathbf{x} - \mathbf{r}(t))$$
Fluid force Marker force



[2] Guglietta, Mesoscale investigations on the effects of membrane viscosity on transient red blood cell dynamics, 2022 (doi:10.18154/RWTH-2022-05231)