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Introduction: Lattice QCD

• QCD action is discretised on a lattice
with spacing a which is the UV cut-off of
the theory

• Euclidean 4D spacetime in a finite
volume L3 × T

• Quark fields live on the sites;

• Gluon fields live on the links;

parallel transporter: SU(3) matrices:

Uµ ∼ eiagAµ

⟨O⟩ = Z−1

∫
D[U ]e−SE [U ]O[U ]

Monte Carlo methods: extract field configurations with probability P ∝ exp(−S)
(∼ Boltzmann weight), then compute O the collected sample and determine O through the

sample mean,
1

N

N∑
i=1

O[U i].



R-ratio

The R-ratio plays a fundamental role in particle physics since its introduction

   [GeV]s

0 1 2 3 4 5

R
(s

)

0

1

2

3

4

5

6

ρ ω φ ψJ/ (2S)ψ

3770
ψ

4040
ψ

4160
ψ

4415
ψ

 hadrons data→ -e+e
(HVPTools compilation)

BES

KEDR

pQCD (massless)

Davier-Hoecker-Malaescu-Zhang, 2017

362 5 Hadronic Effects

γ

e−

e+

γ hard

s = M2
φ; s′ = s (1 − k), k = Eγ/Ebeam

π+π−, ρ0φ hadrons

(a) (b)

Fig. 5.9 a Radiative return measurement of the π+π− cross–section by KLOE at the φ–factory
DAΦNE. At the B–factory at SLAC, using the same principle, BABAR has measured many other
channels at higher energies. Recently also BES-III at BEPC-II has applied the ISR mechanism to
measure the π+π− cross–section; b Standard measurement of σhad in an energy scan as performed
at Novosibirsk (CMD-2, CMD-3, SND, KEDR) and Beijing (BES-II) by tuning the beam energy

Fig. 5.10 Comparison of ISR ππ data: ratio |Fπ(E)|2 in units of a GS fit from BES-III. Left panel
all sets. Right panel BaBar versus KLOE10, which exhibits the largest relative deviations

level [59, 60] at the end. The first dedicated radiative return experiment has been per-
formed by KLOE at DAΦNE/Frascati, by measuring the π+π− cross–section [23]
(see Fig. 5.6). Based on the ISR method, meson factories have been able to improve
the low energy ππ cross–sections database dramatically.Measurements fromKLOE,
BABAR and lately also from BES-III allowed to reduce errors by almost a factor
ten. The measurements are very challenging and unfortunately there is quite some
tension between the different data set as shown in Fig. 5.10. KLOE data lie higher
below the ρ0 and lower above the ρ0, with deviations at the few% level at the bound-
aries of the measured energy range. For a recent review of hadron production via
e+e− collisions with initial state radiation see [61] or the earlier [62].

The “observed” cross section at O(α2) may be written in the form

σobs(s) = σ0(s) [1 + δini(ω) + δfin(ω)]

+
∫ s−2ω

√
s

4m2
π

ds ′ σ0(s
′) ρini(s, s

′) + σ0(s)
∫ s−2ω

√
s

4m2
π

ds ′ ρfin(s, s
′) , (5.11)

which also illustrates the unfolding problem one is confronted with in determining
the cross section of interest σ0(s). This “bare” cross section, undressed from elec-
tromagnetic effects, is formally given by the point cross–section (2.261) times the
absolute square of the pion form factor which encodes the strong interaction effects

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)

As any other cross-section, it is an energy-dependent probe of the theory and contains an
infinite amount of information



What about computing R-ratio directly on the lattice?

In PRL 130 (2023), the Hansen-Lupo-Tantalo (HLT) method is used to evaluate on the
lattice:

C(t) = −
1

3

3∑
i=1

∫
d3xT⟨0|Ji(x)Ji(0)|0⟩ =

1

12π2

∫ ∞

2mπ

dω e−ωt ω2R(ω) ,

Rσ(E) =

∫ ∞

0
dω R(ω) Gσ(E − ω)︸ ︷︷ ︸

G=Gaussian kernels

.
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• For σ ≃ 0.6 GeV and around E ≃ mρ we observe a ≈ 3σ deviation w.r.t. e+ e− exp.
results.

• For σ ≃ 0.4 GeV the larger errors do not allow us to observe significant deviations from
experimental data.

Precision and resolution to be improved with more statistics and by increasing
the statistical precision of our lattice correlators.
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We employ noise-reduction techniques:
by computing a relatively small number of low modes of the Dirac operator
exactly, which we refer to as low-mode averaging (LMA).
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The smeared R-ratio in isoQCD from first-principles lattice simulations
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The R-ratio is a phenomenological observable of great relevance, both in itself and in
applications such as the dispersive approach to the muon anomalous magnetic moment.



Muon Anomalous Magnetic Moment

The Dirac equation predicts a muon magnetic moment, M = gµ
e

2mµ
S, with gyromagnetic

ratio gµ = 2. Quantum loop effects lead to a small calculable deviation, parameterized by the
magnetic anomaly

aµ ≡ gµ − 2

2

The SM prediction aSMµ is generally divided into three parts

aSMµ = aQED
µ + aEW

µ + aHad
µ



The hadronic contribution aHad
µ

Dispersive approach

aHVP−LO
µ =

∫ ∞

mπ

dE R(E) K̃(E)︸ ︷︷ ︸
analytic function

• The idea is to replace R(E) → Rexp(E)
and use previous formula.
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aHVP−LO
µ =

∫ ∞

0

dt C(t) K(t)︸ ︷︷ ︸
analytic function

• C(t) is the 2-point Euclidean correlation;
We use LMA technique!

• ETM Collaboration effort in
computing light-quark contribution to
aHVP−LO
µ at subpercent accuracy.
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Inclusive semileptonic decays of the Ds meson

Γ = |Vcs|2Γc̄s + |Vcd|2Γc̄d + |Vus|2Γūs ,

Γf̄g = G2
FSEW

∫
d3pν
(2π)3

d3pℓ
(2π)3

Lµν(pℓ, pν) H
µν

f̄g
(p, p− pℓ − pν)

4m2
Ds
eℓeν

,

Hµν(p, ω) =
(2π)4

2mDs

⟨Ds(p)|J†
µ(0) δ

4(P − ω) Jν(0)|Ds(p)⟩ ,

Ds

p

X

ℓ

ν̄ℓ

ω

pℓ

pν

}

Jµ

f̄g
(x) = ψ̄f̄ (x)γ

µ(1− γ5)ψg(x) ,

p = mDs(1,0) , ω = mDs(ω0,ω) ,

pℓ = mDs(eℓ,kℓ) , pν = mDs(eν ,kν) .



What about computing Γ directly on the lattice?

Inclusive Ds → Xℓν̄

We can relate the lattice correlators to the hadronic tensor:

Cµν(t,ω) =

∫ ∞

0

dω0 e
−(mDsω0)t Hµν(ω0,ω)

The problem of extracting Hµν(ω0,ω) from 4-point correlators is equivalent to extracting
ρ(ω) from 2-point correlators

=⇒ HLT algorithm!

Exclusive Ds → Pℓν̄

dΓex
fg

dw2
P

=
m5

Ds

24π3eP
|wP |3f2

+(w
2
P ) , ⟨P |Jµ

f̄g
(0)|Ds⟩ = (p+ pP )

µf+
f̄g

+ (p− pP )
µf−

f̄g
,

Direct computation: The hadronic form factors are obtained by analyzing the asymptotic
behavior of lattice correlators at large Euclidean times.



Inclusive vs Exclusive

• Results for c̄s channel: the exclusive
contribution does not saturate the decay
rate.
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Phenomenological relevance

• Lattice results: near-experimental
precision and systematic improvability.

• This study opens the way to the inclusive
Bs decays rates.



Code development

Thanks to several advances in algorithmic methods and the increase of computational
resources, Lattice QCD calculations entered the precision era, providing accurate and
systematically improvable predictions for many observables measured with ever-increasing
experimental precision.

To achieve results with a phenomenological relevant precision we need to fully
exploit the efficiency of the modern pre-exascale supercomputers.

We interfaced our code to QUDA a library for
performing calculations in lattice QCD on graphics
processing units (GPUs), leveraging NVIDIA’s CUDA
platform.



Thank you!



Backup slides



HLT method

Rσ(E) =

∫ ∞

0

dω R(ω) Gσ(E − ω)︸ ︷︷ ︸
Gaussian kernels

; K(ω;g)︸ ︷︷ ︸
Approximated smearing kernels

=

T/a∑
τ=1

gτ e
−aωτ .

which allows to evaluate Rσ(E) from C(t) using

τmax∑
τ=1

gτ (E)C(τa) =

∫ ∞

0

dω

(
1

12π2

τmax∑
τ=1

gτ (E)e−ωaτ

)
R(ω)ω2 ≃ Rσ(E)

Their accuracy is measured by

An[g] =

∫ ∞

E0

dω wn(ω)

∣∣∣∣K(ω;g)− 12π2Gσ(E − ω)

ω2

∣∣∣∣2 ,
which, for positive weight functions wn > 0, defines a class of weighted L2-norms in
functional space.

The coefficients g are obtained by minimizing

W [λ,g] = (1− λ)An[g] + λB[g], B[g] =

T/a∑
τ1,τ2=1

gτ1gτ2 Covτ1τ2 .



Jf,OS
µ ∝ ψ̄+

f γµψ
+
f

f

f

+

+

Rff,C,OS
σ (a) = A+BOS a2

Jf,TM
µ ∝ ψ̄+

f γµψ
−
f

f

f

+

−

Rff,C,TM
σ (a) = A+BTM a2


