

BULLKID-DM Readout Electronics

Bimonthly digest, 23.09.2025

Timo Muscheid, Robert Gartmann, Daniel Crovo, Luis E. Ardila, Frank Simon

Phase Noise Analysis

- Evaluation of noise contributions of individual signal processing stages
- Measurement setup:
 - Single tone, f = 831 MHz, max. amp
 - DAC output -> Spectrum Analyzer
 - Loopback -> Python library "pylpsd"
- Target: -100 dBc @ 0.1-10 kHz
- Detailed phase noise analysis results: <u>agenda.infn.it/event/48327</u>

DAC output is limiting phase noise!

Optimization of Clock Tree

For weak readout tones, quantization noise becomes dominant

Further Improvement of DAC Output

5 GHz clock signal:

831 MHz DAC output:

External clock source improves the system phase noise

Readout Tone Frequency Resolution

Number of required samples depends on resolution:

$$n = \frac{f_S}{\Delta f}$$
 with $f_S = 250 MHz$

 $W_s = 2 \times 16 Bit \text{ with } W_s := Bitwidth per sample$

For 16 readout lines:

$\Delta \mathbf{f}$	Memory
200 Hz	640 Mb
4 kHz	32 Mb

Available Memory: 60.5 Mb

Possible Solutions:

- Store samples in DDR
- Tone generation based on DSP

Note:

Resonance circle acquisition is not affected, $\Delta f < 1$ Hz

Other News

- LTD proceedings ready, will be submitted this week
- Migration of firmware to ZCU208 to evaluate faster ADCs
- New PhD student in KIT group: Daniel Crovo
- New Master student started working on the integration of LANTERN into the DAQ system (Hardware + Firmware)