Veto Updates

BULLKID digest meeting 9/22/25

Tommaso Lari

Simulations:

Comparison with Unam group:

- Previously:
 - My event rates differed from those obtained by the Unam group, especially for gamma backgrounds.
 - Only relatives rates, when simulating the background suppression of the veto.
- Updates:
 - Now: after several cross-checks, our results are in good agreement
 - Validated with a 2.6 MeV gamma line, without shields
- Next steps:
 - simulate the full shielding setup

Event selection in simulations:

- Convert energy deposits in BULLKID-DM wafers into event counts.
- Reproduce the background-reduction strategy.
- Two approaches:
 - Conservative: use only first-neighboring dice as anticoincidence.
 - Stringent: use the entire wafer stack as anticoincidence.

TI 2.6 MeV gamma line no shields

Example of event reconstruction in a BULLKID-DM wafer

Simulations:

Simulations:

Suppression of External gamma-rays:

- Updates:
 - Evaluated suppression of external gamma rays for different shielding configurations.
 - Veto inside: better performance (background reduction ×4–5)
 - Veto outside: still effective (background reduction ×2).
- Next steps:
 - Evaluate neutron background.
 - Test alternative configurations discussed in the simulation meeting, e.g. using a GAGG veto as neutron absorber instead of B₄C.

Contamination of veto material:

- Started evaluating background induced by contaminations from ²³⁸U, ²³⁴Th and ²⁰⁷Bi.
- Considered the characteristic gamma spectra.
- Not yet included associated alpha and beta emissions
 - → important for veto tagging capability.
- Next step:
 - reproduce the full decay chains.
 - Still in progress

Configuration #3: 60 mm Cu

Configuration #4: 30 mm BGO Veto +30 mm Cu Configuration #5: 30 mm Cu + 30 mm BGO Veto

Configuration # 6: 20 mm Cu +20 mm BGO Veto+ 20 mm Cu

KID fabrication:

First Fabrication test of a CALDER-style KID:

- Details
 - 40 nm aluminum
 - Lift-off
 - Substrate: intrinsic Si, 350 nm SiO2 (not removed in this sample)
- Results
 - Resonance observed, but frequency higher than expected (5 GHz vs 2.5 GHz).
 - Sonnet simulations suggest this is the second-order mode of the resonator.
- Next Steps:
 - Review fabrication process.
 - Continue design studies with Sonnet
 - New fabrication test with oxide removal

Next Steps:

- Fabrication of a BULLKID-style KID
- Fabrication of the full light sensor
 - Fabrication on a double side polished wafer
 - Wafer cut

Test of wafer cut with cleaving machine

Demonstration of veto module:

Goal:

- Demonstrate the operation of a detector composed of KID-based light detector coupled to scintillating crystal:
 - (2.5x2.5x1) cm³ GAGG
 - (2.5x2.5x1) cm³ BGO
 - Simultaneous operation of two modules

Setup Updates:

- New Cryostat
- Readout Board:
 - Zynq™ RFSoC ZCU216 purchased but delivered February/26
 - Backup KID readout board borrowed from LiteBIRD collaborators:
 - Tested with AlTiAl (2x2) cm² CALDER KID
 - No optimal detector operation (~1.6 dB resonance)
 - Capable of acquiring pulses from cosmic ray interactions
- LED + fibre calibration system purchased (all components available, installation pending)
- Design of new KID and crystal holders to improve thermalization ongoing.

Calibration system

Updates:

- Cryogenic stepper motor:
 - Stepper motor borrowed from Virgo
 - Control system available in the lab

Next steps:

- Understand communication protocol
- Develop control software
- Room temperature and then cryogenic tests

Thank you for your attention

Tommaso Lari

