Solar Energetic Particles measured by the AMS-02 experiment

DIPARTIMENTO
DI FISICA E GEOLOGIA

DIPARTIMENTO DI ECCELLENZA MUR 2023/2027 AMS Italy 10-10-12025, Roma Francesco Faldi (INFN Perugia)

Solar Energetic Particles

- The Sun produces its own cosmic rays: **Solar Energetic Particles (SEP)**. SEP can be accelerated by **magnetic reconnection** in solar flares and/or **diffusive shock acceleration** in CMEs.
- The **two mechanisms** are thought to generate **different classes** of SEP event on Earth: **impulsive** $(\Delta T < 1 \text{ day})$ and **gradual** $(\Delta T \sim \text{several days})$. *Solar Energetic Particles*, Reames 2021

Geomagnetic Rigidity Cutoff

- Charged CRs are deflected by the geomagnetic field: minimum rigidity required to reach Earth.
- The **geomagnetic rigidity cutoff** is a **function** that depends on **position** and, at a given location, on **direction** and **charge** of incoming particles.

Polar-Pass Exposure and cutoff

- AMS is exposed to SEP only for a small fraction of time, near magnetic poles (cutoff < 2 GV)
- Cutoff models (e.g. Max IGRF)
 are used in AMS to exclude
 secondary/trapped cosmic rays
- The cutoff model we normally use is too conservative for a SEP analysis, severely limiting our statistics at low rigidities

Eliminating the above cutoff cut Redefining the safety factor for the rigidity cutoff improves statistics at low rigidities.

→ We can try to define a "polar-pass" region using a different variable the cutoff.

SEP Proton Analysis Roadmap

Previous approach: geomagnetic latitude threshold

- The **rate** of proton events is shown in **geomagnetic coordinates before** and **during** an SEP event. Plots are normalised to the maximum value of the rate during the SEP day.
- Is it possible to find an optimal cut in geomagnetic latitude to select SEPs?

Previous approach: geomagnetic latitude threshold

- To select a threshold on geomagnetic latitude, we studied the proton rate at increasing latitudes.
- We selected the value that shows a relative difference within statistical uncertainty of the rate at θ = 63°.
- θ = 62° is an optimal threshold for most of the events.

Selected proton rate with previous approach

Current approach: reference cutoff

Comparison with previous approach

Note on Energy Losses

Proton Flux During SEP Event

- Total proton flux, for the north polar region.
- The increase due to SEPs is visible at low R (coloured lines), while this contribution is negligible above (grey).
- We now need to subtract the GCR background and secondary component.

GCR Background Subtraction

$$\phi_{t,r}^{BG} = N_t \times \phi_{t-1,r}^{BG}$$

- N_t should include effects of solar modulation (SM) and Forbush decreases (FD), but not SEPs.
- The SEP contribution to the total flux becomes negligible above ~2 GV.
- The normalization N_t can be calculated from the flux at higher rigidities, excluding the SEP contribution.

GCR Background Subtraction

Forecasting Parameter: Ratio with Lag1 Flux

For each time (day) and rigidity bin, e is defined as the **ratio** of the **current** daily flux with the flux of the **previous** day.

$$\rho_{t,r} = \frac{\phi_{t,r}}{\phi_{t-1,r}}$$

Properties:

- Stationary: removes seasonal trend.
- Rigidity independent during quiet periods.

Background Normalization

The normalization N_t is given by the average ϱ parameter, in the rigidity interval ~ [2.4, 4.8] GV, above the maximum rigidity reached by SEPs.

$$N_{t} = \langle \rho \rangle_{t} = \frac{1}{7} \sum_{r=10}^{17} \frac{\phi_{t,r}}{\phi_{t-1,r}}$$

$$\downarrow$$

$$\phi_{t,r}^{BG} = \langle \rho \rangle_{t} \times \phi_{t-1,r}^{BG}$$

N_t is the same for any rigidity bin, thanks to rigidity independence.

Background Subtracted SEP Spectra

Summary

- SEPs can be accelerated in two different mechanisms: magnetic reconnection and diffusive shock acceleration.
- **AMS** can measure the **spectral index** and observe the **temporal evolution** of SEP events at high energy, constraining the **type of acceleration**.
- The production SEP spectra with AMS requires a tailored event selection and a robust GCR background subtraction procedure.
- Many events measured by AMS show a single power law spectrum, but a few (backside) show a rigidity dependence of the spectral index.
- The **SEP fluxes** with AMS can be used to calculate the **radiation dose** absorbed by humans in space during these events.

Proton Rate and Secondary Population

- The proton rate at low geomagnetic latitudes, including events below cutoff, shows a clear double spectrum, due to the presence of secondary protons.
- At high latitudes it shows a mixed spectrum, including secondaries.

Forecasted Background on Quiet Flux

Spectral Fits with AMS at Peak Intensity - Est Side

Cane et al. 1988; Reames 1999; Cane and Lario 2006

Effective Dose Equivalent (weighted for age & gender)

Fluence-to-Dose Coefficients

- 1. Flux is assumed isotropic.
- Astronaut is assumed to be naked
- 3. Deposited energy is expected to be proportional to mass. (Dose is in units of energy / kg)
- 4. Typical units are Sievert (Sv=m²s⁻²) or rem (1 Sv = 100 rem)

