

Deborah Pinna

- * Scientist at university of Wisconsin-Madison
- * PhD at university of Zurich
- * Msc and Bsc: Universita' di Cagliari

Research

* Dark matter hunter:), new physics with top quarks and di-Higgs signatures

The Standard Model ...

- Remarkable accuracy and predictive power
- ► LHC/CMS extended sensitivity beyond expectations
 - * H couplings: precision already <10% for most couplings with ~5% of expected HL-LHC dataset
 - * HH: end of Run2, we reached the precision that HL-LHC studies predicted for 1000 fb⁻¹

The Standard Model ... how do we modify it?

- Remarkable accuracy and predictive power
- ► LHC/CMS extended sensitivity beyond expectations
 - * H couplings: precision already <10% for most couplings with ~5% of expected HL-LHC dataset
 - * HH: end of Run2, we reached the precision that HL-LHC studies predicted for 1000 fb⁻¹

- ▶ ... But many outstanding open questions
 - * direct searches for BSM particles coupling to SM sector
 - * indirect searches from deviations between precision measurements and SM

The Standard Model ... how do we modify it?

- Remarkable accuracy and predictive power
- ► LHC/CMS extended sensitivity beyond expectations
 - * H couplings: precision already <10% for most couplings with ~5% of expected HL-LHC dataset
 - * HH: end of Run2, we reached the precision that HL-LHC studies predicted for 1000 fb⁻¹

- ▶ ... But many outstanding open questions
 - * direct searches for BSM particles coupling to SM sector
 - * indirect searches from deviations between precision measurements and SM

The journey towards new physics

- ▶ LHC/CMS sensitivity beyond expectations
 - * first phase of LHC program to be completed soon
 - * already >300 fb-1 (Run 2 + Run 3)
- - * pushing the detector beyond its limits
 - * recording up to 63 simultaneous collisions/event (2.5x CMS design, 45% of HL-LHC)
 - * collecting data @7 kHz (70% of HL-LHC, 7x Run 2 normal operations)
- Dushing physics boundaries across multiple frontiers
 - * searches, precision-, flavour-physics, ...
- A key technology driver
 - * multiple data-taking strategies, artificial Intelligence, ...

Rich new physics program at CMS

Hunt for dark matter - identikit

DM evidence

- Empirical evidence of DM from astrophysical observations at different scales
 - interacts gravitationally, long lived and neutral
 - no information about its nature (what DM could be?)
- Doly measured quantitative property is DM mass abundance
 - very large set of possible masses can account for observed relic density

DM must have some non-gravitational interactions with SM particles

MeV-GeV:

- avoid DM overproduction with new mediator below weak scale
- suff. small SM coupling for consistency with collider searches

GeV-TeV:

- WIMP models, DM has small couplings to SM particles
- most minimal scenario, one DIM and one mediator
- * Dark sector: DM and mediator part of a separate "dark SM" (can be fairly minimal or composite)

Hunt for dark matter - identikit

- assume interactions with SM
- DM production DM

- Empirical evidence of DM from astrophysical observations at different scales
 - interacts gravitationally, long lived and neutral
 - no information about its nature (what DM could be?)
- Only measured quantitative property is DM mass abundance
 - very large set of possible masses can account for observed relic density

DM must have some non-gravitational interactions with SM particles

MeV-GeV:

- avoid DM overproduction with new mediator below weak scale
- suff. small SM coupling for consistency with collider searches

GeV-TeV:

- WIMP models, DM has small couplings to SM particles
- most mínimal scenario, one DM and one mediator
- * Dark sector: DM and mediator part of a separate "dark SM" (can be fairly minimal or composite)

Hunt for dark matter - where and how to study it?

Mev-Gev:

- suff. small SM coupling and below weak scale
- high-intensities

GeV-TeV:

- extensions of the SM at the Gev-Tev scale
- \$ high-energies
- * Dark sector: could be heavy, light, and/or long-lived

Assuming DM-SM interactions enables different searches

- indirect detection, products from DM annihilation
- direct detection, nuclear recoil from DM-nuclei scattering
- colliders: DM production

complementarity between experiments essential!

eg. info about lifetime if DM discovered at colliders (~10-7s),
particle properties compared with cosmological constraints

Hunt for dark matter - where and how to study it?

Mev-Gev:

- suff. small SM coupling and below weak scale
- high-intensities

GEV-TEV:

- extensions of the SM at the Gev-Tev scale
- \$ high-energies
- * Dark sector: could be heavy, light, and/or long-lived

- Energy frontier

 LHC

 Intensity
 frontier

 fixed target

 beam dump

 Mev- Gev sector less
 constrained. can
 address many open
 physics problems

 energy scale or mass
- Assuming DM-SM interactions enables different searches
 - indirect detection, products from DM annihilation
 - direct detection, nuclear recoil from DM-nuclei scattering
 - colliders: DM production

eg. info about lifetime if DM discovered at colliders (~10⁻⁷s), particle properties compared with cosmological constraints

Hunt for dark matter - investigation tactics

- ▶ We do not have information about the DM nature, how to hunt it?
 - remain very general and make very little assumptions, eg. "is it a 2D shape?"
 - more assumptions and tests more specific models, eg. "is it a 2D shape, yellow color and with only 90° angles?"

Hunt for dark matter - phenomenology

Intensity frontiers: MeV-GeV

- small couplings to SM, challenging to detect but guide to relevant interactions
 - * vector: dark vector boson (dark photon)
 mediator that mixes with SM photon
 - * scalar: dark Higgs mediator, mixing with SM Higgs, which leads to couplings to fermions
 - * fermion: heavy neutral lepton (HNL) mediator, that can mix with SM neutrinos
 - * pseudo-scalar: axíon-líke partícle can have couplings to SM fermions or bosons

Signatures

- invisible: production of DM through the decay of a portal/SM particles
- visible: dark mediator particles can decay back to SM particles (especially if sector's lightest state)
- displaced (long-lived): production of dark sector particle with significant lifetime that decays visibly to SM

Hunt for dark matter - phenomenology

Intensity frontiers: MeV-GeV

- small couplings to SM, challenging to detect but guide to relevant interactions
 - * vector: dark vector boson (dark photon)
 mediator that mixes with SM photon
 - * scalar: dark Higgs mediator, mixing with SM Higgs, which leads to couplings to fermions
 - * fermion: heavy neutral lepton (HNL) mediator, that can mix with SM neutrinos
 - * pseudo-scalar: axíon-líke partícle can have couplings to SM fermions or bosons

Simplified models: Simplified models: Specific models: eg. 2 Higgs Doublet Model eg. MSSM - one new mediator, one DM particle Higgs boson could be the SM-DM mediator - limited parameters set (mDM, mmed, gq, gDM)

Signatures

- invisible: production of DM through the decay of a portal/SM particles
- visible: dark mediator particles can decay back to SM particles (especially if sector's lightest state)
- _ displaced (امسع-lived): production of dark sector particle with significant lifetime that decays visibly to SM

Hunt for dark matter - phenomenology

Intensity frontiers: MeV-GeV

- small couplings to SM, challenging to detect but guide to relevant interactions
 - * vector: dark vector boson (dark photon)
 mediator that mixes with SM photon
 - * scalar: dark Higgs mediator, mixing with SM Higgs, which leads to couplings to fermions
 - * fermion: heavy neutral lepton (HNL) mediator, that can mix with SM neutrinos
 - * pseudo-scalar: axíon-líke partícle can have couplings to SM fermions or bosons

Simplified models: SM/BSM mediator Specific models: eg. 2 Higgs Doublet Model eg. MSSM more complex (more parameters) - one new mediator, one DM particle Higgs boson could be the SM-DM mediator - limited parameters set (mDM, mmed, gq, gDM)

Signatures

- invisible: production of DM through the decay of a portal/SM particles
- visible: dark mediator particles can decay back to SM particles (especially if sector's lightest state)
- displaced (long-lived): production of dark sector particle with significant lifetime that decays visibly to SM

- electron (muon), from inner tracker tracks and energy in calorimeter (track in muon spectrometer)
- թհotow, from energy deposits in electromagnetic calorimeter
- jets from quarks and gluons, partons hadronize in colour-neutral particles groups, so-called jet. Parton energy and momentum reconstructed clustering all particles from hadronization

- electron (muon), from inner tracker tracks and energy in calorimeter (track in muon spectrometer)
- photon, from energy deposits in electromagnetic calorimeter
- jets from quarks and gluons, partons hadronize in colour-neutral particles groups, so-called jet. Parton energy and momentum reconstructed clustering all particles from hadronization

- electron (muon), from inner tracker tracks and energy in calorimeter (track in muon spectrometer)
- photon, from energy deposits in electromagnetic calorimeter
- jets from quarks and gluons, partons hadronize in colour-neutral particles groups, so-called jet. Parton energy and momentum reconstructed clustering all particles from hadronization

- electron (muon), from inner tracker tracks and energy in calorimeter (track in muon spectrometer)
- photon, from energy deposits in electromagnetic calorimeter
- jets from quarks and gluons, partons hadronize in colour-neutral particles groups, so-called jet. Parton energy and momentum reconstructed clustering all particles from hadronization

Hunt for dark matter - signature at colliders

DM could be produced at colliders (rare process)

no direct trace in the detector, but could create a p_T imbalance (MET)

conservation of momentum

- no info on longitudinal momentum of colliding partons
- but total initial parton $p_{T}=0$

$$\sum_{T} \overrightarrow{p}_{T}! = 0 \text{ particles escaped detector carrying}$$

$$\overrightarrow{E}_{T}^{miss} = -\sum_{T} \overrightarrow{p}_{T}$$

$$|\overrightarrow{E}_{T}^{miss}| = \text{missing transverse energy (MET)}$$

- need visible particle to which DM particle recoils against
- "mono-x searches": X includes jets, vector bosons, top,

Hunt for dark matter - signature at colliders

DM could be produced at colliders (rare process)

no direct trace in the detector, but could create a p_T imbalance (MET)

conservation of momentum

- no info on longitudinal momentum of colliding partons
- but total initial parton $p_{+}=0$
 - _ need to be conserved after collision $\sum \overrightarrow{p}_T = 0$
 - $\sum_{\overrightarrow{p}_T!} \overrightarrow{p}_T! = 0 \text{ particles escaped detector carrying } \\ \overrightarrow{E}_T^{miss} = \sum_{\overrightarrow{p}_T} \overrightarrow{p}_T$

$$|\overrightarrow{E}_{T}^{miss}| = \text{missing transverse energy (MET)}$$

- need visible particle to which DM particle recoils against
- "mono-x searches": X includes jets, vector bosons, top,

Hunt for dark matter - signature at colliders

DM could be produced at colliders (rare process)

no direct trace in the detector, but could create a p_T imbalance (MET)

conservation of momentum

- no info on longitudinal momentum of colliding partons
- but total initial parton $p_{+}=0$
 - _ need to be conserved after collision $\sum \overrightarrow{p}_T = 0$

 - $|\overrightarrow{E}_{T}^{miss}| = \text{missing transverse energy (MET)}$

To see the invisible we need the visible ...

- need visible particle to which DM particle recoils against
- "mono-x searches": X includes jets, vector bosons, top, ...

Hunt for dark matter - how to search it at colliders?

1- Selection: DM appears as events excess in MET tail wrt SM

- no striking signature, eg. mass peak, m_T kinematic endpoint
- look for excess in region enriched in signal (signal region SR)

2-Bkg: precise evaluation of SM processes in SR essential

- achieved through use of multiple control regions (CRS)

3- Results: compare SM predictions with data

- Excess of events in data, did we find DM?
- No excess, interpret result in terms of theory model parameters

- Experimental challenges for invisible signatures
 - * accurate E calibration/resolution of visible objects ("fake" MET from mis-measured jets,
 - precise particle reconstruction and identification
 - mitigate effects from additional pp collisions (pile-up)
 - MET thresholds affected by trigger (very high collision rates)

Hunt for dark matter - how to search it at colliders?

1- Selection: DM appears as events excess in MET tail wrt SM

- no striking signature, eg. mass peak, m_T kinematic endpoint
- look for excess in region enriched in signal (signal region SR)

2-Bkg: precise evaluation of SM processes in SR essential

- achieved through use of multiple control regions (CRS)

3- Results: compare SM predictions with data

- Excess of events in data, did we find DM?
- No excess, interpret result in terms of theory model parameters

Experimental challenges for invisible signatures

- * accurate E calibration/resolution of visible objects ("fake" MET from mis-measured jets)
- * precise particle reconstruction and identification
- mitigate effects from additional pp collisions (pile-up)
- * MET thresholds affected by trigger (very high collision rates)

mono-jet/V(=W,Z)

* CMS: EXO-20-004

mono-WW

* CMS: EXO-21-012

* ATLAS: PLB842(2023)

* CMS: <u>HIG-21-007</u>

▶ 1 - Selection: events categorized based on jet nature

MOND-V

- * MET > 250 GeV
- ***** ≥ 1 jets, $p_T(j_1)$ > 250 GeV
- * ML technique to identify V hadronic decays
- * jet mass consistent with V

mono-jet

- * not selected as mono-V
- ***** ≥ 1 jets, p_T(j) > 100 GeV
- b-tagged jets veto

Clarge-cone jet,

4. R=0.8]

- Z(vv)+jets and W(lv)+jets from CRs
- - systematic unc. included as nuisance parameters

- prefit: as from simulation
- post-fit: after allowing simulation to vary within unc and the scaling factors from CRs

3- Results: interpretation in terms of DM model, upper limits at 95% CL on cross section

- * $\mu = \sigma/\sigma_{th}$, $\mu = 1$ exclude the theory value, $\mu < 1$ exclude below theory value, $\mu > 1$ does not exclude theory value
- * parameter: cannot scan all parameters at once. Fixed ones only affect xsec but not kinematic (selection)

3- Results: interpretation in terms of DM model, upper limits at 95% CL on cross section

- * $\mu = \sigma/\sigma_{th}$, $\mu = 1$ exclude the theory value, $\mu < 1$ exclude below theory value, $\mu > 1$ does not exclude theory value
- * parameter: cannot scan all parameters at once. Fixed ones only affect xsec but not kinematic (selection)

- * here $\mu = \sigma/\sigma_{th}$, in on z axis (notice here $\log_{10}(\mu)$)
- * parameter: here we scan 2 parameters at the time

3- Results: interpretation in terms of DM model, upper limits at 95% CL on cross section

- * $\mu=\sigma/\sigma_{th}$, $\mu=1$ exclude the theory value, $\mu<1$ exclude below theory value, $\mu>1$ does not exclude theory value
- * parameter: cannot scan all parameters at once. Fixed ones only affect xsec but not kinematic (selection)

- * here $\mu = \sigma/\sigma_{th}$, in on z axis (notice here $\log_{10}(\mu)$)
- * parameter: here we scan 2 parameters at the time

Hunt for dark matter - interplay with direct detection

> 3- Results: 90% CL lower limits on interaction xsec between DM and nuclei

Comparison recommendations [arXiv:1603.04156]

- * DM non-relativistic: dominant DM-nuclei interactions spin-independent and spin-dependent scattering
 - * vector/scalar mediator lead to a SI interaction
 - * axial-vector/pseudo-scalar lead to SD interaction
- * Very model dependent
 - * DD bounds may be valid for multiple models, LHC limits hold exclusively for considered models

Hunt for dark matter - interplay with direct detection

> 3- Results: 90% CL lower limits on interaction xsec between DM and nuclei

Comparison recommendations [arXiv:1603.04156]

- * DM non-relativistic: dominant DM-nuclei interactions spin-independent and spin-dependent scattering
 - * vector/scalar mediator lead to a SI interaction
 - * axial-vector/pseudo-scalar lead to SD interaction
- * Very model dependent
 - * DD bounds may be valid for multiple models, LHC limits hold exclusively for considered models

▶ 1- Selection: #lep categorization

- **1 *** 1 lep, ≥ 2 jets (m_{jj} ~ W mass)
 - * 0 b-tagged jets, MET > 60 GeV
 - * MVA to recover sensitivity
- 2ℓ * 1 opposite-charge ℓℓ pair
 - * 0 b-tagged jets, MET > 20 GeV
 - * events categ. on dark-H boost

- tt, tW, W/ Z+jets, WW main bkg, from CRs

3- Results: upper límits at 95% CL on cross section

▶ 1- Selection: #lep categorization

- **1**ℓ ***** 1 lep, ≥ 2 jets (m_{jj} ~ W mass)
 - * 0 b-tagged jets, MET > 60 GeV
 - * MVA to recover sensitivity
- 2ℓ * 1 opposite-charge ℓℓ pair
 - * 0 b-tagged jets, MET > 20 GeV
 - * events categ. on dark-H boost

- tt, tW, W/
Z+jets, WW
main bkg,
from CRs

■ 3- Results: upper límíts at 95% CL on cross section

Hunt for dark matter - Higgs can be a portal? Secus: HIG-21-007

DM-SM interactions mediated by Higgs boson: DM coupling enhance H invisible BR (SM ~0.1%)

- ▶ Higgs production as in SM
 - gluon fusion (MET+j)
 - associated VH (MET+V), ttH (MET+tt)
 - vector-boson fusion (MET+2jets)

Hunt for dark matter - Higgs can be a portal? Sems: HIG-21-007

ATLAS: PLB842(2023)

DM-SM interactions mediated by Higgs boson: DM coupling enhance H invisible BR (SM ~0.1%)

- Higgs production as in SM
 - gluon fusion (MET+j)
 - associated VH (MET+V), ttH (MET+tt)
 - vector-boson fusion (MET+2jets)

 \gg 3- Results: translated in spin-independent DM-nucleon elastic scattering xsec limit ($m_{DM} < m_{H}/2$)

- massive long-lived particles:

*LHCb: <u>EPJC373(2022)</u>

- dí-muon resonances:

*CMS: EXO-21-005

Simplified vector model

- ▶ low sensitivity to off-shell region due to strong reduction of production cross-section
- De Can we recover the sensitivity?

Simplified vector model

- ▶ low sensitivity to off-shell region due to strong reduction of production cross-section
- De Can we recover the sensitivity?

Simplified vector model

▶ low sensitivity to off-shell region due to strong reduction of production cross-section

De Can we recover the sensitivity?

* mediator

 $g_q =$

- narrow resonance
- wide resonance

Díd we exclude already everything?

Dijet, 139 fb⁻¹
JHEP 03 (2020) 145
Dijet TLA, 29.3 fb⁻¹
PRL 121 (2018) 081801
Dijet+ISR, 79.8 fb⁻¹
PLB 795 (2019) 56
Boosted dijet+ISR, 36.1 fb⁻¹
PLB 788 (2019) 316
Boosted di-b+ISR, 80.5 fb⁻¹
ATLAS-CONF-2018-052

Dijet

- tt resonance
 36.1 fb⁻¹
 EPJC 78 (2018) 565
- bb resonance
 139 fb⁻¹
 JHEP 03 (2020) 145

E_{miss}^{miss}+jet, 139 fb⁻¹ arXiv:2102.10874 E_T^{miss}+γ, 139 fb⁻¹ arXiv:2011.05259 E_T^{miss}+V(had), 36.1 fb⁻¹ JHEP 10 (2018) 180 E_T^{miss}+Z(II), 36.1 fb⁻¹ PLB 776 (2017) 318

* ATLAS: ATL-PHYS-PUB-2021-006

Simplified vector model

- ▶ low sensitivity to off-shell region due to strong reduction of production cross-section
- De can we recover the sensitivity?

* mediator

 $g_q =$

- narrow resonance
- wide resonance
- * interplay changes

Did we exclude already everything? NO! 139 fb⁻¹
PLB 796 (2019) 68

139 fb⁻¹
JHEP 03 (2020) 145

Dijet
Dije

arXiv:2102.10874

PRL 121 (2018) 081801

Hunt for dark matter - LLPs $\rightarrow \mu$ +jets search

▶ 1- Selection:

- tra ak
 - ★ ≥1 LLP candidates : ≥3 tracks (1µ) with inv mass above B resonances
 - * MVA techniques to recover sensitivity

 bb processes and material interactions

ש: א - Results: combined fit to LLP reconstructed mass in SRs and C Upper limits at 95% CL on cross section

Massive long-lived particles (LLP)

- (a) Higgs-like particle h⁰ produced by ggF, decays into two LLPs
- (b) direct LLP production from quark interactions

22 Sep 2025 Deborah Pinna - UW 43

Hunt for dark matter - LLPs $\rightarrow \mu$ +jets search

▶ 1- Selection:

★ 1 displaced vertex from any PV containing 1µ

- ★ ≥1 LLP candidates : ≥3 tracks (1µ) with inv mass above B resonances
- MVA techniques to recover sensitivity

 bb processes and material interactions

▶ 3- Results: combined fit to LLP reconstructed mass in SRs and CRs Upper limits at 95% CL on cross section

Massive long-lived particles (LLP)

- (a) Higgs-like particle h⁰ produced by ggF, decays into two LLPs
- (b) direct LLP production from quark interactions

Hunt for dark matter - di-muon low-mass resonances

- 1 Selection: resonance as peak wrt SM invariant mass
 - * 1 opp.-sign μ pair, categories on $p_T(\mu\mu)$
 - * dedicated μμ trigger: low p_T thresholds, high rate, retain only 4-momentum, isolation, track information
 - * muon identification based on MVA techniques

2 - Bkg:

known resonances, D meson decays to kaons (from CR)

3- Results: fit to $\mu\mu$ invariant mass, upper limits at 90% CL on mixing coefficient ϵ

Dark photon: dark/SM sectors interaction through dark photon Z_D , with kinetic mixing ϵ

22 Sep 2025 Deborah Pinna - UW 45

Hunt for dark matter - di-muon low-mass resonances

- 1 Selection: resonance as peak wrt SM invariant mass
 - * 1 opp.-sign μ pair, categories on $p_T(\mu\mu)$
 - * dedicated μμ trigger: low p_T thresholds, high rate, retain only 4-momentum, isolation, track information
 - * muon identification based on MVA techniques

known resonances, D meson decays to kaons (from CR)

3- Results: fit to μμ invariant mass, upper limits at 90% cL on mixing coefficient ε

Dark photon: dark/SM sectors interaction through dark photon ZD, with kinetic mixing &

Higher sensitivity at low masses

Hunt for dark matter - complementarity

- *Luminosity: determines size of coupling that can be probed
- *Energy: determines probed mass range
- *Invisible/visible: directly probe DM or mediator

Complementarity essential!

- results often presented in terms of different mediator masses, notation and model assumptions
- Concerted effort to align models and representation to exploit complementary of energy- and intensity-frontiers to discover DM/dark-sector

.. also with direct-detection

- accelerator-based directly characterize DM particle properties, explore relativistic DM production
- direct detection explores a combination of DM properties with their cosmological abundance, probe non-relativistic scattering

Hunt for dark matter - complementarity

- *Luminosity: determines size of coupling that can be probed
- *Evergy: determines probed mass range
- *Invisible/visible: directly probe DM or mediator

Complementarity essential!

- results often presented in terms of different mediator masses, notation and model assumptions
- Concerted effort to align models and representation to exploit complementary of energy- and intensity-frontiers to discover DM/dark-sector

.. also with direct-detection

- accelerator-based directly characterize DM particle properties, explore relativistic DM production
- direct detection explores a combination of DM properties with their cosmological abundance, probe non-relativistic scattering

Hunt for dark matter - complementarity

- *Luminosity: determines size of coupling that can be probed
- *Evergy: determines probed mass range
- *Invisible/visible: directly probe DM or mediator

Complementarity essential!

- results often presented in terms of different mediator masses, notation and model assumptions
- Concerted effort to align models and representation to exploit complementary of energy- and intensity-frontiers to discover DM/dark-sector

... also with direct-detection

- accelerator-based directly characterize DM particle properties, explore relativistic DM production
- direct detection explores a combination of DM properties with their cosmological abundance, probe non-relativistic scattering

 \geqslant Different type of interactions can be suppressed or enhanced based on velocity \rightarrow complementarity

- * Rich DM physics program at high-energy and high-intensity experiments
 - essential complementarity among experiments and with non-collider searches
 - inputs from various signatures (mono-X, resonances, H→inv, visible, ...)
- *Many new results/experiments expected in the near future!

- * Rich DM physics program at high-energy and high-intensity experiments
 - essential complementarity among experiments and with non-collider searches
 - inputs from various signatures (mono-X, resonances, H→inv, visible, …)
- *Many new results/experiments expected in the near future!

- * Rich DM physics program at high-energy and high-intensity experiments
 - essential complementarity among experiments and with non-collider searches
 - inputs from various signatures (mono-X, resonances, H→inv, visible, …)
- *Many new results/experiments expected in the near future!

- *Rich DM physics program at high-energy and high-intensity experiments
 - essential complementarity among experiments and with non-collider searches
 - inputs from various signatures (mono-X, resonances, H→inv, visible, …)
- *Many new results/experiments expected in the near future!

*Rich DM physics program at LHC

- essential complementarity among experiments and with non-collider searches
- inputs from various signatures (mono-X, resonances, H→inv, visible, ...)
- *Many new results/experiments expected in the near future!

assume interaction

56

An eye towards the (near) future

New physics working group (LHC BSM WG)

guidelines and recommendations for the benchmark models, interpretation, and characterisation of BSM searches at the LHC

first general meeting in 10-13 November 2025 (<u>indico</u>)

*Many new results/experiments expected in the near future!

Collider experiments: ATLAS, CMS, LHCb

ATLAS and CMS multipurpose detectors at LHC

- goals: precision test of SM, search for new physics
- particle identification, energy and momenta measurements
- trigger system: select events interesting for physics analysis
- pp collisions
 - Run2: 13 TeV, ~140 fb-1 | Run3: 13.6 TeV, already collected ~70fb-1
 - more than 8.5 million Higgs boson produced!
- DM could be produced at colliders (rare process):
 - invisible signature: no direct trace in the detector, but ...
 - can be inferred from p_T imbalance (MET)
 - need visible particle to which DM particle recoils against "mono-x"

energy frontie

LHCb at LHC

- single-arm spectrometer originally devoted to heavy flavour physics, now a general purpose experiment
- triggers with low p_T thresholds, probes rapidity region only partially accessible to other LHC experiments
- excellent vertex, mass and lifetime resolution, particle identification
- can operate in collider and fixed target mode
- pp collisions: ~1/20 ATLAS/CMS, reduced luminosity by offset beam collisions

Rich new physics program at ATLAS and CMS

- Despite the accuracy of the SM and its predictive power many open outstanding questions, eg.:
 - matter-antimatter asymmetry
 - hierarchy problem
 - describes only ~5% of the universe, explanations for DM are not provided
 - gravitational force cannot be included in the current theoretical framework

[arXiv:1311.0299]