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The Gravitational Wave Spectrum
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The Gravitational Wave Spectrum
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How to go below the Seismic Noise?

Constellation of 3 spacecraft on heliocentric orbits in an equilateral
configuration (a giant interferometer) with 2.5 million-km arms in space
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How to go below the Seismic Noise?

Constellation of 3 spacecraft on heliocentric orbits in an equilateral
configuration (a giant interferometer) with 2.5 million-km arms in space

Goal: measure relative distance changes of 10~*! on 2.5 million km arms ->

picometer displacement of masses



Spacecraft design

e Measurement points must be shielded from
fluctuating non- gravitational influences

* The spacecraft protects test-masses (TMs)
from external forces (drag-free system) and
always adjusts itself on it using micro-
thrusters

e Readout: - interferometric (sensitive axis of main laser/GW)

- capacitive sensing (in the remaining 5 dofs)

46 mm cubic Au-Pt test mass Photo of the test mass electrode housing  Test mass electrode housing Moving Optical Sub-Assemblies (MOSAs)

structural units that contain elements for optical

Gravitational Reference System (GRS) measurement and define the inertial reference

A. Ricciardone 10 years of GWs 4



LISAPathfinder final main results

Successful demonstration of the ability to shield
from fluctuating non-gravitational influences
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Spacecraft design

- Laser emission: each spacecraft sends
a laser beam to the others.

- The received beam is too weak to reflect directly, so
it is phase-locked and amplified locally.
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Spacecraft design

- Laser emission: each spacecraft sends
a laser beam to the others.

- The received beam is too weak to reflect directly, so
it is phase-locked and amplified locally.

* Interferometry: the phase of the incoming beam is compared
with the local laser, measuring relative distance changes between

TMs.

- Gravitational waves: passing waves stretch and compress the
arm lengths, producing differential phase shifts.

Noise Sources . Laser Noise: (10713 vs 10721)
+ Acceleration Noise

Read-out noises

+  Optical Path Noise

Time-Delay Interferometry (TDI): signals are combined with
appropriate time shifts to cancel laser frequency noise and

extract the gravitational wave signal.
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What do we expect to detect with LISA?

1400 Event rate
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Galactic Binaries

A large number of stars are in binary
systems and evolve towards WD, NS
and stellar BH binaries (expected ~60
millions in the galaxy)

- Most are in the inspiral phase:
quasi-monochromatic,
permanent GW signal

M,=1Ms 7=10°y — f=3mHz, f=10"'%Hz/sec
« ~ 20 known WD systems are guaranteed

LISA sources: verification binaries

« Resolved binaries: ~ 25000 sources are
expected with SNR 7-1000

« Stochastic foreground from sources
with too low SNR, yearly modulated

Strain Amplitude Spectral Density |1/v HZz|

Waveform
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Galactic Binaries - what we will learn?

Spatial distribution of numerous individual double WDs

SO1: Study the formation and evolution of compact binary
stars in the Milky Way Galaxy:

e Formation and evolution pathways of dark compact binary
stars in the Milky Way and in neighbouring galaxies;
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e The Milky Way mass distribution;

I ' I i R 1
15 -10 5 0 5
Galactic Coordinates (kiloparsec)

e The interplay between gravitational waves and tidal dissipation

e Spatial distribution of ultra-compact binaries detected by LISA that are too dim
for detection with EM telescopes?

Foreground for Cosmology - to be subtracted
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Super Massive BH Binaries

MBH are indirectly observed in the
centre of many galaxies.

Galaxies collide -> MBH must exist
In binaries

The loudest LISA sources

(Other than unexpected ones)

MBHB from 10*M, to 10’M
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Inspiral Merger Ring-
down

- LISA detects the inspiral, merger, ringdown

several months prior to merger

SNR up to few thousands
- Expected rates: 10-100/year

« Up to z ~ 20!

Signal duration: from few hours to

ey

— Numerical relativity

Reconstructed (template)

-

2 weeks
1 week

1 day

1 hou

1 min

r

Time to merger
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SMBHB - what we will learn?

S0O2: Trace the origin, growth and
merger history of massive black holes

across cosmic ages:

e Discover seed black holes at cosmic

dawn z;

e Study the growth mechanism and merger
history of massive black holes from the

epoch of the earliest quasars;

- |dentify the electromagnetic counterparts of
massive black hole binary coalescences.

- Use SMBHB as standard candles/bright

sirens to infer HO

contour lines of constant SNR from MBHBs.
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Extreme Mass Ratio Inspirals

[Extreme Mass-Ratio Inspirall

- Binaries for which the masses of the two
objects are very different

m
107<g=—2%<10*
my

- The waveforms are complex and
the rates are highly uncertain

- The SNR can be as high as few hundreds

 They offer the opportunity to map the full BH
population of the Universe

- Probe the properties and immediate
environments of black holes in the local
Universe

- They can be used to perform tests of General Relativity

365 days before merger, axis units AU, current average speed 0.164 ¢

A. Ricciardone 10 years of GWs
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Cosmology with LISA

100 ¢
i i i K Vi
- SMBHB can be used as “bright” sirens at high //
redshift to infer cosmological parameters, e.g., V4
Hubble parameter
Jal " MBHBs
T : ~~ (bright sirens)
EM counterparts and coincident GW detection: MBHB & s 4
are expected to have counterparts if they occur in gaseous I SR et
disks at the centre of galaxies (very uncertain rate) © | (darksirens) oM
1E -
- EMRIs and SOBHB can be used as dark sirens at ‘ Y TR -
smaller redshift to infer cosmological parameters, ' .
e.g., Hubble parameter
Source Ho QM Wo

 Both sources can be used to perform o
tests of General Relativity EMRIs  [1-6]%

MBHBs [3-7]%

[25-60]% [7-12]%
[4 - 9]% =

A. Ricciardone 10 years of GWs
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Stellar Origin Black Holes

A Sesana arXiv:1702.04356

I IIIIIIII T IIIIIII T IIIIIII T IIIIIII T IIIIIII T Illllll I
L‘ :

» Earlier in the inspiral phase, they can i

emit in the LISA band
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- Merging BHBs are observed by
Earth-based interferometers

characteristic amplitude
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 Most of them will be quasi- frequency [He]
monochromatic sources during the
mission duration

 Enabling multiband and
multimessenger observations at
the time of coalescence.

S. Babak et al., JCAP 08 (2023) 034, ArXiv:2304.06368.
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Stellar Origin Black Holes

The science that can be done with them

depends on the number of resolved sources

(Resolved: closer to merger and to us)

Expected about 10 resolved in 4
years of mission, a few multi-band

The rest (unresolved ones) generates a
Stochastic GW Background
(SGWB: distant and inspiralling)
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Stellar Origin Black Holes

- The science that can be done with them
depends on the number of resolved sources

- (Resolved: closer to merger and to us)

- Expected about 10 resolved in 4
years of mission, a few multi-band

* The rest (unresolved ones) generates a
Stochastic GW Background
(SGWB: distant and inspiralling)
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Stochast|c GW Background

Stochastic GW Background WWWMWWMWWWW

Stochastic GW backgrounds

and their implications for e |
- early Universe
(] (] (] : 1 O 194
- TeV-scale particle physics (BSM physics) E
- GWs from Inflation 1074
- GWs from First Order Phase Transition (FOPT) - ECS)PT :ZBBH -N Noise AA
| ”1”(')'4 o 103 | h”1”(:)'2 | 101
« GWs from Cosmic Strings (CS) Frequency (Hz) |

- GWs from Primordial Black Holes (PBH)

nfiasonary GW =~~~  Probe different range of scales (and of the inflationary potential),
much smaller than CMB

PT e ~%  Test Physics Beyond the Standard Model of Particle Physics

PBH GWs -4  Shed light on Dark Matter candidates

Astophysical GWB  sewmeili Implication for population parameters

A. Ricciardone 10 years of GWs 16



SGWB Reconstruction

« Detect and Subtract the GWB from GB?

- Characterise the astrophysical GWB from

sBHBs LISA data according to LVK N }

predictions

* Measure, or set upper limits on, the
spectral shape of the cosmological
SGWB

« Demonstrate that CGWB can be
reconstructed in LISA data under
minimal assumptions of the
instrumental noise+reconstruction of
spectral shape

Frequency (Hz)

Signal, noise and foreground reconstruction (3 bins)

Data ---- Input galactic 1o region
107*9 ---- Bin extrema —— Galactic fg best fit 20 region
--- Input signal N 10 region —— Noise AA best fi
—— Signal best fit 20 region 1o region
106 | 1o region Input extragalactic 20 region
20 region Extragalactic fg best fit

=108
& i
1-; | ]
' i
10—1(] 1 :
z i i
— L)
L Lo
1021 b
1 1 |
1 1 ]
I | |
i i i
| B N
10—11 } ; 1 1 — — ;
10-* 103 1072 107!
Frequency [Hz]
[SGWBinner code

(LISA CosWG) ’19, ’20]
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Global Fit

New Data
Stochastic
1028
UCB :
= 10-*t
— — 10-22 2 -u'
UGW 1023

The data model

K N,
d(t)=n() + ) Y hi(t;0)
c=1 j=1
With the (unknown) number of classes of signals

(e.g., c= SMBH, sBH, EMRI, etc) and N_c is the
unknown number of signals per class

| detectec
I—1 galactic
binaries

SMBH
mergers

[ —— -’—_‘\_. Ve e—

—_ ———_—_—_— e ——

f (Hz)
Astro | @-Q Instr
Indiv @\* |

The challenge is to estimate the joint posterior
for all sources, their numbers and their
astrophysical distributions, jointly with the
detector and noise models

A. Ricciardone 10 years of GWs
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LISA Global Fit - Pisa - CTMCMC
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LISA Timeline

MFR Adoption Launch

Commissionin
 — by

Phase A Phase BI Phase B2/C/D Phase E

Scope, ¢!
definition

Definition Detailled definition, production, integration, tests, validation L Transfer I Operations

2022 2024 2026 2028 2030 2032 2034 2036 2038 2042

Some plot

» 1993: first proposal ESA/NASA

~ 20/06/2017: LISA mission approved by ESA Science Program Committee (SPC) after the success of
LISAPathfinder and GW detection by LVK.

> 2020-2022: B1 phase success - stat industrial implementation to build the instrument

»2022-2024: Mission Adoption

> (New) LISA Science Team in place

~ 8 years: building phase (B2/C/D) of multiple MOSAs: 6 flight models + test models

> 2030-2034: launch Ariane 6.4

~ 1.5 years of transfer, 4.5 years nominal mission, 6.5 years extension » GW Detections

A. Ricciardone 10 years of GWs 20



Conclusions

™ LISA is a large mission led by ESA to detect GWs in the
mHz band been adopted in January by ESA

™ LISA has been adopted in January by ESA, i.e. it is fully
supported by ESA, its member states and NASA

™ Itis now in its development and building phase for a launch in 203
for 4.5 to 10 years of operations

™ LISA will cover a large range of domains and has a huge
science case for astrophysics, cosmology and fundamental
physics.

™ LISA is a tool to explore the Universe !
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Thank you!




» 1978: first study based on a rigid structure (NASA)
» 1980s: studies with 3 free-falling spacecrafts (US)
» 1993: proposal ESA/NASA: 4 spacecrafts

» 1996-2000: pre-phase A report

» 2000-2010: LISA and LISAPathfinder: ESA/NASA mission
» 2011: NASA stops => ESA continue: reduce mission

» 2012: selection of JUICE L1 ESA

» 2013: selection of ESA L3 : « The gravitational Universe »
» 2015-2016: success of LISAPathfinder 4+ detection GWs




» 25/10/2016 : Call for mission

» 13/01/2017 : submission of «LISA proposal» (LISA consortium)
» 8/3/2017 : Phase 0 mission (CDF 8/3/17 — 5/5/17)

» 20/06/2017 : LISA mission approved by SPC

» 8/3/2017 : Phase 0 payload (CDF June — November 2017)

» 2018—2020 : competitive phase A : 2 companies compete
» 2020—2022 : B1: start industrial implementation

» 2022-2024  : mission adoption

» During about 8.5 years : construction

» 2030-2034  : launch Ariane 6.4

» 1.5 years for transfert

» 4 years of nominal mission » GW observations !




LISA MISSION SUMMARY

Measurement

Gravitational waves (GWs) in the Frequency Band of 0.1 mHz - 1.0 Hz with a GW Strain Spectral Density: 1072'-10-23

Lasers
Optical Bench
Interferometry

Telescope

Gravitational Reference System

Payload

2 per spacecraft e 2\W output power e wavelength 1064 nm e frequency stability

300 Hz/VHz
2 per spacecraft e double-sided use e high thermal stability (Zerodur)

heterodyne interferometry o 15pm/VHz precision e Inter-spacecraft ranging to
~Tm

2 per spacecraft  30cm off-axis telescope e high thermal stability

2 per spacecraft e acceleration noise <3fm/(s?> VHz) e 46 mm cubic AuPt test
mass e Faraday cage housing e electrostatic actuation in 5 degree of freedom

Duration

Constellation

Orbits

4.5 years science orbit e >82 % duty cycle e ~6.25 years including transfer and commissioning

Three drag-free satellites forming an equilateral triangle @ 2.5 x 10% km separation e trailing/leading
Earth by ~20° e inclined by 60° with respect to the ecliptic

Heliocentric orbits @ semimajor axis ~1 AU e eccentricity e ~0.0096 e inclination /i ~0.96°

Noise
Reductions

Data Levels

Data Analysis

Laser noise suppression with time-delay interferometry e Ranging processing and delay estimation e
Spacecraft jitter suppression and reduction to 3 lasers o Tilt-to-length effect correction e Clock noise
suppression e Clock synchronisation

Level O
Level 0.5
Level 1
Level 2
Level 3

Raw data, de-multiplexed, time-ordered, corruption removed

Primary science telemetry, decommutated, time-stamped, unit-level calibrations applied
Time-Delay Interferometry (TDI) variables (GW strain)

Output from a global fit pipeline, statistical evidence for candidate sources

Catalogue of GW sources (detection confidence, estimated astrophysical parameters)
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What is a Stochastic Gravitational
Wave Background (SGWB)

A SGWB 1s, by definition, made up of an incoherent superposition of signals
from sources that are unresolved in both the time and angular domain

Resolved S_Ou rces: -BlackHoles Unresolved Sources: Stochastic Backgrounds
- Neutron Stars e Astrophysical
- White Dwarfs .
e Cosmological
- Supernovae
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_Astrophysical GW Backgroun

— S momeaserer ey,

Carry information about:

LISA/ET 3 SRR
. . '.) X . .. ° X ] , Py
- star formation history . e %

- our cosmological model i
Resolved GW sources

i Rppu(z=0)=17.3 Grpc_3 yr_1
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—===Vangioni+ SFR

1

Rpgu(2) [Gpe? yr!]
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It is a kind of “noise” for the cosmological background, even if with different properties

[LVK Collaboration 2021]
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SGWB Energy Density vs Detector PLS
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[LISA Cosmology White Paper]



_Inflationary sources: Axion-inflation
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GW energy spectrum today
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Peculiar features
- Blue-Tilted SGWB Spectrum

- Chiral SGWB spectrum

- Non-Gaussian SGWB

[Bartolo N., et al. ’16 - LISA CosWG paper]

[Cook & Sorbo, ’11] [Namba et al., ’15]
[Domcke, Pieroni, Binetruy, ’16]



As the temperature in the very early universe decreases, there can be
several PTs: QCD, EW....Beyond Standard Model?

If the PT is first order, the SGWB signal could be detectable by LISA/ET
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[Caprini C., et al 16, ’19- LISA CosWG paper]
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Cosmic Strings (or other kind of topological defects) are non-trivial field
configurations left-over after the phase transition has completed

A network of cosmic strings emits GWs

(results are model dependent)
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GW from Primordial Black Holes

his 4+ 2Hh;: — VZhy; = 0(0;¢0,¢)

[Domenech, G., review *21]
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[Bartolo, N., et al., PRL 2019]
[De Luca, V., et al., PRL 2021]
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GWB from cosmological sources superimposed to the Astrophysical GWB

GW Energy Density vs Power Law Sensitivity
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Peculiar features to distinguish them:
® Spectral Dependence: Qaw(f) [SGWBinner code (LISA CosWG) 19, *20]
® Net Polarization: QGW I\ A\ = L7 R [Domcke, V., et al.,’20]
Y
- - - - = —
® Anisotropies/Directionality: Qaw ([, T)
o Statistics: ({iy)




