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AIGOR is a neuromorphic computer architecture prototype built on a multi-node FPGA (Field Programmable Gate Array) system. It’'s main objective is to serve as an
accelerator platform for efficiently executing Spiking Neural Networks on edge devices. Brain-inspired Spiking Neural Networks represent a promising frontierin
computational models, offering potential advantages over traditional computing paradigms in terms of energy efficiency, temporalinformation processing, and adaptability to
dynamic data. This can benefit numerous applications, such as real-time sighal processing and pattern recognition in resource-constrained environments. Neuromorphic
computing is an approach to hardware architecture design to efficiently implement these biologically-inspired networks, balancing biological plausibility against
computational efficiency. Leveraging on a proprietary framework for flexible, low latency communication we aim to deploy our architecture prototype on a multi-FPGA
system, adopting a software-hardware codesign workflow that relies on the High Level Synthesis (HLS) programming paradigm for relatively fast and simple translation

from a high level simulator of the architecture to the hardware design.
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