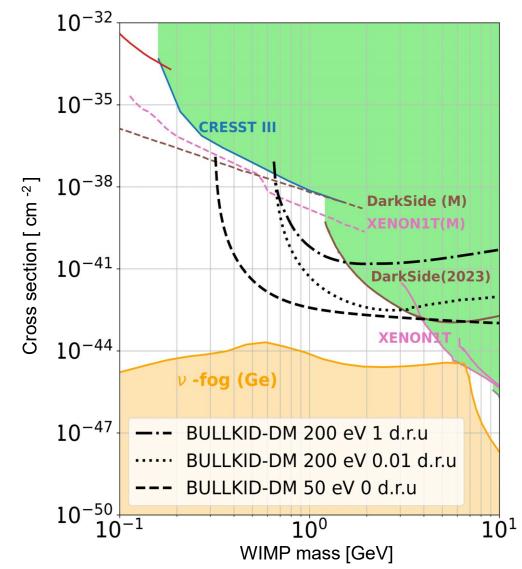

Phonon-mediated Dark Matter search with the BULLKID detector


Leonardo Pesce, Davide Quaranta "Sapienza" Università di Roma & INFN Roma 1 leonardo.pesce@uniroma1.it, davide.quaranta@uniroma1.it

Project Goal

BULLKID is an R&D project targeting at the development of a detector for **direct light dark matter detection** and **coherent neutrino-nucleus scattering**.

The idea is to sense **phonons** produced by the nuclear recoil of such particles on a **diced silicon target** with a large array of **kinetic inductance detectors (KIDs)**.

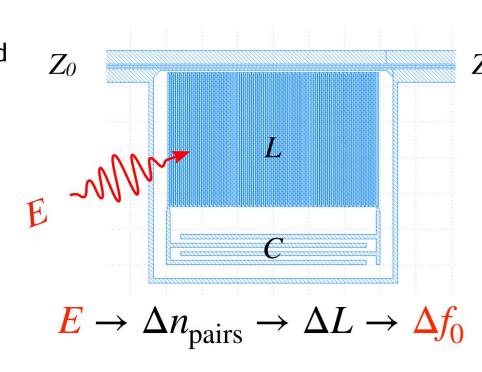
Why Phonons?

Nuclear recoils of light particles are hard to detect due to their **very low energy** ($\mathcal{O}(0.1-1)$ **keV**).

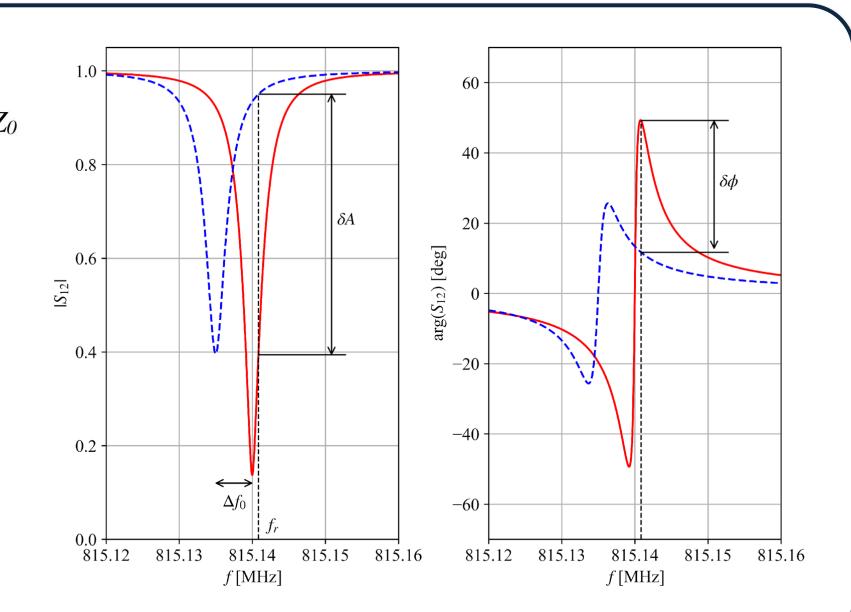
Phonons are advantageous thanks to their low excitation energy ($\mathcal{O}(\text{meV})$). This helps enhancing both **detection threshold** and **energy resolution**.

signal
$$\propto \frac{\text{energy lost}}{\text{carrier cost}}$$
 $\sigma_E \propto \frac{1}{\sqrt{N_c}}$

Kinetic Inductance Detectors (KIDs)


To detect phonons produced in the substrate, each dice is coupled to an **RLC superconductive resonator**.

Phonons impinging on the superconductor break electronelectron systems called **Cooper Pairs**.


Cooper pairs behave as an inductance (kinetic inductance), thus a change in their number produces a shift of the resonant frequency of the resonator.

The signal can be measured both as an amplitude δA and a phase shift $\delta \phi$.

Each resonator has a different resonant frequency, allowing the **multiplexing** of many KIDs coupled to a **single transmission line**.

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

Towards full experiment

Prototype - 20 g / 60 dice single 3" wafer concluded in 2023 Demonstrator - 60 g / 180 dice 3-layer stack of 3" wafers first operations summer 2024 R&D on large wafer 50 g / 145 dice single 100 mm wafer first operations fall 2024 BULLKID-DM - 600 g / ~2500 dice 16-layer stack of 100 mm wafers commissioning in 2026 at Sapienza U.

Activities


Our (main) activities focus on:

- R&D on new KIDs
- Data Analysis
- Calibration
- Simulation of RF circuits

Why is it interesting?

Low-Energy Particle Physics is an exciting and ever-expanding field. Concepts and techniques from other fields of physics are often needed to tackle the fundamental questions we want to ask:

- RF electronics
- Cryogenics
- Condensed Matter physics
- Superconductivity (and more...).

Contacts & References

Supervisors:

- Prof. Marco Vignati (<u>marco.vignati@uniroma1.it</u>)
- Dr. Angelo Cruciani (angelo.cruciani@roma1.infn.it)

Latest papers:

- A. Cruciani, et al, Appl. Phys. Lett. 121, 213504 (2022)
- D. Delicato, et al, Eur. Phys. J. C (2024)
- D. Delicato, et al, **arXiv:2412.07379** (2024)

