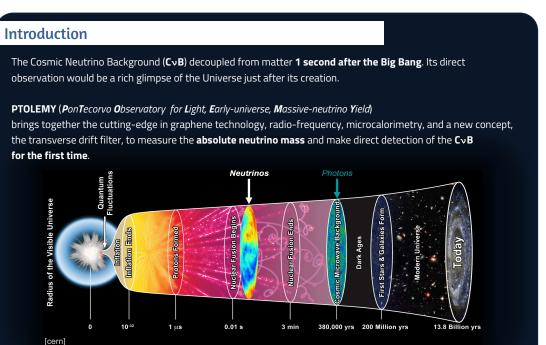
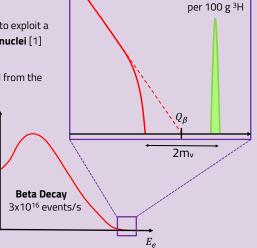
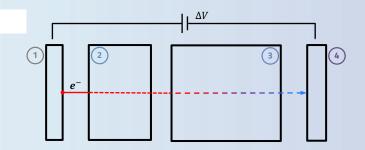


The PTOLEMY Project:


How to Make a Screenshot of the very Early-Universe

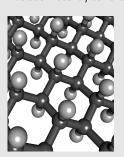

 $\text{C}\nu\text{B}$

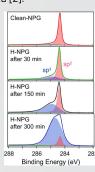
8 events/yr



Signature

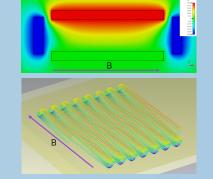
- Neutrinos from CvB constitute the **most abundant** neutrino flux we have on Earth. Their density is expected to be around 300 y/cm³.
- At the same time they have a very low energy ($\sim 10^{-4}$ eV), being their temperature today roughly 1,95 K.
- A smart solution to detect such low-energetic particles is to exploit a threshold-less reaction, like the ν -capture on β -unstable nuclei [1] $\mathcal{V}_e + (A, \mathbf{Z}) \rightarrow (A, \mathbf{Z} + \mathbf{1}) + e^{-\mathbf{I}}$
- The result is a **monocromatic peak** at $Q_{\beta}+m_{v}$, separated from the spectrum end-point of the analougous eta-decay by $2m_v$
- ☐ High energy-resolution electron detector needed
- · Being the cross section for this reaction extremely small, the following requirements must be met:
- \square β -unstable isotope with reasonable half-life &relatively high cross-section: tritium ³H
- ☐ Large target: 100 grams to get 4/8 events/yr (Dirac/Majorana)
- ☐ Efficient, high-rate handling filter

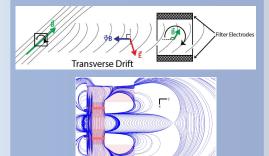

Ingredients



Final Energy: $E_e = q\Delta V + E_{TES} + E_{RFcorr}$

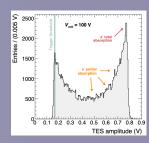
1 TRITIUM TARGET


- Experiment on neutrinos commonly use tritium in gaseous molecular form. The idea of PTOLEMY is to use loading of **atomic tritium** onto free-standing graphene (tritiated graphene) to reduce smearing due to the source itself and the scattering of emitted electrons.
- Carbon-based supports have the unique feature of enabling a high-density source of tritium. A 90% loading of nanoporous graphene (NPG) has been recently achieved [2].


2 PRESELECTOR

- A radio-frequency (RF) antenna detects the electromagnetic emission of an electron spinning in a constant magnetic field and bouncing between two electrodes.
- · This allows to determine the electron energy and transverse momentum in order to select only events very close to the tritium β spectrum end-point.

3 DYNAMIC FILTER


- The transverse drift filter [3] exploits the gradient-B drift of a charged particle in the presence of statically decaying electric and magnetic fields to reduce its transverse momentum till few eV.
- The main advantages are in the compactness of the filter dimensions (less than $1 m^3$) and the direct transition to a zero magnetic field region at the end of the filter.

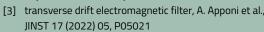
4 ELECTRON DETECTOR

- A key point for the project is the development of a device capable to detect electrons with an energy resolution lower than 50 meV.
- · Microcalorimeters based on transition-edge **sensors** (TES) are among the best candidates since they already reach single-photon Gaussian energy resolutions below 50 meV for 0.8 eV photons.
- For the first time fully-absorbed electrons in the (95 - 105) eV energy range has been recently detected using TES with a resolution between 0.8 and 1.8 eV [4]

Demonstrator @ LNGS

- The PTOLEMY Demonstrator is being built and operated at LNGS in its first stage. It acts as a proof-of-principle set-up with the first goal of testing the full electron transportation from the source to the micro-calorimeters, determining filter efficiency, and aiding in its possible optimization.
- The demonstrator consists of a superconductive magnet (here at LNGS in early 2026!) shaped to allow a constant B field region and a varying B field with an exponential fall along the filter axis.
 - ☐ The source and RF antenna (1, 2) will be located in the constant B region
 - ☐ Beyond this region, where the B field drops with the desired shape, electrons close to the tritium β -spectrum end-point are pre-selected and slowed down by the dynamic filter powered by appropriate electrodes (3)
 - ☐ At the bottom of the filter, an array of TES microcalorimeters or an hemispherical electron energy analyzer (4) detect the chosen electron and precisely measure its energy
- An 83mKr standard source and a specialized electron gun will be used to calibrate the filter.
- After the test and optimization stages, a second phase with the first sizable prototype source will exploit the filter performances for the **first physics goal** of the **neutrino mass measurement** from the **distortion of the** β -spectrum **end-point.** It is expected that only **1** µg of tritium is sufficient to be competitive with KATRIN.

Have a Look


Probing low energy neutrino backgrounds with neutrino [1] capture on beta decaying nuclei, A.G. Cocco et al., JCAP 06 (2007) 015

Gap Opening in Double-Sided Highly Hydrogenated [2] Free-Standing Graphene MG, Betti et al., Nano Letters (2022), 22, 7, 2971–2977

Implementation and optimization of the PTOLEMY

Detection of Low-Energy Electrons with Transition-Edge Sensors, C.Pepe et al., eprint arXiv:2405.19475

PTOLEMY website:

