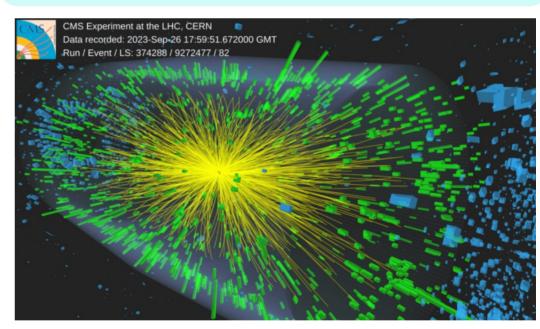

PHYSICS WITH CMS AT LHC

THE COMPACT MUON
SOLENOID (CMS) IS A
SOPHISTICATED MULTILAYERED DETECTOR
DESIGNED FOR THE
PRECISE MEASUREMENT
OF PARTICLES RESULTING
FROM COLLISIONS

THE HIGGS BOSON


SEARCH FOR PHYSICS BEYOND THE STANDARD MODEL

THE HIGGS PARTICLE WAS A SIGNIFICANT
DISCOVERY AT THE LHC. NEVERTHELESS,
LINGERING QUESTIONS PERSIST REGARDING ITS
BEHAVIOR: DOES IT CONFORM TO THE
EXPECTATIONS SET BY THE STANDARD MODEL?
ARE THERE OTHER PARTICLES AKIN TO IT WITH
SIMILAR PROPERTIES? NEW ANALYSES ARE
HELPING US UNDERSTAND ITS BEHAVIOR BETTER!

THERE ARE STILL MANY UNANSWERED QUESTIONS IN PHYSICS, AND THE LHC IS THE PERFECT TOOL TO EXPLORE UNCHARTED TERRITORIES. NEW PARTICLES CAN BE DIRECTLY PRODUCED AT LHC OR THEY CAN MODIFY KNOWN PROCESSES AND THEREFORE BE DISCOVERED IN AN INDIRECT WAY. THESE STUDIES COULD PROVIDE INSIGHTS INTO THESE INTRIGUING OPEN QUESTIONS. DISCOVER THE UNKNOWN WITH US!

LHC CAN ALSO ACCELERATE HEAVY IONS.

ANALYZING DATA FROM THESE COLLISIONS
PROVIDES UNIQUE OPPORTUNITIES TO STUDY
STATES OF MATTER SIMILAR TO THOSE OF THE
EARLY UNIVERSE. INDEED, WE CAN CREATE THE
QUARK- PLASMA: A DENSE SOUP OF PARTICLES THAT
EXISTED SHORTLY AFTER THE BIG BANG

Real event from CMS point of view!

HEAVY IONS

What will you do?

- CONTRIBUTE TO A DATA ANALYSIS
- DEVELOP NEW ALGORITHMS
- PROPOSE YOUR STRATEGIES
 IN THE CONTEXT OF A REAL HEP
 EXPERIMENT AT CERN

ORE

What will you learn?

- MACHINE LEARNING ALGORITHMS
- STATISTICAL METHODS
- TO PRESENT YOUR WORK IN SCIENTIFIC MEETINGS

Join CMS for your thesis!

