CMS ECAL UPGRADE

THE CMS ELECTROMAGNETIC CALORIMETER (ECAL) IS A HERMETIC, HIGH-RESOLUTION DETECTOR DESIGNED TO MEASURE THE ENERGY AND POSITION OF ELECTRONS AND PHOTONS.

IT CONSISTS OF 75,848 SCINTILLATING LEAD TUNGSTATE CRYSTALS. THE BARREL SECTION, WITH 61,200 CRYSTALS, IS READ OUT BY AVALANCHE PHOTODIODES (APDS) OPERATING AT A GAIN OF ABOUT 50.

CHALLENGES for HL-LHC

RADIATION DAMAGE (CRYSTALS, APDS, ELECTRONICS) HIGHER PILEUP (200 COLLISIONS/EVENT) INCREASED DARK CURRENT IN APDS HIGH DATA RATES AND TRIGGER REQUIREMENTS

NEW FRONT-END ELECTRONICS WITH LOW-NOISE AMPLIFIERS

CTION!

ECAL's excellent energy resolution requires stable high voltage, temperature, and transparency, each contributing <0.2%. The HV system must stay within 60 mV over a month. With HL-LHC, APD dark current will rise from ~5 µA to ~200 µA per capsule, demanding an upgrade. In collaboration with CAEN, the Rome group is leading the upgrade of the HV system.

Our task: calibrate, test, and validate the new boards to ensure top performance.

ALL TESTS ARE CARRIED OUT IN OUR ROME LAB — COME AND SEE IT IN

(13 TeV) CMS Simulation Endcap - Total Out-of-time Observed

STANDARD MULTIFIT

- Extracts energy in a 5x5 crystal matrix
- Handles moderate pileup (up to ~50 interactions). Sampling at 40 MHz

HL-LHC MULTIFIT

T=18°C

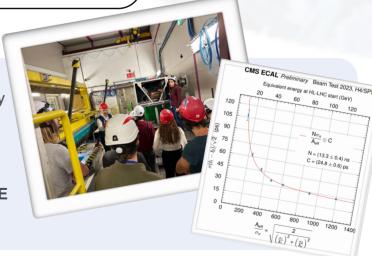
2000 Integrated Luminosity (fb⁻¹)

150

100

- Can extract energy, timing, discriminate APDs background for each crystal
- Optimized for extreme pileup (~200 int / BX)
- Works with upgraded electronics at 160MHz sampling
- Ensure ECAL maintains high energy resolution in **HL-LHC** conditions

AMPLITUDE reconstruction


Reduced shaping time to meet new trigger requirements and enhance timing resolution.

ONGOING DEVELOPMENTS!

TEST BEAMS @ CERN

The ECAL test beam campaigns are a unique opportunity to study detector performance under controlled conditions. By exposing ECAL modules to well-known particle beams, we can validate calibration strategies, measure timing and energy resolution, and test upgrades for the HL-LHC.

STUDIES OF BOTH HARDWARE BEHAVIOR AND SOFTWARE PERFORMANCE, AND HOW THEY INTERACT

Large Hadron Collider (LHC)

LS1 LS3 LS2 Run 3 Run 2 Run 4 - 5. Run 1 13 TeV 13/14 TeV 7 TeV 8 TeV 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 ..2038 2011

HL-LHC

