PADME LNF CSN1 meeting T. Spadaro

- Lessons from Run III analysis
- Run IV status, perspectives, requests to CSN1, critical points

Run III setup

2022 Run-III setup adapted for the X17 search:

- Active target, polycrystalline diamond
- No magnetic field
- Charged-veto detectors <u>not used</u>
- ECal: 616 BGO crystals, each 21x21x230 mm³
- Newly built hodoscope in front of Ecal for e/γ
- <u>Timepix</u> silicon-based detector for beam spot
- <u>Lead-glass</u> beam catcher (NA62 LAV spare block)

Charged particle detectors in vacuum

Electromagnetic calorimeter

Diamond target

Run-III concepts: the observable

At PADME, search for a resonance with e⁺ annihilation in diamond target:

```
Scan around E(e+) ~ 283 MeV
```

Beam-energy spread ~0.25%, $\delta E(e^+)$ ~0.7 MeV \rightarrow center of mass steps of 20 keV made Measure two-body final state yield N₂

Master formula for each scan point at c.m. energy s^{1/2}:

$$N_2(s) = N_{POT}(s) \times [B(s) + S(s; M_X, g) \epsilon_S(s)] \text{ vs } N_2(s) = N_{POT}(s) \times B(s)$$

Fundamental inputs:

```
N_{POT}(s) number of e<sup>+</sup> on target from beam-catcher calorimeter B(s) background yield expected per POT S(s; M<sub>X</sub>, g) signal production expected for {mass, coupling} = {M<sub>X</sub>, g} \epsilon_{S}(s) signal acceptance and selection efficiency s^{1/2} measured from magnetic field (Hall probe) run by run
```

$$g_R(s) = N_2(s)/[N_{POT}(s) \times B(s)]$$
 kept blind in the analysis

Run-III concepts: the data set

Run III PADME data set contains 3 subset

- On resonance points (263-299) MeV
- Below resonance points (205-211) MeV
- Over resonance, energy 402 MeV

1 over resonance energy point
Statistics ~2 x 10¹⁰ total
Used to calibrate POT absolute measurement

On resonance points, mass range 16.4 — 17.5 MeV Beam energy steps \sim 0.75 MeV \sim beam energy spread Spread equivalent to \sim 20 KeV in mass Statistics \sim 10¹⁰ POT per point

Below resonance points
Beam energy steps ~1.5 MeV
Statistics ~ 0.8 x 10¹⁰ POT per point
Used to cross-check the flux scale

Run III beam performance: JHEP 08 (2024) 121

Run-III concepts: redundancy

"Run": DAQ for ~8 hours, determine beam avg position/angle, ECal energy scale "Period": a point at a fixed beam energy, typically lasts 24 hours

"Scan" a chronological set of periods typically decreasing in energy

Scan 1 and 2 periods spaced ~ 1.5 MeV but interspersed in energy

Detailed GEANT4-based MC performed for each period

Run-III result, g_R error budget

Uncorrelated uncertainty on $g_R(s) = N_2(s) / (N_{POT}(s) B(s))$:

Estimated errors validated still preserving blind-analysis concept: JHEP 06 (2025) 040

Run-III result

Search for a X17 with Run III data completed: arXiv:2505.24797, to be peer reviewed

Excess observed, 2.5 σ local, 1.8(2) σ global significance

Just for comparison, check expected UL bands: bkg-only vs B+S(16.9 MeV, 5×10^{-4})

Run IV to clarify

See also the CERN EP seminar, https://indico.cern.ch/event/1553077/

Separately measure e^+e^- and $\gamma\gamma$ yield in Run IV

Presently taking data (Run IV, up to Nov 2025), goal of x4 in statistics with reduced systematics:

- Tuned position of target with respect to Ecal to improved acceptance
- New micromega-based chamber for e⁺/e⁻ directions and e⁺/e⁻ vs γ ID, installed Feb 2025
- New micromega-based chamber for beam spot monitoring in front of beam catcher, Apr 2025
- Improved monitoring of beam catcher response stability

Run IV setup

2022 Run-III setup adapted for the X17 search:

- Active target moved downstream by 300 mm
- No magnetic field
- Charged-veto detectors <u>not used → removed</u>
- <u>ECal</u>: 616 BGO crystals, each 21x21x230 mm³
- Hodoscope MicroMega in front of ECal for elγ
- Timepix Micromega TMM for beam spot
- <u>Lead-glass</u> beam catcher now LED monitored

removed veto detectors in vacuum

The design of the micromega chamber

Pannelli sandwich
Mesh frame
Space frame
Middle space frame
PCB

Status of the Run IV data taking - commissioning

Commissioning longer than expected due to:

- Problems with TimePix detector: albeit working perfectly up to Nov. 2024, internal trigger transmission problems appeared in Feb. 2025
- Problems with diamond target motor driver, replaced with a new Ethernet controller (bought by Sofia U.)
- TimePix sent to Advacam (Prague) for repair, waiting for cost estimate
- TimePix replaced with a 10 x 10 cm² active-area MM chamber: so-called TMM
- Had to buy SRS minicrate for acquisition at CERN (3.8 kCHF ~ 4.1 kE)

Status of the Run IV data taking - commissioning

Commissioning longer than expected due to:

- Severe problems with the ECal HV boards:
 - Numerous intermittently faulty boards (undervoltage errors, faulty channels)
 - Problems never seen in the past, but the HW is 8 years old, still not well understood, probably power glitches are present
 - Boards repaired by CAEN, but possible effects of SY mainframe remain
 - Investigation of possible glitches from general voltage supply, to no avail
- Damage observed to 20 ECal PMT dividers not necessarily HV-related

HV problems during spring physics run

SY 4725 with standard PS unit [A4531] + booster [A4532] 600 + 600 W

Present status after many forced re-mappings

- Up to 6 HV boards [A7030N] in warning, each w multiple channels in under voltage
- 2 spare HV board sent to CAEN for repair, no spare left → request funds for 2 more
- No spares available for HV mainframe and controller

Overview of Run IV status – before the summer

Run IV physics started 14 June, ended 20 July:

- 18 scan points taken + 6 no-target points
- Schedule: resume activities 15 Sep, end 17 Nov
- Acceptance increase w new setup validated

Online monitor info:

- Beam spill vs time
- Beam spot @ target
- Beam spot @ micromega
- Beam halo @ calorimeter
- Beam spot @ TMM

Activities before Autumn run start

Run IV planned to restart week 39 (22—28 Sep), scheduled to end Nov 17:

- During the summer micromega chamber gas closed then flux in Ar
- 2 new HV boards shipped to LNF 1 Sep, 6 HV boards repaired by CAEN
- An additional mainframe SY 4527 taken on loan, the boards are now shared
- Trigger boards were inspected for inconsistent pin connection, spacers have been placed (R. Lenci)
- Problematic PMTs seem to not impose efficiency loss
- Work ongoing to use Grafana where possible

Activities before Autumn run start

Run IV physics scheduled to end Nov 17:

- Beam commissioning started Sep 22
- Detector commissioning started Sep 23, smooth (2 HV ch's with problems)
- PADME commissioning with beam started Sep 24
- Lead-glass HV scan done
- Vertical position scan done, good linearity measured at TMM
- Plan to acquire first physics data point already today, Sep 30

Conclusions

Analysis of Run III done in a blind way

"Blind unblinding" procedure published as a separate paper Validation of total uncertainty at 0.9% per energy point Result presented and made public on the arXiV

Run IV planned to significantly improve sensitivity:

6 months of data taking

Detector upgraded with new micromega tracker + TMM end of line monitor

Commissioning completed May 2025:

Problems with the ECal HV → special 2025 request for board purchases Not fully granted by CSN1

Physics-grade acquisition started mid June 2025:

18 energy points acquired before summer stop, 2 x 10¹⁰ POT / point Commissioning quickly done after first beam available Run IV up to Nov 17 2025, physics data taking started Sep 30