

Laboratori Nazionali di Legnaro – INFN

Hands-on Workshop on IRIS Control Software **Debriefing**

The audience

September 17th, 2025

Today outline

10:00 → 10:05	Welcome Relatori: Alberto Andrighetto (Istituto Nazionale di Fisica Nucleare), Emilio Mariotti (Istituto Nazionale di Fisica Nucleare)	⊙ 5m	Sala Rostagni
10:05 → 10:25	Introduction to the ISOLPHARM Radionuclide Implantation Station (IRIS) Relatori: Aurora Leso (Istituto Nazionale di Fisica Nucleare), Davide Serafini (University of Siena & INFN-LNL)	③ 20m	Sala Rostagni
10:25 → 11:00	The IRIS fancy GUI The target of this presentation are beginners, so the pace will be slow and every step will be explained. Feel free to ask of presentation. RelatorI: Daiyuan Chen (Istituto Nazionale di Fisica Nucleare), Massimo Giuseppe Martello (INFN-LNL)		Sala Rostagni ing the
11:00 → 11:20	Coffee break	O 20m	Sala Rostagni
11:20 → 12:20	IRIS hands-on at SPES Volunteers will operate IRIS to perform <i>collection + measurement</i> cycles at SPES.		③ 1h ♥ SPES
12:30 → 14:00	Lunch break	O 1h 30	m • Canteen
14:00 → 15:00	IRIS hands-on at SPES Volunteers will operate IRIS to perform <i>collection + measurement</i> cycles at SPES.		③ 1h ♥ SPES
15:00 → 15:40	Debriefing Discussion starting from the presentation of the known open issues and from the feedbacks from the audience.	③ 40m	Sala Rostagni

Mechanics

- Simplify tablet movement sequence
- Add online detector for activity measurement during irradiation
- Add online beta detector for beta-gamma coincidence

Software

- Looking for an integrated solution
- Excel is:
 - o Simple
 - Easy to check
 - But not smart

Column	Data	Legend
ID	Identifier for that "run"	IRIS control
Α	Mass number	nuclear database
Element	Chemical name	detector
Yield	Rate of isotope production through the system in units of /sec/µA	SPES control
t _{1/2}	Halflife of the isotope	
Ey	Gamma-ray energy	
by	Absolute intensity of the gamma-ray	
δb	Uncertainty in branching ratio	
N _Y	Number of gammas observed	
ΔN_{Y}	Uncertainty in N _v	
t-col'ct	Amount of time per cycle collecting the samples	
t-move	Amount of time that the tape moves	
t-delay	Amount of time that the observation cycle is delayed after collection, if any	
t-count	Amount of time per cycle that the samples are observed	
t-live	Percentage of time that the detector is "live"	
Beam	Intensity of the accelerated beam on target, in nA	
# сус	Number of cycles	
е	Index for the efficiency calibration to be used; two detector distances are available	
	The other columns are used for calculations	

Your ideas

- Study the sputtering in our configuration
 - Contribution to the collimation efficiency
- The irradiation time must be defined with the accelerator
 - The time in which the tablet is in position is the maximum possible irradiation time (time in which we are ready), but there can be differences
- The FC+C of the experiment is in control of the experiment
- The best way to stop the beam when you do not want it is to use the kicker
 - We should be able to control the kicker too
 - We should kick the beam when rotating the central movement
- We should be able to change the irradiation time on the run
 - The beam could be not-constant from spes
- The safety logic to avoid non-wanted machine states should be in the PLC and not in the GUI
 - GUI can be changed and the safety may be lost
- We could use python code to analyze the output of compass and automatically calculate the activity
 - The python code could be started from the GUI

Your ideas

- The GUI controls the machine, with offline detection is not important to have info on compass spectrum in the GUI, so excel is a fine start
- Venting is fast, making a new good vacuum can take time, minimize openings of the chamber
- Add cctv to control the trolley too and check that the tablets fell inside the vial
- Estimante minimum production rate that is measurable, in particular with Ag-111, assume that minimum is when SNR = 1
 - This is one of the objection often told to isolpharm

Thanks