Higgs searches in TauTau final states @ LHC

Simone Gennai (CERN/INFN Milano-Bicocca) Mini-workshop Higgs Search at LHC Frascati, March 28th, 2012

Motivations

- Why looking at H->TauTau?
 - □ second highest BR (after bb)
 - not-so-bad S/B ratio
 - improved S/B splitting analysis in various categories
 - □ one of the most powerful channel in the low mass region
 - □ sensitive to BSM physics

TauTau final states

ATLAS presented only SM search CMS also produced a MSSM limit

CMS Tau ID

- Reconstruction of the decay modes :
 - □ 1 prong, 1 prong + pi0's, 3 prongs
- Various working points for isolation

additional selections to reject electrons and muons

ATLAS Tau ID

(a) $\tau_{\mu}\tau_{h}$ channel

5

Signal Efficiency

ΙΝΓΝ

Tau energy scale

One Prong EM | One Prong | 3 Prong

Simone.Gennai@cern.ch

Analysis: CMS Vs ATLAS

- better tau ID
 - better bkg rejection
- MET used only in topological variable and mass reconstruction
- 1 jet bin with very high pT threshold
- Full mass
 reconstruction with the same algorithm for all final states
- □ Limit also in the MSSM

□ ATLAS

- □ better calorimeter trigger
 - making tau_h tau_h possible
 - □ MET used to reduce QCD
 - □ and in category definition
 - 1 jet bin with low-ish pT threshold
 - Full mass reconstruction algorithm depends on the final state
 - full hadronic final state included

Simone.Gennai@cern.ch

- three categories to have enriched signal-tobackground ratio and maximize the sensitivity
 - □ Signal extraction based on fit to the full reconstructed mass

highest Jet P_ [GeV]

Categorization depends on the final state

- Signal extraction based on fit to the full reconstructed (MMC or collinear approximation) or effective mass
- □ Missing ET cut used in the event selections

1+1

VBF* ,VH(2jets), (0 jet only for e-mu), 1jet (pT >40 GeV) Collinear approx is used to reconstruct the full mass (Effective mass in the H+0 jets)

I+tau VBF*, 0 jet, 1jet (pT >25 GeV) 0 jet category is split into MET <20 and MET > 20 GeV MMC is used to reconstruct the full mass * Also the VBF selection depends on the final state. pT > 30-25 GeV Mjj>300-350 GeV DeltaEtajj > 3, eta_j1 * eta_j2 > 0

tau+tau 1jet (pT >40 GeV) Collinear approx is used to reconstruct the full mass

At least the normalization mostly also the shape of all backgrounds are estimated from data in one or the other way

m_{rt} [GeV]

Few ATLAS Plots

28-03-2012

I N F N

Few numbers

🗆 mu-tau

$m_{\rm LL} = 120 {\rm GeV}$	2			
	Standard Model			
Process	0/1-Jet	Boost	VBF	
$Z \rightarrow \tau \tau$	28115 ± 1946	294 ± 21	35 ± 2	
Fakes	7852 ± 141	36 ± 2	23 ± 2	
W+jets	5834 ± 393	65 ± 4	9 ± 1	
$Z \rightarrow ll$	755 ± 95	5 ± 1	1.0 ± 0.2	
tī	143 ± 15	91 ± 12	4 ± 1	
Di-Boson	173 ± 54	9 ± 4	0.4 ± 0.4	
Total Background	42872 ± 2644	500 ± 46	71 ± 7	
H ightarrow au au	93 ± 16	6.7 ± 1.6	3 ± 0.5	
Data	43612	500	76	

Samples	0-Jet	1-Jet	VBF
$Z \to \tau \tau$	10710	1870	57
Total Background	14610	2790	122
$H \to \tau \tau$	28	14.1	< 3
Data	14481	2711	131

□ ATLAS

🗆 mu-tau

- **Overall normalization uncertainty**
- □ theoretical
- □ sample normalization from control regions
- □ luminosity uncertainty
- Detector-related uncertainties
 - □ jet, MET and tau ES
 - □ data/MC scaling factors
- Shape systematics have been considered through a morphing technique

Again on limits

MSSM case

bTagging # Jets (pT > 30 GeV) < 2 AND # btagged jets (pT > 20 GeV) > 0

MSSM case

Simone.Gennai@cern.ch

ΙΝΓΝ

500

600

22

m_H [GeV]

Observed

Low mass region

ATLAS:

- <u>expected</u>: **120**—... GeV,
- observed: 129.0–... GeV

110.0-117.5 GeV

I N F N

118.5-122.5 GeV

CMS:

- expected: 114.5–... GeV
- observed: 127.5-... GeV

28-03-2012

local p-values

I N F N

Conclusions

- □ H->TauTau analyses from ATLAS and CMS give comparable results
 - □ I+tau CMS analysis have better limit
 - □ ATLAS recovers with the full hadronic channel
 - □ challenging for CMS
 - □ CMS presented also the MSSM limit
- Present limit is around 2.5-3xSM
- On the combination side:
 - □ CMS excludes an Higgs with mass larger than 127 GeV
 - □ ATLAS excludes an Higgs with mass lower than ~ 122 GeV
 - □ if we do not consider the region between 117.5 and 118.5 GeV
- Expecting to have updates for ICHEP from both experiments

28-03-2012

Few worlds on the boosted category Large theoretical uncertainty

- □ the jet pT cut is near the Higgs mass
 - uncertainty computed using NNLO codes
 - □ FeHiPro and HQT
 - □ Higgs pT rescaling factors
 - □ total uncertainty ~ 25%

Much better mass resolution

- □ boosted taus, hence better MET reconstruction
- □ improving Z-H separation in the low mass region
- Still room for improvement

Tau ID efficiency

Improved tau ID using Tag & Probe

BKG constrained from sidebands

Uncertainty's source	
Muon Momentum Scale	<< 1%
τ-Jet Energy Scale	< 1%
Track Reconstruction	3.9%
Track Momentum Scale	< 1%
Lead. Track P _T Cut	1%
Loose Isolation	2.5%
Jet $\rightarrow \tau_{had}$ Fakes	1.2%
Lead. Track Corr. Factor	1.7%
Loose Iso. Corr. Factor	2.1%
Fit (Statistical Uncertainty)	2.6%
Total uncertainty	6%

INFN

MSSM

INFN

SM

28-03-2012

ERN

Simone.Gennai@cern.ch

- Various methods are now available on the market
 - all of them uses constraints from the measurement of the MET
- New techniques makes use of likelihood functions to optimize the reconstruction
 - Most advanced techniques
 - □ Missing Mass Calculator (MMC) by Elagin et al.
 - http://www.sciencedirect.com/science/article/pii/S0168900211014112
 - □ Secondary Vertex Fit (SVFIT) by Conway et al.

CMS is using SVFIT algorithm

- optimized to work with large PU environment
- □ similar to the MMC method
- tails are reduced due to the use of a Log(Minv) term in the likelihood function
- □ Invariant mass resolution improves
- □ the peak value is nearer to the generated one
 - hence better discrimination between Higgs and Z->TauTau
- Not resonant bkg are flattened improving further the signal to background ratio

Used to distinguish between W's and signal events

| N F N

- □ Categorization improves the limit by more than a factor 3
- mu-tau channel is the most sensitive one

```
28-03-2012
```

Mass distributions

Provides the best mass reconstruction hence better separation between Z and H

FR

I N F N

Uncertainties table

Experimental Uncertainties Propagated		ed to Limi	d to Limit Calculation			
Uncertainty	Estimate	0/1-Jet	Boost	VBF	Non B-Tag	B-Tag
Electron ID & Trigger	±2%	±2%	±2%	±2%	±2%	±2%
Muon ID & Trigger	±2%	±2%	±2%	±2%	±2%	±2%
JES (Norm.)	$\pm 2.5 - 5\%$	∓1%	±2%	±12.5%	∓1%	$\pm 4\%$
b-Tag Efficiency	±10%	-	-	-	∓1%	$\pm 5\%$
Mis-Tagging	±30%	-	1.00	-	±4%	∓1%
Norm. $Z \rightarrow \tau \tau$	±3.3%	$\pm 3.3\%$	±10%	$\pm 15\%$	±3.3%	$\pm 15\%$
Norm. <i>t</i> t	$\pm 7.5\%$	$\pm 7.5\%$	±7.5%	$\pm 7.5\%$	±7.5%	$\pm 7.5\%$
Norm EWK	±15%	±15%	±15%	±15%	±15%	$\pm 15\%$
Norm Fakes	±30%	±30%	±30%	±30%	±30%	±30%
Lumi (Signal & EWK)	$\pm 4.5\%$	$\pm 4.5\%$	$\pm 4.5\%$	$\pm 4.5\%$	$\pm 4.5\%$	$\pm 4.5\%$
Norm. $W + jets$	$\pm 6.5 - 7\%$	±7%	±7%	±7%	$\pm 6.5\%$	$\pm 6.5\%$
Norm. Z: l fakes τ_h	$\pm 8.6 - 60\%$	±10.1%	$\pm 8.8\%$	±31.4%	$\pm 24.5\%$	$\pm 62.7\%$
Norm. Z: jet fakes τ_h	$\pm 24.6\%$	±10.2%	-	1 H	±10.6%	

Theory Uncertainties (SM)		Propagated to Limit Calculation				
Uncertainty	Estimate	0/1-Jet	Boost	VBF	Non B-Tag	B-Tag
PDF	30	±3%	±3%	±3%	$\langle \rangle$ -	π.
$\mu_r/\mu_f(gg \to H)$	2. - 1	±12%	±25%	±12%	/ f	-
$\mu_r/\mu_f(qq \to H)$	1	±3.5%	±4%	±4%	/-/	-
Underlying event & PS	11 - 1	∓4%	±4%	±4%	$\langle \rangle$	<u> </u>

INFN

Main differences in the I+tau channel

Larger acceptance for CMS

- □ lower lepton thresholds thanks to combined triggers
 - □ steep exponential falling distribution
- □ no MET cut applied

Better tau ES uncertainty for CMS

- □ less systematics
 - □ ATLAS MET cut is very sensitive to the tau ES uncertainty