MANTRA - BES III

Chandrasekhar Akondi

Dr. Isabella Garzia

University of Ferrara, Ferrara, IT

Università degli Studi di Ferrara

Outline

Meeting with Dr. Pelian

2 $J/\psi \to p\bar{n}\pi^-$ MC simulation

Future work

Meeting with Dr. Pelian

- We met Dr. LiPelian regarding Neutral particleTOF
- We had to go back to older BES version 6.5.5p01 not 7.0.8
- Simulated 20k events as testing this analysis code
- Compare MC with real data.

$J/\psi o p \bar{n} \pi^-$ MC simulation

Name of the selection cut	cut Range
Rvxy	≥1.0
Rvz0	≤10.0
$cos heta_mdctrack$	≥0.93
Good charge tracks	= 2
MdcKalTrack Probability	
pion and proton selected	
net charge	= 0
$\cos\! heta$ emc track	≤0.80
energy emc track	\geq 0.05 GeV
$\cos\! heta$ emc track	[0.86 , 0.92]
energy emc track	\geq 0.05 GeV
time window	0-14 ns
number of showers	1-9

$J/\psi \to p\bar{n}\pi^-$ MC simulation (cont)

Δt distribution

- $\Delta t_n = t_{TOF} t_{exp(n)}$
- $\Delta t_{V} = t_{TOF} t_{exp(V)}$
 - \downarrow $t_{exp}=L/(\beta c)$, $\beta=p/sqrt(p^2c^2+M^2c^4)$
 - L is the path of flight by extrapolating the corresponding shower from EMC to TOF
 - p is momentum of neutral track from recoiling charged tracks

Dr.Pelian talk1: TOF neutral reconstruction Dr.Pelian talk2: TOF neutral reconstruction

$J/\psi \to p\bar{n}\pi^-$ MC simulation (cont)

Shower energy Vs $\Delta t_{\bar{n}}$

$J/\psi \to p\bar{n}\pi^-$ MC simulation (cont)

Shower energy Vs Δt_{γ}

Summary and Future work

- Summary:
- Updating the analysis notes regularly.
- Future Work:
- Reason behind the peak in $\Delta t_{ar{n}} \sim 1 ns$
- Compare real data with MC simulation.
- Shower shape, recoil momenta, seed energy, lat momenta, second momenta Vs $\Delta t_{\bar{n}}$ for real and MC data.