SEARCH FOR THE HIGGS BOSON IN THE CHANNEL H $\rightarrow \gamma\gamma$

Daniele del Re Universita' "Sapienza" & INFN Rome

$H \rightarrow \gamma \gamma$

- Light Higgs favored by precision electroweak tests
- H→γγ one of the most sensitive channels at low masses despite the small branching ratio
 - striking signature (two photons, peak in invariant mass)
- Very interesting channel in alternative models (e.g Fermiophobic Higgs)
 - high branching ratio for di-photon decay
 - early exclusion/discovery

CMS ELECTROMAGNETIC CALORIMETER

Discovery potential dependent on di-photon invariant mass resolution

CMS: em crystal calorimeter

- Design energy resolution of ECAL ~0.5% for $E(\gamma) > 100GeV$ (for unconverted γ in barrel) Preshow
- Critical issues:
 - transparency loss due to

radiation damage

use of laser monitoring

➡ on-site energy calibration

use of $\pi^0 \rightarrow \gamma \gamma$, E_e/p_{e} , $Z \rightarrow e^+e^-$

ATLAS ELECTROMAGNETIC CALORIMETER

ATLAS: LAr accordion calorimeter

- Accordion segmentation allows for:
 - crack-less geometry
 - uniformity
 - able to reconstruct photon direction

• Design resolution:

- stochastic term: 10%
- at 100 GeV expect about 1.5% resolution

Critical issue:

 understanding of material in front of calorimeter

ANALYSIS STRATEGY

STEP	CRITICAL ISSUES
1) two isolated photons with large transverse momentum p _T (γ ₁)>40GeV, p _T (γ ₂)>30,25GeV	 isolation to reject γ+jet and QCD background determine efficiency from data
2) di-photon mass reconstruction $m_H^2 = 2E_1E_2(1 - \cos\theta)$	 vertex determination in presence of multiple interactions pile-up (PU) energy scale and resolution
3) signal extraction	 event categories to maximize sensitivity background shape

BACKGROUND REJECTION

- **photon isolation** variables evaluated within a cone of $\sqrt{\Delta \eta^2} + \Delta \phi^2 = 0.3 0.4$ to reject γ +jet and QCD background
 - CMS: based on Σp_{Ttrk}, energy deposited in em and hadronic
 calorimeters. Corrected for PU via subtraction of PU energy density
 - ATLAS: based on energy deposited in calorimeter
- **shower shape** to reject $\pi^0 \rightarrow \gamma \gamma$

SELECTION EFFICIENCY

photon ID and trigger efficiency is determined from data control samples

1) **Z→e⁺e⁻ with tag and probe**:

 one electron selected with ele-ID (tag), other used to measure trigger and offline selection efficiency (probe)

2) **Ζ→μ⁺μ⁻γ** (CMS only):

- select muons and photon (w/o electron veto) to make Z mass
- use $\boldsymbol{\gamma}$ to derive electron veto efficiency

CMS VERTEX DETERMINATION

- large pile-up conditions
 □→ <N_{PU}>~10
- di-photon invariant mass resolution affected by vertex choice
- CMS vtx determination based on
 - tracks belonging to vertex combined
 with di-photon kinematics
 - use of $\Sigma p_T^2_{trk}$ and p_T balancing
 - conversion-track finding and projection on beam spot
- performance **cross-checked using** $Z \rightarrow \mu^+ \mu^-$ after removing muon tracks

ATLAS VERTEX DETERMINATION

- ATLAS calorimeter design allows for determination of γ direction
- Additional use of conversions reconstructed with tracker and recoiling tracks
- Pointing resolution ~1.6cm (unconv.) and ~0.6cm (conv.)

PHOTON ENERGY SCALE AND RESOLUTION

- Z→e⁺e⁻ invariant mass to determine energy scale and resolution from data
- photon energy smeared on MC to match data to model Higgs signal

examples of resolution monitoring using $Z \rightarrow ee$ events

$M(\gamma\gamma)$ Resolution

- In both detectors m(γγ) resolution depends on photon kinematics, conversion probability, and pseudorapidity
- CMS performs better in central region, ATLAS in forward
- Overall performance for Higgs signal quite similar

C	/IS	ATL	AS
best resolution cat.	worst resolution cat.	best resolution cat.	worst resolution cat.
FWMH ~ 2.8GeV	FWMH ~ 7.2GeV	FWMH~3.3GeV	FWMH~5.9GeV
$(a) = 1.94 \text{ GeV/c}^{2}$	CMS preliminary Simulation All Categories Combined 120 130 m _{γγ} (GeV/c ²)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	σ _{CB} = 1.7 GeV FWHM = 4.1 GeV 120 125 130 135 140 m _{γγ} [GeV]

EVENT DISPLAYS

γ_1 =64.2GeV γ_2 =61.4GeV diphoton mass = 126.6GeV

PHOTON-BASED CATEGORIES

Event categories to

- maximize statistical power
- exploit differences in kinematics between signal and backgrounds
- identify regions of the detector with very different performance
- CMS: 4 photon-based categories

• ATLAS: 9 photon-based categories

DIJET TAGGED CATEGORY (CMS)

- Dijet category (CMS only) added to:
 - improve sensitivity to UL determination (about 10%)
 - isolate events produced by VBF mode
- **Dijet VBF selection** added on top of two photons identification
 - two high p_T jets: > 30 GeV (> 20 GeV) for leading (sub-leading) jet
 - |Δη(jets)| > 2.5
 - m(dijet) > 350 GeV

• Not 100% pure VBF category

- GluGlu contamination about 30%
- contamination affected by large systematics
 - assigned a 70% uncertainty

SIGNAL EXTRACTION

- Signal shape from MC after smearing obtained on data (Z→ee)
 - CMS: sum of gaussians
 - ATLAS: crystal ball (gaussian with exp. tail)
- Bkg is extracted from m(yy) data distribution
 - fitted with a smooth function
 - **CMS**: 5th order polynomial
 - ATLAS: exponential
 - background estimate from MC not used: just a cross-check for data-MC comparison
- Limits on cross section extracted with modified frequentist approach (CLs) using profile likelihood

$M_{\gamma\gamma} \, Spectrum$

- **m(yy) spectrum** (all categories added up)
- most relevant structure is excess at about 124-126GeV in both plots

SPECTRUM IN CATEGORIES (CMS)

$H \rightarrow \gamma \gamma$ with CMS and ATLAS

SPECTRUM IN CATEGORIES (ATLAS)

 $H \rightarrow \gamma \gamma$ with CMS and ATLAS

UPPER LIMIT ON CROSS SECTION

Expected exclusion at 120 GeV: CMS ~1.5xSM, ATLAS ~1.6xSM

• Observed exclusion:

- CMS: 128 GeV < m_H < 132 GeV
- ATLAS: 113 GeV < m_H < 115 GeV, 134.5 GeV < m_H < 136 GeV

Excess at about 124-126 GeV seen in both experiments

SIGNIFICANCE OF EXCESS (P-VALUES)

- 3σ local significance excess for both experiments
- Global significance (including look-elsewhere-effect) is about 2σ
- Position of maximum of significance is slightly different
 - 124GeV for CMS, 126 GeV for ATLAS

Best Fit compared to SM

Preferred value by fit about x2 SM (with large uncertainty)

Systematics

Source	CMS	ATLAS			
applicable to photons					
Photon identification efficiency	1.0% ÷ 2.6%	11%⊕5%(iso)⊕4%(PU)			
Clus. shape	4.0% ÷ 6.5%	_			
Energy resolution	0.2% ÷ 0.9% (on γ)	12% (on mγγ)			
Energy scale	0.2% ÷ 0.9% (on γ)	_			
Material	_	6%(e→γ) ⊕3%(PU)			
applicable to di-photons					
Integrated luminosity	4.5%	3.9%			
Trigger efficiency	0.4%	1%			
Vertex finding efficiency	0.4%	1%			
pT>40GeV cut efficiency	_	8%			
cross sections and branching ratios					
Gluon-gluon cross section	+12.5%-8%(scale) ~7.8%(PDF)				
Other production modes (scale)	0.5%(VBF) 0.8%(WH) 1.6%(ZH)				
Other production modes (PDF)	2.5%(VBF) 4.2%(WH) 8.5%(ZH)				
dijet category					
VBF (Gluglu) contribution	10%(70%)	_			

OPTIMIZED CMS ANALYSIS (MULTIVARIATE)

- New analysis presented by CMS at Moriond
 - multivariate approach for selecting photons and di-photon events
- Expected limit improved by 20% (1.2*SM at 120GeV)
 - equivalent to 50% more statistics
- Similar structure in UL. Excess slightly moved up (now at ~125GeV)

FERMIOPHOBIC INTERPRETATION

H→γγ analysis can be interpreted in scenarios different from SM

• Fermiophobic (FP) scenario

- Higgs does not couple to fermions
- only VBF and VH production modes allowed
- BR(H→γγ) highly enhanced (~10*SM at 120GeV)
- Higgs is more boosted (harder p_T spectrum)
- ATLAS: sensitive to FP thanks to p_T categories
- CMS: dedicated analysis
 - 2D fit: m($\gamma\gamma$) and π_T ($\pi_T=p_T\gamma\gamma/m\gamma\gamma$)
 - additional exclusive categories (dijet tagged for VBF and leptonic for associated prod.)

CMS exclusive categories

FERMIOPHOBIC: RESULTS

- FP Higgs hypothesis (with the SM couplings to vector bosons) not favored
 - difference in sensitivity comes mainly from addition of exclusive modes by CMS

FERMIOPHOBIC: CMS COMBINATION

- Combination of different Higgs modes in FP scenario by CMS
 - FP hypothesis (with the SM couplings to vector bosons) excluded up 190
 GeV

- H→γγ search performed with ~5 fb⁻¹ in both ATLAS and CMS
- Exclusion limits (@95% CL)
 - sensitivity close to SM cross section in range 110GeV<mH<150GeV
 - observed exclusions: CMS: 128GeV<m_H<132GeV and ATLAS: 113GeV<m_H<115GeV, 134.5GeV<m_H<136GeV

• Excess at 124-126 GeV:

- ~3 σ (local) ~2 σ (global) significant in both experiment

More data needed to confirm excess and ascertain its origin

- Summer (+5fb⁻¹ @ 8TeV) maybe enough
- End of 2012 (+10÷15fb⁻¹ @ 8TeV) very likely enough
- Started excluding alternative scenarios (e.g. Fermiophobic)

HUNTING THE HIGGS

 in SM electroweak symmetry broken via the Higgs mechanism

$$V(|\phi|) = \mu |\phi|^2 + \lambda |\phi|^4$$

- W and Z bosons acquire mass,
 photon remains massless
- Higgs not yet seen
- limits for the Higgs bosons from direct searches and global EW fits

HIGGS CROSS SECTION AND BR

PHOTON-BASED CATEGORIES

Event categories to

- maximize statistical power
- exploit differences in kinematics between signal and backgrounds
- identify regions of the detector with very different performance

CMS: 4 photon-based categories

2/3 η categories (1) 1γ,2γ |η|<0.75 (2) 1γ in 1.3<|η|<1.75 (only converted) (3) remainder 2 categories with conversions
 (1) at least 1γ converted

(2) remainder

 \otimes

VERTEX ID: VARIABLES

• Sum
$$p_T^2 = \sum_{tracks} p_T^2$$

•
$$\mathbf{p}_{\mathsf{T}}^{\mathsf{asym}} = \left(\sum_{tracks} p_{T} - p_{T}^{\gamma\gamma}\right) / \left(\sum_{tracks} p_{T} + p_{T}^{\gamma\gamma}\right)$$

•
$$\mathbf{p}_{\mathsf{T}}^{\mathsf{bal}} = -\sum_{tracks} \left(\overline{p}_{T}^{track} \cdot \frac{\overline{p}_{T}^{\gamma\gamma}}{\left| \overline{p}_{T}^{\gamma\gamma} \right|} \right)$$

VERTEX ID: CONVERSIONS

- about 40% of photons converts in Tracker Volume
- measure photon direction using conversion vertex position and cluster barycenter

VERTEX ID: PERFORMANCE

Overall performance integrated over Higgs P_T spectrum (from data):

83.1%±0.2%(stat)±0.5%(syst)

PHOTON ISOLATION AND PU

Multiple interactions pose additional challenges in this area:

additional energy in isolation cones (ECAL and HCAL)

- addressed using **FastJet** ρ subtraction

- for track isolation cut on Δz to reject PU tracks, but need to protect against incorrect vertex assignment
 - additional cut on track isolation computed wrt vertex giving highest track isolation sum for a given photon

BACKGROUND NORMALIZATION

 DiPhoton bkg divided in different categories defined by experimental origin: k-factors derived x category as product of (K_{NLO}/K_{LO})* (K_{DATA}/K_{NLO})

prompt-prompt 1.3±0.2 CMS QCD-10-035
prompt-fake 1.3±0.25 CMS gamma-jet QCD-10-037
fake-fake 1±0.5
DY: CMS measurements in EWK-10-005

SETTING LIMITS

• CL_s Frequentist method is used with "LHC-type" test statistics

CLs "LHC-type" test statistic: $Q = -\ln \frac{\mathcal{L}(data|b(\hat{\theta}_b) + \mu s(\hat{\theta}_s))}{\mathcal{L}(data|b(\hat{\theta}_b) + \hat{\mu} s(\hat{\theta}_s))}$ (constrain $0 \le \hat{\mu} \le \mu$, and add external constraints for signal nuisances)

- Limits are given in Higgs mass range 110-150 in 0.5 GeV/c² mass steps
- Bayesian limit is compared with CL_s results

FERMIOPHOBIC: RESULTS

STABILITY OF CMS ECAL RESPONSE

Energy scale for $W \rightarrow ev$ and $Z \rightarrow ee$ stable throughout 2011 at the level of 0.1 GeV.

EB inter-calibration and transparency correction fully understood for EB for the entire 2011 data set.