

dRICH DAQ (frontend and backend DAQ)

P. Antonioli (INFN Bologna), A. Lonardo (INFN Roma1)

dRICH DAQ kick-off meeting Zoom, 5 September 2025

dRICH: frontend and backend DAQ

dRICH RDO

FELIX card and dRICH data reduction

(+ Rome2: Roberto A)

6/7 September

RDO/DAM role in ePIC and dRICH PDU

RDOs and DAMs are getting real!

We finally understood that in US for mysterious reasons prototypes are called first engineering articles.

dRICH throughput is huge due to SiPM DCR

4.5 Gb/sec

1.0 Gb/sec

41 Gb/sec

Electron Beam

Hadron Beam

Noise

Summary of Channel Counts and Data Flow

Charge 1

Detector Group		Channels					Det	RDO	Fiber	DAM	Data	Data
	MAPS	AC-LGAD	SiPM/PMT	MPGD	HRPPD/ MCP-PMT	Fiber Down	Fiber Up		Pair (DAQ)		Volume (RDO) (Gb/s)	Volume (To Tape) (Gb/s)
Tracking (MAPS)	16B					187	4976	323	323	7	15	15
Tracking (MPGD)				164k		640	2560	160	160	5	27	5
Calorimeters	500M		100k					522	522	17	70	17
PID (TOF)		6.1M				500	1364		1364	30	50	12
PID Cherenkov			318k		143k	1334	1334	1242	1334	33	1275	32
Far Forward		1.5M	10k					80	80	6	30	12
Far Backward	66M		3.4k					25	289	11	37	8
Lumi		128k	5.1k					41	41	4	264	8
Polarimetry	Polarimetry Independent Electronics, DAQ, & Controls from central detector but expected to build on same technologies											
TOTAL	16.6B	7.7M	432k	164k	143k	2,661	10,234	2,393	4,113	113	1,774	109
Summary o	f Data F	low										
caiaiy o	Detector	FEE	Copper 3	RDO	Fiber	DAM	PCI/E	Eth		idout iputer	Eth	
	Detector		Copper 1	RDO	Fiber		PCI/E	\Rightarrow	Com			
Aggregate Noise	Detector	2.0 Tb/sec 1.6 Tb /sec	Copper	RDO	Fiber	A		ignal	1 62	puter	ec ec	

2.0 Tb/sec

0.7 Gb/sec

Scale of the system:

- Electronics
 - ~ 25 detector subsystems
 - ~ 5 Readout Technologies
 - ~ 2500 RDOs (on detector/in racks)
 - ~ 110 DAM boards (DAQ room) GTU (with interface boards)
- Maximum Data Volume
 - ~ 2 Tb/sec digitized
 - ~ 115 Gb/sec recorded
- Online Computing (Echelon 0)
 - ~200 nodes (DAQ Room/SDCC)
- * Synchrotron radiation caveats:
- Rates are based upon hit rate for all ePIC detectors. In fact, data volumes depend upon specific detector hit (64 bits/hit assumed)
- Highest Synchrotron radiation / electron beam gas will correspond to lower values for collision signal
- 3. Plan to analyze by component soon

Electron-Ion Collider

Background

EIC DAQ & Electronics PDR, September 3-4, 2025

Per RDO (Avg)

D. Abbott, J. Landgraf

8

how to approach dRICH throughput?

cool down the sensors → -40 C heal the damage → annealing optimize overvoltage and choice of the sensors

sensors

electronics gated: ALCOR shutter

electronics, clock distribution, RDO

INFN-TO/INFN-BO

understand if the event is noise or signal → ML techniques on DAM

DAM

INFN-RM

understand if the event is noise or signal with a dRICH interaction tagger → give a trigger to DAM

INFN-GF

get an external trigger from another sub-detector (Forw. HCAL?) → give a trigger to DAM

ePIC

Updated dRICH data trhoughput modeling (v2)

https://docs.google.com/spreadsheets/d/15elDcbKlyVyNN7K2lp0K7B3QMZzEk61vn69HfGunlyU/edit?usp=sharing

<u> </u>	1	1	l.,		h	1
dRICH DAQ parameters		ALCOR parameters			Notes	1
RDO boards	1248		Front end limit [kHz]	4000		
ALCOR64 x RDO	4		ALCOR Clock [MHz]	394,08 ▼	It will be 394.08 MHz or 295.55 MHz	
dRICH channels (total)	319488		Channels/serializer	8	3	
Number of DAM	30		Bits per hit	64	2 32-bit words per hit (also TOT)	
Input link in DAM	42		Bits per hit encoding 8/10	80)	
Output links from DAM to TP	1		Serializer band limit [Mb/s]	788,16	6	
Number of DAM Trigger Processor	1		Theoretical Serializer limit/ channel [kHz]	1231,5	this would be with 0 control words	
Input link to DAM Trigger Processor	30		Serializer limit single ch [kHz]	800	this is expected to improve with ALCOR v3	
RDO-DAM Link Bandwidth (VTRX+) [Gb/s]	10		Number of serializer per chip	8	3	
DAM to Echelon-0 Switch Bandwidth [Gb/s]	100 ▼					
dRICH Interaction tagger reduction factor	5 ▼		Channel/chip	64	1	
Interaction tagger latency [s]	1,00E-04		Shutter width (ns)	10 ▼	(if you put 10 ns == no shutter)	
EIC parameters						
EIC Clock [MHz]	98,522					
Orbit efficiency (takes into account gap)	0,92			•	need to refine it (data hea	ders + CRC absent
					L	ders : ene absent
dRICH data stream analysis		Limit	Comments		here)	
Sensor rate per channel [kHz]	300,00 ▼	4.000,00			noulood of the protocol of	acout hore /CDT
Rate post-shutter [kHz]	276,00	800,00			payload of the protocol a	osent nere (GBT:
Throughput to serializer [Mb/s]	172,50	788,16			every 64 bits data, we have 112 bits)	
Throughput from ALCOR64 [Mb/s]	1.380,00		limit FPGA dependent: - check with RDO			•
Throughput from RDO [Gb/s]	5,39	10,00	based on VTRX+	•	"viewer" mode but you ca	an make a copy and
Input at each DAM [Gbps]	226,41	420,00			•	. ,
Buffering capacity at DAM [Mb]	23,18		to be checked but seems manageable		play	
Output from each DAM [Gbps]	45,28	100,00				
Aggregated dRICH data throughput		Comments				
Total input at DAM [Gb/s]	6.792,19	This is only "insi	de" DAM, not to be transferred on PCI			
Total output from DAM [Gb/s] to Echelon	1.358,44	Reduction from	interaction tagger (FPGA or det. based)			
			,			

Why a kick-off meeting?

- things are finally getting real
- within dRICH so far we worked (Bologna/Rome) almost in "isolation" with respect to frontend/backend DAQ
- need to know each other / build networking
- we had the willingness to do something together since some time but ... without hardware and a protocol choice between RDO and DAM from ePIC DAQ was even difficult to plan something!

Aim of the meeting

- know each other a little bit better.
- share status of the respective projects
- plan joint activities
- plan a minimum of organization

Note:

new mailing list:

epic-italia-drich-dag@lists.infn.it

subscribe here

Note:

ePIC relevant mailing lists (BNL): WG Thursday at 3:00 PM https://lists.bnl.gov/mailman/admin/eic-projdet-daq-l

General info about ePIC DAQ

Description Join ZoomGov Meeting

https://bnl.zoomgov.com/j/1618397692?pwd=Rm9zMmJxa1NNakpiMmN3K012ZndJUT09

Meeting ID: 161 839 7692

Passcode: 462040

One tap mobile

+16692545252,,1618397692#,,,,*462040# US (San Jose)

+16468287666,,1618397692#,,,,*462040# US (New York)

Dial by your location

+1 669 254 5252 US (San Jose)

+1 646 828 7666 US (New York)

+1 551 285 1373 US

+1 669 216 1590 US (San Jose)

Meeting ID: 161 839 7692

Passcode: 462040

Find your local number: https://bnl.zoomgov.com/u/alHADfMo1

Join by SIP

1618397692@sip.zoomgov.com

Join by H.323

161.199.138.10 (US West)

161.199.136.10 (US East)

Meeting ID: 161 839 7692

Passcode: 462040

Wiki:

DAQ - EIC Project Detector Collaboration (bnl.gov)

Mailing list:

https://lists.bnl.gov/mailman/listinfo/eic-projdet-dag-l

https://lists.bnl.gov/mailman/admin/eic-projdet-daq-l

eic-projdet-daq-l@lists.bnl.gov

Mattermost: join det1-dag channel

https://eic.cloud.mattermost.com/signup_user_complete/?id=i8gnmob4stdrpjfrezhegxs3ew

Digitization table link

https://docs.google.com/spreadsheets/d/1s8oXj36SqIh7TJeHFH89gQ_ayU1_SVEpWQNkx6sETKs/edit?usp=sharing

Project information link

https://wiki.bnl.gov/EPIC/index.php?title=Project_Information

Cables and service spreadsheets subdetectors

in the Indico pages of Electronics & DAQ WG meetings there are several useful links

Go for example here to then access these links: https://indico.bnl.gov/event/27013/

Background info

10

- P. Antonioli, Electronics and DAQ PDR, 3-4 September 2025
- P. Antonioli/A. Lonardo, meeting with INFN referees, July 2025
- A. Lonardo, talk at ePIC Itala meeting June 2025
- P. Antonioli, talk at ePIC Italia meeting June 2025
- A. Lonardo, talk at ePIC Collaboration meeting, January 2025
- L. Pontisso, talk at ePIC Collaboration meeting, July 2024
- D. Falchieri, talk at ePIC Collaboration meeting, July 2024
- dRICH Interaction tagger workfest + summary, ePIC Collaboration meeting July 2024

only "somehow overview" talks here about dRICH DAQ ePIC Italia Indico:

ePIC Collaboration Indico:

Inside the general material of this meeting we posted several general talks given 3-4 September at Electronics & DAQ PDR

Today's agenda

