Search for the SM Higgs boson in the H→WW^(*)→lvlv decay channel at LHC

MINI-WORKSHOP ON HIGGS SEARCH AT LHC March 28, 2012 - LNF

Roberto Di Nardo - LNF INFN

Outline

- ➢Higgs production and decay
- The H \rightarrow WW^(*) \rightarrow lvlv searches in ATLAS and CMS
 - >Experimental signature
 - ➢Backgrounds
 - ≻Systematic uncertainties
 - ➢ Results

LHC operation: the 2011 data taking

Excellent LHC performances in 2011:

- Delivered 5.7 fb^{{-1}} @ATLAS and CMS
- Peak luminosity s 3.6 10³³ cm⁻² s⁻¹
- several machine parameters pushed beyond design

Experiments perform very well:

- High data taking efficiency
 - ATLAS(93.5%) CMS(91%)
- High fraction (90-96%) used for the analyses

31/10

...and a new challenge: the pileup

A possible problem for:

- Trigger
- Lepton isolation
- E_T miss
- JES-JER

The SM (a) $\sqrt{s}=7$ TeV

•Useful as benchmark processes for object performance studies

Understanding of detector performances: E_T^{miss}

 \succ Z \rightarrow ll : no true MET

- \geq Resolution can be estimated as the width distribution of E_x^{miss} and E_v^{miss}
- Fundamental to understand (and reduce) especially with the increasing pileup

 \gg W \rightarrow lv : real MET

- > m_T fit of the letpon- E_T^{miss} system
- \blacktriangleright Determination of the E_T^{miss} scale

NNLO prediction for SM Higgs production cross section in most cases
 theory uncertainties reduced to < 20% (e.g. ggf: pdf ~8%, scale ~ 10%)
 Huge progress also in the theoretical predictions of numerous and complex

backgrounds

 $H \rightarrow WW \rightarrow lvlv$ most sensitive channel

$H \rightarrow WW$ final state

•Three possible final state for $H \rightarrow WW$

MINI-WORKSHOP ON HIGGS SEARCH AT LHC - March 28, 2012

The H→WW^(*)→lvlv channel

Experimental signature:

- Two leptons (e or μ):
 - Opposite sign
 - Isolated
 - High p_T
- Two neutrinos:
 - Large E_T^{miss}
 - No mass peak (mass resolution~20%)→
 counting experiment

 $m_T = \sqrt{\left(E_T^{\ell\ell} + E_T^{miss}\right)^2 - \left|\vec{p}_T^{\ell\ell} + \vec{p}_T^{miss}\right|^2}$

Main Backgrounds:

- WW irreducible (topological cut helps)
- W+jet, Z+jet, tt, WZ, ZZ

The Challenge: understand backgrounds and normalize to control regions

Event selection I

Event selection II

Jet multiplicity & VBF

 $\Delta \eta_{jj} > 3.5, m_{jj} > 450 \text{ GeV}$ (CMS)

Topological cuts

Extra requirements to optimize the sensitivity for a SM Higgs boson search

ATLAS	Low mass selection	Intermediate mass selection	High mass selection
≻3 m _H regions	m _H < 200 GeV	т _н =200 GeV – 300 GeV	m _H > 300 GeV
$\succ \Delta \varphi_{11}$	Mll < 50 GeV 2jet low mass: Mll < 80 GeV	Mll < 150 GeV	No MII cut to increase signal acceptance
$> m_{11}$	$\Delta \Phi \leq 1.8$		
$har{}^{n}$ m _T shape for fit	m _T shape used in fit (0jet,1jet)	$\rm m_{T}$ shape used in fit (0jet,1jet)	$\rm m_{T}$ shape used in fit (0jet,1jet)

CMS

CIVIC	m _H	$p_{\rm T}^{\ell,\max}$	$p_{\mathrm{T}}^{\ell,\mathrm{min}}$	$m_{\ell\ell}$	$\Delta \phi_{\ell\ell}$	m_{T}
> optimized for various	[GeV]	[GeV]	[GeV]	[GeV]	[°]	[GeV]
•		>	>	<	<	[,]
m _H values	120	20	10 (15)	40	115	[80,120]
Leading and	130	25	10 (15)	45	90	[80,125]
e	160	30	25	50	60	[90,160]
subleading p _T	200	40	25	90	100	[120,200]
$\succ \Delta \varphi_{11}$	250	55	25	150	140	[120,250]
	300	70	25	200	175	[120,300]
≻m _{ll}	400	90	25	300	175	[120,400]
≻m _T range						

The Backgrounds

SM WW Backgournds

Production cross section measured from both ATLAS and CMS

ATLAS	53.4 ± 2.1 (stat.) ± 4.5 (syst.) ± 2.1 (lumi.) pb	ATLAS-CONF-2012-025
CMS	55.3 ± 3.3 (stat.) ± 6.9 (syst.) ± 3.3 (lumi.) pb	CMS-PAS-EWK-11-010

≻NLO prediction: 45.1±2.8 pb

WW background

Roberto Di Nardo – INFN Laboratori nazionali di Frascati

MINI-WORKSHOP ON HIGGS SEARCH AT LHC - March 28, 2012

WW backgroung control region

The total uncertainty: 10% for 0-jet and 24% for 1-jet selections

Drell Yan background

Normalize MC using Z control region – ABCD method using METRel-Mll

$$m{A}_{data} = m{B}_{data} imes rac{C_{data}}{D_{data}}$$

Uncertainty : 56% for H+0jet and 25% for H+1jet analysis respectively

Top background

Definition of data control sample to normalize MC predicion

≻E.g. H+ 1-jet and H+ 2-jet analyses,

reversing the b-jet veto

Remove the requirements on $\Delta \varphi_{11}$ m₁₁.

ATLAS: 23% uncertainty for the 0-jet channel, 30% otherwise

CMS: 25% uncertainty for the 0-jet channel, 10% otherwise

Other backgrounds

➤W+jets background

➤ control sample with inverted lepton ID passing loose criteria

≻WZ/ZZ

Leptons coming from two different bosons

Sestimated from MC simulation

≻Wγ*

➢Normalization from high purity three-lepton control sample

 $\geq W\gamma$ estimated from simulation

Cross-checked with same sign sample

CMS and ATLAS Results

arXiv:1202.1489,CMS-HIG-11-024 ATLAS-CONF-2012-012

ATLAS Results

	Signal	Total Bkg.	Obs.
. हु $m_H = 125 \text{ GeV}$	25 ± 7	173 ± 22	174
	60 ± 17	607 ± 63	629
$\overline{a} m_H = 125 \text{ GeV}$	6 ± 2	45 ± 7	56
$-m_H = 240 \text{ GeV}$	23 ± 9	229 ± 55	232
$\underline{\mathbf{z}}_{H} m_{H} = 125 \text{ GeV}$	0.4 ± 0.2	0.5 ± 0.2	0
$n_H = 240 \text{ GeV}$	2.5 ± 0.6	4.2 ± 1.7	2

ATLAS Results

- > in 9 channels (ee, $\mu\mu$, $e\mu$) x (0 jet, 1 jet, 2 jet) for each M_H
 - No significant excess in the mass range 110<m_H<600 GeV
 - 95% C.L. expected exclusion for $127 < m_H < 234 \text{ GeV}$
 - 95% C.L. observed exclusion for $130 < m_H < 260 \text{ GeV}$

 \geq

CMS Results

m _H	data	all bkg.	${\rm H} ightarrow {\rm W}^+ {\rm W}^-$		entries / 10.0 GeV	100 - → data DY CMS, $\sqrt{s} = 7 \text{ TeV}$ - - $m_{H} = 130$ top L = 4.6 fb ⁻¹ - WW WZ/ZZ
120	12(0 jet	157109		es /	
120	136	136.7 ± 12.7	15.7 ± 0.8		Ĕ	
130	193	191.5 ± 14.0	45.2 ± 2.1	, i i i i i i i i i i i i i i i i i i i	e	50 - 0 jet
160	111	101.7 ± 6.8	122.9 ± 5.6			
200	159	140.8 ± 6.8	48.8 ± 2.2			T 📲 🏪 🕺
400	109	110.8 ± 5.8	17.5 ± 0.8			- → - -
	•	1 jet	•			· * _ ' ↓+ · ·
120	72	59.5 ± 5.9	6.5 ± 0.3			
130	105	79.9 ± 7.7	17.6 ± 0.8			⁻¹ 0 50 100 150 200 250
160	86	70.8 ± 6.0	60.2 ± 2.6			m ^H _T [GeV]
200	111	130.8 ± 6.7	25.8 ± 1.1		e<	+ data
400	128	123.6 ± 5.3	12.2 ± 0.5		כ	$_{\rm m_{H}}$ = 130 top L = 4.6 fb ⁻¹
		2 jet	-		10.	40 - WW VZ/ZZ -
120	8	11.3 ± 3.6	1.1 ± 0.1		SS /	
130	10	13.3 ± 4.0	2.7 ± 0.2		entries / 10.0 GeV	[1 jet]
160	12	15.9 ± 4.6	12.2 ± 0.7		e	
200	13	17.8 ± 5.0	8.4 ± 0.5			
400	20	23.8 ± 6.4	2.5 ± 0.1			
CLAS						

Multivariate approach

CMS Results

- No significant excess in the mass range 110<m_H<600 GeV</p>
 - → 95% C.L. expected exclusion for $127 < m_H < 270$ GeV
 - ▶ 95% C.L. observed exclusion for $129 < m_H < 270 \text{ GeV}$
- Small excess at low mass (BDT analysis)

Conclusions

 $H \rightarrow WW \rightarrow lvlv$ is one of the most sensitive Higgs search channels

➢Fundamental ingredient in the final combination with the other channels

 $H \rightarrow WW \rightarrow lvlv$ exclusion limits:

- > ATLAS : range 130-260 GeV
- ➤ CMS : range 129-270 GeV

No hint for a Standard Model Higgs in this channel.
With the 2012 data we will be able to "close the gap"
Expect discovery or exclusion this year!

Last Update: Mar 27 at 13:24

Mar 28 2012

LHC Machine Coordination Planning

Collisions at $\sqrt{s}=8$ TeV will arrive very soon !!

ATLAS and CMS Detectors

ATLAS

2T superconducting solenoid. Inner Detector: silicon pixel/strip tracker with a straw tube tracker. $|\eta| < 2.5$ LAr electromagnetic and ironscintillator tile hadronic calorimeters cover $|\eta| < 4.9.$ Muon spectrometer in toroidal

magnetic field covers $|\eta| < 2.7$.

CMS:

3.8T superconducting solenoid. Silicon pixel and strip tracker cover $|\eta| < 2.5$ Crystal electromagnetic and brass-scintillator hadronic calorimeters cover $|\eta| < 3.0$ and a Quartz-fiber Cherenkov calorimeter covers to $|\eta| < 5.0$. Muons gas-ionization detectors in the solenoid yoke.

	CMS					ATLAS						
	$m_{\rm H}$	data	all bkg.	${\rm H} ightarrow {\rm W}^+ {\rm W}^-$	-		Signal	Total Bkg.	Obs.			
	120 130	136 193	$\frac{136.7 \pm 12.7}{191.5 \pm 14.0}$	15.7 ± 0.8 45.2 ± 2.1	-	$\overrightarrow{o} m_H = 125 \text{ GeV}$ $\overrightarrow{o} m_H = 240 \text{ GeV}$	25 ± 7	173 ± 22	174			
	160 200	111 159	101.7 ± 6.8 140.8 ± 6.8	122.9 ± 5.6 48.8 ± 2.2			60 ± 17	607 ± 63	629			
	400	109	110.8 ± 5.8	17.5 ± 0.8		$\frac{10}{2}$ $m_H = 125 \text{ GeV}$ $\frac{10}{2}$ $m_H = 240 \text{ GeV}$	$\begin{array}{c} 6\pm 2\\ 23\pm 9\end{array}$	45 ± 7 229 ± 55	56 232			
•	120 130	72 105	59.5 ± 5.9 79.9 ± 7.7	6.5 ± 0.3 17.6 ± 0.8	-	$\overrightarrow{o} m_H = 125 \text{ GeV}$ $\overrightarrow{o} m_H = 240 \text{ GeV}$	0.4 ± 0.2	0.5 ± 0.2	0			
- N	160 200	86 111	70.8 ± 6.0 130.8 ± 6.7	60.2 ± 2.6 25.8 ± 1.1	:	$\dot{n}_H = 240 \text{ GeV}$	2.5 ± 0.6	4.2 ± 1.7	2			
۲ ۲ ۲	400	128	123.6 ± 5.3	12.2 ± 0.5								
- -	120	8	11.3 ± 3.6	1.1 ± 0.1								
	130 160	10 12	13.3 ± 4.0 15.9 ± 4.6	2.7 ± 0.2 12.2 ± 0.7								
	200 400	13 20	17.8 ± 5.0 23.8 ± 6.4	8.4 ± 0.5 2.5 ± 0.1								

Signal strenght ATLAS

MINI-WORKSHOP ON HIGGS SEARCH AT LHC - March 28, 2012

p0

mT 2 jet

m_T [GeV]

300

