ANDROMeDa Status and Prospects

Francesco Pandolfi

12.09.25

The ANDROMeDa Project

- Awarded PRIN2020 grant (1M€)
 - 3-year project, started in May 2022
 - 3 units: INFN (FP, P.I.)
 Sapienza (G. Cavoto)
 Roma Tre (A. Ruocco)

- Main objective: have a working dark-PMT protoype by end of project
 - Challenges on both sides of detector

Ideal nanotubes for DM target?

Best detector for keV electrons?

Requirements on Detecting keV Electrons

- \bullet Electron energy = ΔVe (initial energy negligible)
 - ΔV ~ 5 keV
- DM signal: **single** electron with $E = \Delta Ve$
 - Ionizing backgrounds: multiple electrons
- * Electron detector requirements:
 - High (>95%) efficiency
 - Energy resolution: good enough to separate 1e- vs 2e- @ 5σ

APDs: Not Enough Resolution

A. Apponi, et al., JINST 15 (2020) P11015

Hamamatsu windowless APD

2023 Data Taking @ Milano Bicocca e-Gun (M. Biassoni)

Electron energy resolution

RA amplitude (mV)

~3σ separation between 10 keV (data) and 20 keV (simulated)

Chosen Technology: Silicon Drift Detectors

SDD produced by FBK

Holder and electronics by PoliMi

Fe55 Kα peak (5.9 keV) FWHM ~ 170 eV

Installation Planned for October 9th

CAEN Sci-Compiler SMART FPGA

Same Setup Will Host Also MCP

Hamamatsu F4655-14 dual-stage MCP

Holder design by B. Corcione

What About Nanotubes?

- Main result from UPS
 - $E_V = 5 \text{ eV} > \Phi_{cnt} = 4.7 \text{ eV}$
 - Straighter nanotubes eject more electrons
- Better to move away from UPS
 - Test e- transmission directly

Plans for Testing Trasmission Through Nanotubes

GRaphene to Electrons: Energy and Angular resolved Transmission

SWEATERS

INFN Roma Tre, A. Apponi

INFN Pisa, F. Pilo