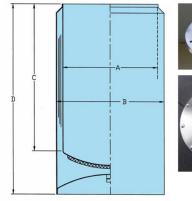
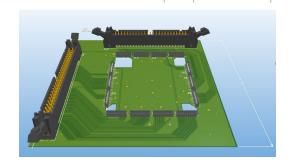
Cryogenic tests

Test of the ASAP chip in LN:


characterization of BD, DCR, AP

Status:

- ASAP setup (mother + daughter + FPGA + firmware) tested
- cryostat + flange setup procured
- conversion boards for cryostat cabling (one outside, one inside) designed.
 - procurement and assembly planned in september
- Then test of the parts at room temperature
- Cryogenic test plausible in second half of October



CF Series Dewar Flasks Liquid Nil Natural Gas and Liquid Argon storage

Displacement damage test

Plan to irradiate samples with protons (or neutrons) and span over 10⁹ to few 10¹¹ n_{eq}

Characterization of:

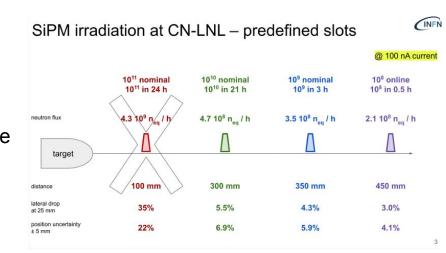
- DCR increase vs damage dose
- Afterpulsing before/after irradiation
- Random Telegraph Signals after irradiation
- DCR activation energies before/after irradiation
- Damage recovery with thermal annealing

Two device available for test (1 from NA, 1 from BO)

Two chance to perform irradiations (before end of the year): see Luigi slides

Irradiation opportunities 2025

From Luigi and Roberto


LNL 2 days in the week 20th – 27th October Parallel irradiation possible. "On-line" irradiation possible due to low doses Timing is more relaxed and will be a nice preparation test for December.

(Neutrons) 1MeV neq up to 10¹⁰ in < 24h higher rates staying closer, but with more critical alignement/positioning and potential losses in lateral uniformity

TIFPA 2 h available, likely on Thursday 12th December

evening. Final dates will be verified, test will be crowded. Possible parallel irradiation with other electronics, will discuss with the ePIC team how feasible it is.

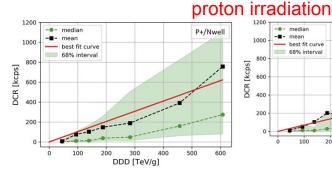
- (Protons): 2 possible beam setups (large field / pencil)
- At 2 nA 1.25 10⁶ 1 MeV neq/s (6 cm diameter uniform field)
- At 14 nA 10⁹ 1 MeV neq in 120 s (6 cm diameter uniform field)
- Up to 10¹³ 1 MeV neq with 120 nA in < 1h (1 cm pencil beam)

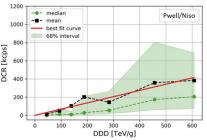
Displacement damage test

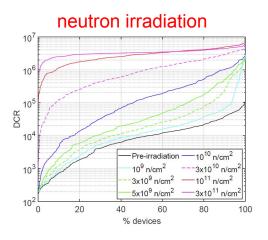
Both BO and NA have setup inplace for testing the ASAP chips.

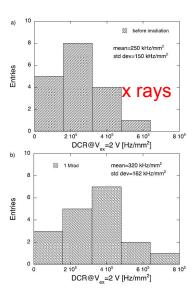
• Firmware and setup tested in a WP2 hands on session before summer break.

What's still missing:

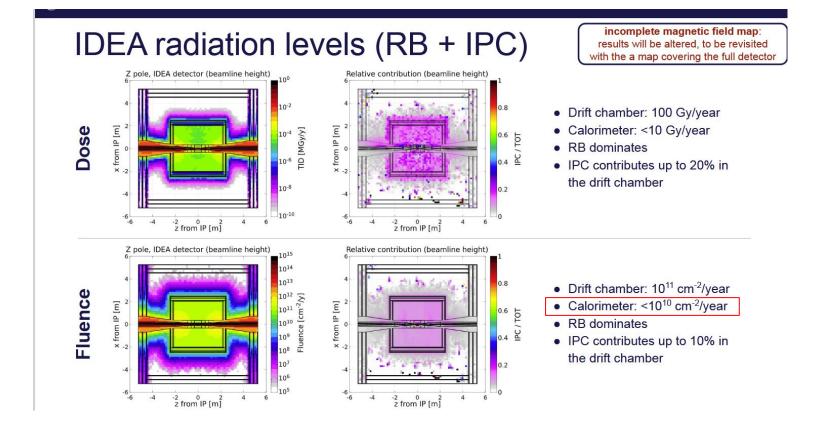

- Need to fully characterize both chips before the test(s):
 - BD, DCR, AP, Xtalk at room temperature (should be quick)
 - activation energies -> DCR vs Vov vs T (require many days and climatic chamber)
- Need to define which structure and how test it at irradiation steps
- Need an additional firmware for DCR real time monitoring
- > Will setup a dedicated meeting for discussing those aspects


Backup


Bibliography


Large degradation observed in previous studies [1]:

- First 150 nm devices -> few MHz/mm²
 - \circ GHz/mm² at 10¹⁰ p/cm²
- APIX 180 nm devices: 1 MHz/mm² [2,3,4]
 - \circ GHz/mm² at 10¹¹ n_{eq}/cm²
 - +30% DCR increase with 1 Mrad



- [1] M. Campajola, et al., Proton induced dark count rate degradation in 150-nm CMOS single-photon avalanche diodes, NIMA
- [2] M. Musacci, et al. "Radiation tolerance characterization of Geiger-mode CMOS avalanche diodes for a dual-layer particle detector." NIMA
- [3] L. Ratti, et al. "Dark Count Rate Degradation in CMOS SPADs Exposed to X-Rays and Neutrons" TNS
- [4] A. Ficorella, APPLICATION OF AVALANCHE DETECTORS IN SCIENTIFIC AND INDUSTRIAL MEASUREMENT SYSTEMS, PhD thesis

