

Euclid-INFN@TO Activity Report 2025

Department of Physics, Alma Felix University of Turin, Italy

+ O(5) MPhys Students

and Collaborators

Stefano Camera[Associate Professor]

Benedict Bahr Kalus
[Postdoctoral Researcher]

Francesco Pace [Researcher]

Giulia Piccirilli[Postdoctoral Researcher]

Nicolao Fornengo [Full Professor]

Sam(antha) Rossiter [4th-yr PhD Student]

Lorenzo Fatibene[Full Professor]

Federico Montano [2nd-yr PhD Student]

Matteo Luca Ruggiero [Associate Professor]

Jiakang (Jack) Han [2nd-yr PhD Student]

Stefano Camera [Associate Professor]

Benedict Bahr Kalus [Postdoctoral Researcher]

Francesco Pace [Researcher]

Giulia Piccirilli [Postdoctoral Researcher]

Nicolao Fornengo [Full Professor]

Sam(antha) Rossiter [4th-yr PhD Student]

Lorenzo Fatibene [Full Professor]

Federico Montano [2nd-yr PhD Student]

Matteo Luca Ruggiero [Associate Professor]

Jiakang (Jack) Han

+ O(5) MPhys Students and Collaborators

2020

2021

2022

2023

2024

2025 2026

- Who are we?
 - Active and proactive group; built up momentum over the years; diverse set of skills, building bridges between theory and observations; good balance between senior and junior members (~30% w/ management roles and ~70% working on projects)

- Who are we?
 - Active and proactive group; built up momentum over the years; diverse set of skills, building bridges between theory and observations; good balance between senior and junior members (~30% w/ management roles and ~70% working on projects)
- Proficiencies and know-how
 - Large-scale structure of the Universe; cosmological perturbations (linear and non-linear regimes); extended models of gravity for dark matter and dark energy; modelling of power spectra in Fourier and harmonic space; novel observables and multi-wavelength synergies; development of techniques to detect of new effects

Who are we?

• Active and proactive group; built up momentum over the years; diverse set of skills, building bridges between theory and observations; good balance between senior and junior members (~30% w/ management roles and ~70% working on projects)

Proficiencies and know-how

• Large-scale structure of the Universe; cosmological perturbations (linear and non-linear regimes); extended models of gravity for dark matter and dark energy; modelling of power spectra in Fourier and harmonic space; novel observables and multi-wavelength synergies; development of techniques to detect of new effects

Involvement in the Euclid Consortium

- Galaxy Clustering, Weak Lensing, Theory, and CMBX Science Working Groups (SWGs)
- Inter SWG Taskforces (ISTs) for Forecasts, Likelihood, and Non-linearities
- Diversity Committee, Publication Group for Science, pre-launch and DR1 Key Project (KP) coordination
- Q1 and DR1 data analysis

Research activities in 2025

- Milestone
 - Submission of PL-KP-GC-7 Paper (Euclid Collaboration: Duret et al., arXiv:2503.11621) [*]

Research activities in 2025

- Milestone
 - Submission of PL-KP-GC-7 Paper (Euclid Collaboration: Duret et al., arXiv:2503.11621) [*]
- Work on data/pipeline
 - Coordination of DR1-KP-JC-2 'Euclid cosmological constraints from combined photometric probes'
 - Work on the spectroscopic galaxy clustering pipeline to implement relativistic and wide-angle effects [*]
 - Implemented several mass function prescriptions to study the effects of massive neutrinos

Research activities in 2025

Milestone

- Submission of PL-KP-GC-7 Paper (Euclid Collaboration: Duret et al., arXiv:2503.11621) [*]
- Work on data/pipeline
 - Coordination of DR1-KP-JC-2 'Euclid cosmological constraints from combined photometric probes'
 - Work on the spectroscopic galaxy clustering pipeline to implement relativistic and wide-angle effects [*]
 - Implemented several mass function prescriptions to study the effects of massive neutrinos

Other deliverables

- Active involvement (=1st-tier authorship) in 6 KP Papers
 [A&A 693, A58 [*]; A&A 693, A249; A&A 694, A321; A&A 697, A85; A&A 697, A1; A&A 698, A233]
- Submission of Euclid Collaboration: Albuquerque et al., arXiv:2506.03008
- Submission to EC Editorial Board of PL-KP-JC-3 (CLOE) Papers 1–6
- Submission to EC Editorial Board of PL-KP-GC-7 Paper: Matthewson et al.
- Submission to EC Editorial Board of Q1 SP Paper: Piccirilli, Bahr-Kalus, Camera et al. [*]

Euclid preparation.

BAO analysis of photometric galaxy clustering in configuration space

Euclid Collaboration: V. Duret^{*1}, S. Escoffier¹, W. Gillard¹, I. Tutusaus², S. Camera^{3,4,5}

Euclid preparation.

BAO analysis of photometric galaxy clustering in configuration space

Euclid Collaboration: V. Duret^{*1}, S. Escoffier¹, W. Gillard¹, I. Tutusaus², S. Camera^{3,4,5}

Euclid preparation.

BAO analysis of photometric galaxy clustering in configuration space

Euclid Collaboration: V. Duret^{*1}, S. Escoffier¹, W. Gillard¹, I. Tutusaus², S. Camera^{3,4,5}

• Per-bin detection of the (transverse) Alcock-Paczyński parameter, α

Bin	$z_{ m min}$	$z_{ m eff}$	z_{\max}	α	$\Delta_{\mathrm{det}}\left(\sigma\right)$
1	0.200	0.307	0.396	$1.055^{+0.102}_{-0.148}$	no detection
2	0.396	0.432	0.507	$1.021^{+0.118}_{-0.131}$	no detection
3	0.507	0.578	0.657	$1.086^{+0.068}_{-0.106}$	1.2
4	0.657	0.727	0.840	$0.909^{+0.113}_{-0.070}$	1.2
5	0.840	0.893	1.040	$1.016^{+0.120}_{-0.155}$	no detection
6	1.040	1.325	2.500	$1.045^{+0.079}_{-0.089}$	1.1

Bin	Zeff	α	$\Delta_{\mathrm{det}} (\sigma)$
1	0.290	$1.026^{+0.122}_{-0.140}$	no detection
2	0.374	$1.044^{+0.097}_{-0.107}$	1.2
3	0.436	$0.957^{+0.112}_{-0.093}$	1.1
4	0.527	$1.003^{+0.146}_{-0.123}$	no detection
5	0.613	$1.002^{+0.079}_{-0.095}$	1.1
6	0.705	$0.985^{+0.087}_{-0.096}$	no detection
7	0.802	$0.932^{+0.072}_{-0.054}$	1.5
8	0.858	$1.052^{+0.067}_{-0.067}$	1.7
9	0.972	$1.037^{+0.057}_{-0.048}$	1.5
10	1.090	$1.015^{+0.029}_{-0.028}$	2.7
11	1.245	$1.031^{+0.024}_{-0.024}$	4.0
12	1.488	$0.996^{+0.040}_{-0.038}$	2.4
13	1.922	$0.991^{+0.036}_{-0.037}$	2.9

Euclid preparation.

BAO analysis of photometric galaxy clustering in configuration space

Euclid Collaboration: V. Duret^{*1}, S. Escoffier¹, W. Gillard¹, I. Tutusaus², S. Camera^{3,4,5}

• Team: F. Montano, S. Camera, M.Y. Elkhashab (INAF-OATs), J. Salvalaggio (UniTS)

- Team: F. Montano, S. Camera, M.Y. Elkhashab (INAF-OATs), J. Salvalaggio (UniTS)
- Results:
 - Derived and implemented the cross-correlation power spectrum model in the PBJ code—and it can consequently be easily absorbed into the official EC likelihood code, CLOE

- Team: *F. Montano*, *S. Camera*, M.Y. Elkhashab (INAF-OATs), J. Salvalaggio (UniTS)
- Results:
 - Derived and implemented the cross-correlation power spectrum model in the PBJ code—and it can consequently be easily absorbed into the official EC likelihood code, CLOE
 - Created low-resolution mocks to estimate the cross-spectrum signal

- Team: F. Montano, S. Camera, M.Y. Elkhashab (INAF-OATs), J. Salvalaggio (UniTS)
- Results:
 - Derived and implemented the cross-correlation power spectrum model in the PBJ code—and it can consequently be easily absorbed into the official EC likelihood code, CLOE
 - Created low-resolution mocks to estimate the cross-spectrum signal
 - Confirmed that wide-angle corrections recover observed odd Legendre multipoles of the Euclid Large Mocks

Euclid preparation

LIV. Sensitivity to neutrino parameters

Euclid Collaboration: M. Archidiacono^{1,2,*}, J. Lesgourgues³, S. Casas³. S. Pamuk³, N. Schöneberg⁴, Z. Sakr^{5,6,7}, G. Parimbelli^{8,9,10}, A. Schneider¹¹, F. Hervas Peters^{12,11}, F. Pace^{13,14,15}, V. M. Sabarish^{3,16}

Euclid preparation

LIV. Sensitivity to neutrino parameters

Euclid Collaboration: M. Archidiacono^{1,2,★}, J. Lesgourgues³, S. Casas³. S. Pamuk³, N. Schöneberg⁴, Z. Sakr^{5,6,7}, G. Parimbelli^{8,9,10}, A. Schneider¹¹, F. Hervas Peters^{12,11}, *F. Pace*^{13,14,15}, V. M. Sabarish^{3,16}

Euclid preparation

LIV. Sensitivity to neutrino parameters

Euclid Collaboration: M. Archidiacono^{1,2,★}, J. Lesgourgues³, S. Casas³. S. Pamuk³, N. Schöneberg⁴, Z. Sakr^{5,6,7}, G. Parimbelli^{8,9,10}, A. Schneider¹¹, F. Hervas Peters^{12,11}, F. Pace^{13,14,15}, V. M. Sabarish^{3,16}

Euclid preparation

LIV. Sensitivity to neutrino parameters

Euclid Collaboration: M. Archidiacono^{1,2,*}, J. Lesgourgues³, S. Casas³. S. Pamuk³, N. Schöneberg⁴, Z. Sakr^{5,6,7}, G. Parimbelli^{8,9,10}, A. Schneider¹¹, F. Hervas Peters^{12,11}, *F. Pace*^{13,14,15}, V. M. Sabarish^{3,16}

[*] First Euclid-radio survey synergy

EMU and *Euclid*: Detection of a radio-optical galaxy clustering cross-correlation signal between EMU and *Euclid* *

G. Piccirilli, ^{1,2} B. Bahr-Kalus, ^{3,2,1} S. Camera, ^{1,2,3} Asorey, ⁴ C.L. Hale, ⁵ G. Fabbian, ^{6,7,8} M. Vai, ^{1,2} S. Saraf, ⁹ D. Parkinson, ⁹ N. Tessore, ¹⁰ K. Tanidis, ⁵ M. Kunz, ¹¹ A.M. Hopkins, ¹² T. Vernstrom, ^{13,14} A.D. Asher, ^{15,16} M. Regis, ^{1,2} Michael J. I. Brown, ¹⁷ Daniela Carollo, ¹⁸ Tayyaba Zafar¹²

[*] First Euclid-radio survey synergy

EMU and *Euclid*: Detection of a radio-optical galaxy clustering cross-correlation signal between EMU and *Euclid* *

G. Piccirilli, ^{1,2} B. Bahr-Kalus, ^{3,2,1} S. Camera, ^{1,2,3} Asorey, ⁴ C.L. Hale, ⁵ G. Fabbian, ^{6,7,8} M. Vai, ^{1,2} S. Saraf, ⁹ D. Parkinson, ⁹ N. Tessore, ¹⁰ K. Tanidis, ⁵ M. Kunz, ¹¹ A.M. Hopkins, ¹² T. Vernstrom, ^{13,14} A.D. Asher, ^{15,16} M. Regis, ^{1,2} Michael J. I. Brown, ¹⁷ Daniela Carollo, ¹⁸ Tayyaba Zafar¹²

Plan for 2026

- Keep on working on Q1 data, especially in synergy with surveys at other wavelengths (radio, microwave, ...)
- Stress-testing and first analysis of RR2 data set
- Work on DR1 KPs
 - Coordination of DR1-KP-JC-2 'Euclid cosmological constraints from combined photometric probes'
 - Merging of relativistic and wide-angle power spectrum estimator in CLOE
 - Exhaustive assessment of the 'scattering matrix' approach to DR1 photo-z clustering power spectra