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Part 1

Introduction & Data Rate Challenge




Cluster Counting in the Future Drift Chamber

» Cluster Counting Technique
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= 2000 ns with 1.5 GHz sampling rate
O Counting dN_/dx for PID = Cell size: 18 mm x 18 mm

= Better and Robust Resolution
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Significant Data Rate Challenge

» Extreme Data Rates in Future Drift Chambers

= High granularity designs are required to meet the stringent tracking and PID performance demands
= Unprecedented challenges will arise with off-detector data rates above O(TB/s)

= High data rates require significant power and pose challenges
* Additional cooling needed for heat management
* Increased energy use reduces budget for services like cooling and cabling

» Our Solution: ML-based compression at source
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Analysis at the Edge One Single Number

(#Clusters)

+ Possibly more ...

= Sufficient data reduction: O(TB/s) - O(GB/s)
= Requires an algorithm that meets both High accuracy & Low latency

= Deployable in front-end readouts
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Baseline Algorithms
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Basic Inspection of the Dataset

» Dataset Overview

Table 1. Summary of data sets used for training and testing ML-based cluster-counting algorithms.

Purpose  Algorithm Particle Number of Events Momentum (GeV/c) ‘wf i’

Training peak-finding 7+ 5 x 10° 0.2 — 20.0 (pulse s_hape)

Testing peak-finding 7+ 5 x 108 0.2 — 20.0

Training Clusterization 7™+ 55 10° 0.2 — 20.0 ‘mom’

Testing Clusterization 7+ 1x10°x7 5.0/7.5/10.0/12.5/15.0/17.5/20.0 (Momentum)

Testing Clusterization K=+ 1x10°x7 5.0/7.5/10.0/12.5/15.0/17.5/20.0 ‘tag_times’
Source: Cluster counting algorithm for the CEPC drift chamber using LSTM and DGCNN (x-value)
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‘tag_values’
(peak info)

e e T e

(1, 3000) 2,000 ns time window (1.5 GHz)
0.2-20.0
(1,1) [GeV/c]
(1, 300) 0-2999 (int)
0 - Background
(2, 300) 1 - Primary ionization

2 - Secondary ionization

Several questions about this simulation dataset

R/ R/ R/
0’0 0’0 0’0

Why does the percentage of secondary ionization increase over time?
What are the few ionizations occurring after 1000 ns?
How can the drift velocity be inferred from the maximum drift time

observed (approximately 1000 ns here)?


https://doi.org/10.1007/s41365-025-01670-y

Baseline Algorithms for Cluster Counting

> Main Idea

‘—-—-—-—-—-—-—-—-—-—-—-
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Baseline Algorithms for Cluster Counting

> Main ldea

Peak-finding

return lists of peaks
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Peak Finding Algorithm +:Cluster Counting Algorithm;
(Identify peak candidates) [ (Merge peaks into clusters)
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Fixed-Clusterization Algorithm (FCA

= |nput

. b: Number of units to look forward in time window

e  c: Clusterization factor
* d: Maximum number of peaks in a window

= 3D scanning for parameters determination

Adapted-Clusterization Algorithm (ACA

= |nput:
. b,c,d - b-map, c-map, d-map

= Scaning the parameters region by region:
«  R1:(0, 130)

[+ R3:(400, 1550)

«  R4:(1550, 3000)

—— > Requires experimentation
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Estimated Counts

Baseline Algorithms for Cluster Counting

» Performance Comparison of ACA and FCA

Prediction accuracy comparison Relative error distribution comparison
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The ACA demonstrates higher prediction accuracy and
resolution compared to the FCA

= ACA consistently outperforms FCA across the time scale
= "Learning" features from different time regions proves effective
A =" SN o S S . <. . F=SRI TR N SO | (suggesting that ML may yield better results)
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ML Algorithm Attempts
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Truncated Waveforms as Input

» Sample Reduction

Waveform Visualization
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ML-Based Cluster Counting Paradigms

» Configurations

= (Classical (Non-ML) Strategy

* D2+FCA Peak finding algorithm followed by a clusterization algorithm

e D2+ ACA

= ML Strategy
 DNN direct regressor

Waveform Visualization

Directly predict #clusters for each waveform

. 100 200 300 400 500 Dense
Raw waveform g
On-Chip DNN Regressor
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Number of
Clusters
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Compression Strategies for Edge Deployment

» Model Quantization and Pruning

O Goal: 1o develop a model that meets strict resource and latency requirements for real-time processing

VIRV ILERIET - —) Quantization ——> Pruning
400k for training Lowering the precision of Eliminating model weights and activations
= 100k for validation model weights and activations that have minimal impact on predictions

= 100k for testing

Sparsity vs. STD Percent Error

Quantization vs. STD Percent Error
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Hls4ml for Model Evaluation on FPGAs

> Workflow for Model Evaluation

Tensorflow ML
Model

—> C++ Code —>

Register Transfer
Level (RTL) Code

FPGA Simulation

~
HLS4ML

» Evaluation Report

~
Vitis HLS

Model Latency [ns] LUTs FFs DSPs

DNN 8-32-8 55 183,726 44,946 3,399
HLS4ML Quantized <10,5> DNN 8-32-8 55 83,417 22,029 39
HLS4ML 60% Pruned; Quantized to <10,5> DNN 45 127,818 26,002 19

= Latency of 50 ns enables real-time applications in future colliders with O(10) ns bunch crossing rates

SL,%‘-\’:: 9th IDEA Study Group meeting

hIS 4 ml Documentation

Translate trained models into HLS code
for FPGA implementation
Configuration

* Reusefactor=1

* io_parallel

14


https://fastmachinelearning.org/hls4ml/

Model Performance Summary

> Baseline DNN Model
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Overall, the model's predictions closely match the truth labels,
with some deviations at the peaks
The 2D plot of predictions vs. truth shows a strong correlation
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Momentum (GeV)
All the DNN models outperform classical algorithms across all tested ranges
Under a track length of 2 m, all ML models achieve K/m separation powers
exceeding 30
Compared to the truth (the best ideal limit), there remains significant
potential for ML performance improvement
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> Addit

> More

» Power Consumption Evaluation of Chip Designs

ol AR

Dl

ional Model Variants
+* Autoencoder-based compression with off-detector decoding
* On-chip split-DNN

VAE-based anomaly detection

AR/

L)

L)

X3

*%

@,
0’0

Realistic IDEA DCH Simulation

R/

<+ More detector details, electronic parameters, and transfer functions ...

/7

% Further exploration of ML performance under different gas fill conditions

0’0

R/

% Ensuring compatibility with future drift chamber specifications
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Summary

O Future drift chambers will face the challenge of handling TB/s data rates. Machine learning applied
at the source for cluster counting shows significant potential for real-time data reduction in next-
generation drift chambers.

d ML-based cluster counting techniques have been demonstrated, showing improved pion-kaon
separation performance compared to traditional methods.

d Compressed ML models have been shown to be viable for deployment in front-end readout ASICs.
Findings from FPGA synthesis studies validate this potential, demonstrating effective performance

and resource utilization.

O Accurate Garfield++ simulations that closely represent the IDEA drift chamber are essential for
advancing further research into ML applications and detector design optimization in the future.

SL,%\-G 9th IDEA Study Group meeting 17
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D2 Threshold Determination

» T1: 3x RMS of the average noise amplitudes

Waveform with lonization Events (Event 1) \
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» T2: Accuracy vs. T2 Threshold Scanning

Effect of T2 Threshold on Detection Ratio Effect of T2 Threshold on Detection Ratio
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D2 algorithm
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Perfect match!
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Basic Inspection of the Dataset

» Puzzles about the Cluster Size? = Naive 3x3 cell array Garfield++ simulation [18.46/12.56 = 1.47]
Cliisier Size Distribikich o Number of Primary ionizations Enm:scmstersmo o Number of Total electrons Er:rT_otalEleclm1n0soo
i B [ Mean = 1.32, Std = 0.50 :Z%: Sabov a7 5 :E Sabev 120
'—'_ Mean Nt/Np= 1.32 ::z;: 1 GeV - 50? 1 GeV -
e | s 1,000 events BE- 1,000 events

10° 1 Hﬁ~ﬁ jg;: 2,,2_
Lgn ’—'_'— 20;_ I I | -l | 1 I I 10;_ rlfI.J.LJL
8 —'_‘_'_ C E PC SI m u | at I O n ° 5 1o * 2 » 3 umber st Primarl;oionizaliér?s percrﬁo 2 o 60 80 N perc?no

| = Online source (NTP, MIPs) [26.7/ 12.7 =2.10
Dataset source ) ]
Density *103 o o
“ (g/cm?) e
T . T . . i He‘iC4H10
1.0 15 2.0 2:5 3.0 3.5 4.0 (90_10) 042 12'7 26'7
Ne/Np
= Dr. Gravili’s slides on IDEA DCH 2024 (Page 14)
U Cluster Size of Helium-isobutane Mixture Results for cluster size distribution (~ 1.61),
1.47 in reasonable agreement overall:
Naive Garfield++ simulation
@ GARFIELD++: ~ 1.56
f I I >
@ Test beam analysis: ~ 1.67
1.32 7 2.10
CEPC simulation dataset : de Online source table e He experimental measurements: ~ 1.6

SL,%‘G 9th IDEA Study Group meeting
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https://project-cms-rpc-endcap.web.cern.ch/rpc/Physics/GasPhysics/1110.6761 Copy.pdf
https://indico.in2p3.fr/event/20053/contributions/137838/attachments/83983/125157/DriftChamberIDEA.pdf

Basic Inspection of the Dataset

» K/mt-Separation Power Defination?

] Version A 1 Version B

= Source: Production of charged pions, kaons and (anti-)protons in Pb-Pb and inelastic pp collisions

= Source: Cluster counting algorithm for the CEPC drift

chamber using LSTM and DGCNN @\/ﬁﬂ =5.02 TeV
The K /m-separation power is defined as TOF and HMPID. The separation power is defined as follows:
dlN dan , . . .
(&) = (&)l Axx _ |{signal)z — (signal)| Ay _ |{signal)x — (signat)y|
S = ; Seprx)=—_— = ; Sepgp=—" = (3)
(or +0K) /2 ' Oxn O ‘ Ok Ok
= Source: Simulation of particle identification with the D Ve rsion C

clustercounting technique
The separation power for two particles, labelled for simplicity p; and p, with different masses and = Source: Charged Hadron Identification with dE/dx and Time-of-Flight at Future Higgs Factories

s mamenn s evalusted witrtherelation Gl [T resolution of 5 % or better. The separation power S is the relative distance between the Bethe-Bloch bands, defined

r}z+ 2 & . i i & : .
as S = (U — |/ —1—‘712 with y; and o; being the mean and width of the band of particle i, respectively. Figure 3

I 3.1) shows the 7/K and K /p separation power. § > 3 is achieved for particle momenta between about 2 and 20 GeV in
OF -
< Opipz > the default detector model IDR-L.
where A, and A, are the measurements of the deposited energy, ok is the resolution in the D Ve rs | O n D

ionization measurement (energy resolution) given by the variance of Gaussian distribution of the

truncated mean values and < o1 2 > is the average of the two resolutions: = Source: Detector Requirements Analysis on the Pion-Kaon Separation

2 2
g Spic= g =)t (T Ti)
_ %En +0Em o
< Opip2 >= 2 3.2) o-Er ..+_ ofzK o-grﬂ- _+. o-ng

Following Version A in this research, but

may consider Version D in the future 01
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https://indico.ihep.ac.cn/event/15106/contributions/36900/attachments/18095/20642/20210825_cepc.pdf
https://www.researchgate.net/publication/355730490_Charged_Hadron_Identification_with_dEdx_and_Time-of-Flight_at_Future_Higgs_Factories
https://doi.org/10.1007/s41365-025-01670-y
https://arxiv.org/pdf/2105.07064

Significant Data Rate Challenge

» Basic Parameters (e.g. IDEA DCH) [0 Continuous Data Rate
* Number of sense wires: N = 56,448 (Triggerless mode)
* Sampling rate (assumed): f, = 1.5 GHz Riotal = Nywires X fs X bits per sample x 2
e ADC resolution (assumed): 12 bits/sample = 56,448 x 1.5 x 10” x 12 bits/s x 2
e Maximum drift time (assumed): 500 ns = 2.03 x 10*° bits/s
* Read both ends of the wires = 254 TB/s
[J 100 kHz Trigger Data Rate
(Z-pole mode)
> TB/S S way too high! Ririggered = Nwires X ftrigger X tdrifs X fs X bits per sample x 2
Our Solution: ML-based compression at source = 56,448 x 10° x 500 x 1072 x 1.5 x 10° x 12 bits/s x 2
— — 10.16 x 10" bits/s
ionization, _ _
Drift cluster. On-Chip Analysis  One Single Number =12.7 TB/s
Cell | senseg”
wire .f (#Clusters)
\/ = Triggerless Mode: 254 TB/s = 125 GB/s
onizing = Z-pole Mode: 12.7 TB/s - 6.25 GB/s

particle

SL,%‘-\’:: 9th IDEA Study Group meeting 29



Clusterization Algorithms Summary

Non-ML Results:

Note:
1.True peaks - Truth-level peak-finding results

2.HIGH - Peak-dense regions [150, 500)

L Lo L [V e R B
Mean Relative Error 0.1% -2.2% 0.4% -0.3% -1.5% -17.7% 4.5%
Std 0.231 0.171 0.291 0.135 0.116 0.233 0.291
Correlation 0.640 0.734 0.591 0.781 0.844 / /
ML Results:
ARG MR EEER) = The direct #cluster-regressor model seems to
Mean Relative Error -1.04% 7.71% be promising!
Std 0.113 0.169
Correlation 0.85 0.76

el A~
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Frequency

10 GeV Momentum K/1t Separation (unnormalized)

400 ;
0 Pion (FCA), Mean: 26.801, Std: 7.133
| Kaon (FCA), Mean: 24.058, Std: 7.131
350 |
300 |
250
D2+FCA
200 .

150 A

100 A

0 10 20 30 40 50 60 70 80
Primary Counts
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= Pion (ACA), Mean: 26.327, Std: 5.840
' Kaon (ACA), Mean: 23.748, Std: 5.926

D2+ACA

Primary Counts
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More ML-Based Cluster Counting Paradigms

» Flexible Configurations
= On-Chip DNN Regressor
= (Classical (Non-ML) Strategy
« D2 +ACA/FCA i
[Peak-finding algorithm followed by clustering] 5o "
. ': Number of
i : Clusters
= Pure ML Strategy e | o
* CNN direct regressor : ‘1‘ : At
[Challenging to meet O(20 ns) latency requirement] = ; ‘\'\\{\J\\*
* DNN direct regressor TH O w W
Raw waveform
= (Classical + ML Hybrid Strategy = D2+ CNN Regressor
e D2+ CNN direct regressor
[On-Chip PF + off detector ML cluster counting] . e W
e Number of
. Clusters
P 1
iad o A4
. :‘\‘\\\‘ AN \ | 1
= = = = = Convolutional Global Dense
D2 Detected Peaks Layers + Average Layers
RelLu Pooling
25
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More ML-Based Cluster Counting Paradigms

> F|EXIb|e Conﬂgurat'O”S Kaon-Pion Separation
—&— Truth
= (Classical (Non'ML) Strategy 6.5 1 }\E 7 :%: gi:/;\((::ﬁ
° D2 + ACA/FCA N 1\1\—1— DNN 8-32-8 _
. . . . : —&— HLS4ML 60% Pru?ed <1(3, 5»>, DNN 8-32-8
[Peak-finding algorithm followed by clustering] I I S ! - LS <10, 5> DM 8328

—&— CNN

o0
=}
|

= Pure ML Strategy
* CNN direct regressor
[Challenging to meet O(20 ns) latency requirement]
* DNN direct regressor

Kaon-Pion Separation
A
19,1

4.0 1

3.5 9

3.0 1

= (Classical + ML Hybrid Strategy

* D2+ CNN direct regressor t . - - - - - -
[On-Chip PF + off detector ML cluster counting] Momentum (GeV)
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IDEA DCH-like Cell Array Simulation

Wire Types
" ® ®§E ®E ®E ®E ®E ®E ®E = A Sense Wire
W Field Wire

] A ] A ] A ]

3x3 Cell Array

= 20 pum diameter sense wires
= 40 pym diameter field wires

= Cell X2Y =14 mm: 12.5 mm

SL,%‘G 9th IDEA Study Group meeting

y [em]

1000

900

800

700

600

500

400

300

200

100

Potential Contours

Hinge the layers together

Cells offset by 1/4 cell between them

No +/- stereo angles in this exercise
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Event Display

= |onization generated in each cell is
properly drifted to the corresponding
sense wire
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