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Cluster Counting in the Future Drift Chamber
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 Cluster Counting Technique

sense wire

ionizing particle

Drift Cell

ionization cluster

 Counting dNcl/dx for PID

90%He+10%iC4H10
  δcl  = 12.5 cm-1

        + 
Ltrack = 2 m 

σ ≈ 2.0% (typical 4.3% for dE/dx)

Fast Read-out Source: Cluster counting algorithm for the CEPC 
drift chamber using LSTM and DGCNN

 2000 ns with 1.5 GHz sampling rate
 Cell size: 18 mm x 18 mm

Need an algorithm capable of effectively counting 
#clusters from the waveform!

 Better and Robust Resolution

https://doi.org/10.1007/s41365-025-01670-y


Significant Data Rate Challenge
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 Extreme Data Rates in Future Drift Chambers
 High granularity designs are required to meet the stringent tracking and PID performance demands
 Unprecedented challenges will arise with off-detector data rates above O(TB/s)
 High data rates require significant power and pose challenges

• Additional cooling needed for heat management
• Increased energy use reduces budget for services like cooling and cabling

 Our Solution: ML-based compression at source  

sense 
wire

ionizing 
particle

Drift 
Cell

ionization 
cluster Analysis at the Edge One Single Number

       (#Clusters)

 Sufficient data reduction:  O(TB/s)  → O(GB/s)
 Requires an algorithm that meets both High accuracy & Low latency
 Deployable in front-end readouts

+ Possibly more ...



Baseline Algorithms
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Basic Inspection of the Dataset
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 Dataset Overview
Event i Shape Note

‘wf_i’ 
(pulse shape) (1, 3000) 2,000 ns time window (1.5 GHz)

‘mom’ 
(Momentum) (1, 1) 0.2-20.0 

[GeV/c]

‘tag_times’ 
(x-value) (1, 300) 0 - 2999 (int)  

’tag_values’
(peak info) (1, 300)

0 - Background
1 - Primary ionization

2 - Secondary ionization

Source: Cluster counting algorithm for the CEPC drift chamber using LSTM and DGCNN

Several questions about this simulation dataset

 Why does the percentage of secondary ionization increase over time?
 What are the few ionizations occurring after 1000 ns?
 How can the drift velocity be inferred from the maximum drift time 

observed (approximately 1000 ns here)?

https://doi.org/10.1007/s41365-025-01670-y


Baseline Algorithms for Cluster Counting
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 Main Idea
                         Peak Finding Algorithm  +  Cluster Counting Algorithm
                               (Identify peak candidates)                    (Merge peaks into clusters)

 D2 Algorithm
 Threshold-based derivative approach

• T1 (Amplitude threshold to suppress noise)
• T2 (2nd-derivative threshold for peak confirmation)

 Return a list of detected peaks

Requires experimentation

Truth Label D2 Peak Finding

Event Display

Mean Percent Error
2%



Baseline Algorithms for Cluster Counting
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 Main Idea
                         Peak Finding Algorithm  +  Cluster Counting Algorithm
                               (Identify peak candidates)                    (Merge peaks into clusters)

D2 Algorithm
Peak-finding
return lists of peaks

Fixed-Clusterization Algorithm (FCA)

Adapted-Clusterization Algorithm (ACA)

 Input
• b: Number of units to look forward in time window
• c: Clusterization factor
• d: Maximum number of peaks in a window

 3D scanning for parameters determination

 Input:  
• b,c,d → b-map, c-map, d-map

 Scaning the parameters region by region:
• R1: (0, 130)
• R2: (130, 400)
• R3: (400, 1550)
• R4: (1550, 3000)

b

• #clusters  = 4/c
• #clusters  ≤ d

R1 R2 R3 R4

Requires experimentation



Baseline Algorithms for Cluster Counting
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 Performance Comparison of ACA and FCA

 The ACA demonstrates higher prediction accuracy and 
resolution compared to the FCA

 ACA consistently outperforms FCA across the time scale
 "Learning" features from different time regions proves effective 

(suggesting that ML may yield better results)



ML Algorithm Attempts
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Truncated Waveforms as Input
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 Sample Reduction 

 3,000→500 samples to emulate the reduction of the CEPC cell size

 Maintain the 1.5 GHz sampling rate

 Corresponding to a maximum drift time of ~350 ns
       (Aligns with IDEA DCH of 300-600 ns)

 Track length analysis
• 12.5 clusters per waveform after truncation
• 9.3 mm track length per cell (derived from 12.6 clusters/cm)

CEPC Cell
18 x 18 mm

IDEA Cell
12 x 14.5 mm

Assuming vdrift = 2 cm/μs, the cell 
radius will be roughly 6.7 mm 
(after truncation)   

sense wire
field wire



ML-Based Cluster Counting Paradigms
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 Configurations
 Classical (Non-ML) Strategy

• D2 + FCA
• D2 + ACA

 ML Strategy
• DNN direct regressor

On-Chip DNN Regressor

Peak finding algorithm followed by a clusterization algorithm

Directly predict #clusters for each waveform



Compression Strategies for Edge Deployment
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 Model Quantization and Pruning
 Goal: To develop a model that meets strict resource and latency requirements for real-time processing

ML Model Training Quantization Pruning

Lowering the precision of 
model weights and activations

Eliminating model weights and activations 
that have minimal impact on predictions

 400k for training
 100k for validation
 100k for testing



Hls4ml for Model Evaluation on FPGAs
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 Workflow for Model Evaluation

 Evaluation Report

Documentation

 Translate trained models into HLS code 
for FPGA implementation

 Configuration
• Reuse factor = 1
• io_parallel

 Latency of 50 ns enables real-time applications in future colliders with O(10) ns bunch crossing rates

https://fastmachinelearning.org/hls4ml/


Model Performance Summary
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 Baseline DNN Model
 Without QAT or pruning

 Overall, the model's predictions closely match the truth labels, 
with some deviations at the peaks

 The 2D plot of predictions vs. truth shows a strong correlation

 K/π-Separation Summary

 All the DNN models outperform classical algorithms across all tested ranges
 Under a track length of 2 m, all ML models achieve K/π separation powers 

exceeding 3σ
 Compared to the truth (the best ideal limit), there remains significant 

potential for ML performance improvement



Future Directions

9th IDEA Study Group meeting 16

 Additional Model Variants
 Autoencoder-based compression with off-detector decoding
 On-chip split-DNN
 VAE-based anomaly detection
 ...

 More Realistic IDEA DCH Simulation
 More detector details, electronic parameters, and transfer functions ...
 Further exploration of ML performance under different gas fill conditions
 ...

 Power Consumption Evaluation of Chip Designs
 Ensuring compatibility with future drift chamber specifications



Summary
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 Future drift chambers will face the challenge of handling TB/s data rates. Machine learning applied 
at the source for cluster counting shows significant potential for real-time data reduction in next-
generation drift chambers.

 ML-based cluster counting techniques have been demonstrated, showing improved pion-kaon 
separation performance compared to traditional methods.

 Compressed ML models have been shown to be viable for deployment in front-end readout ASICs. 
Findings from FPGA synthesis studies validate this potential, demonstrating effective performance 
and resource utilization.

 Accurate Garfield++ simulations that closely represent the IDEA drift chamber are essential for 
advancing further research into ML applications and detector design optimization in the future.



Back ups
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 T1:  3x RMS of the average noise amplitudes

                        

 T2: Accuracy vs. T2 Threshold Scanning 
            

D2 Threshold Determination
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T2=0.05332

Perfect match!

arXiv:2402.16493v3

https://arxiv.org/abs/2402.16493v3


Basic Inspection of the Dataset
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 Puzzles about the Cluster Size?

Mean Nt/Np = 1.32

 Naive 3x3 cell array Garfield++ simulation [18.46/12.56 = 1.47]

 Online source (NTP, MIPs)   [26.7 /  12.7  = 2.10] 

 Dr. Gravili’s slides on IDEA DCH 2024 (Page 14)                            

Gas Density *10-3 

(g/cm3) Np (cm-1) Nt(cm-1)

He-iC4H10
(90-10) 0.42 12.7 26.7

Cluster Size of Helium-isobutane Mixture

CEPC Simulation 
Dataset

https://project-cms-rpc-endcap.web.cern.ch/rpc/Physics/GasPhysics/1110.6761 Copy.pdf
https://indico.in2p3.fr/event/20053/contributions/137838/attachments/83983/125157/DriftChamberIDEA.pdf


 Source: Detector Requirements Analysis on the Pion-Kaon Separation

 Source: Charged Hadron Identification with dE/dx and Time-of-Flight at Future Higgs Factories

 Source: Production of charged pions, kaons and (anti-)protons in Pb-Pb and inelastic pp collisions 
at �푁푁 = 5.02 TeV

 Source: Cluster counting algorithm for the CEPC drift 
chamber using LSTM and DGCNN

 Source: Simulation of particle identification with the 
clustercounting technique

Basic Inspection of the Dataset
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 K/π-Separation Power Defination?

 Version A  Version B

 Version C

 Version D

Following Version A in this research, but 
may consider Version D in the future

https://indico.ihep.ac.cn/event/15106/contributions/36900/attachments/18095/20642/20210825_cepc.pdf
https://www.researchgate.net/publication/355730490_Charged_Hadron_Identification_with_dEdx_and_Time-of-Flight_at_Future_Higgs_Factories
https://doi.org/10.1007/s41365-025-01670-y
https://arxiv.org/pdf/2105.07064


Significant Data Rate Challenge
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 Basic Parameters (e.g. IDEA DCH)
• Number of sense wires: Nwires = 56,448
• Sampling rate (assumed): fs  = 1.5 GHz
• ADC resolution (assumed): 12 bits/sample
• Maximum drift time (assumed): 500 ns
• Read both ends of the wires

 Continuous Data Rate 
(Triggerless mode)

 100 kHz Trigger Data Rate 
(Z-pole mode)

 TB/s is way too high!
     Our Solution: ML-based compression at source 

sense 
wire

ionizing 
particle

Drift 
Cell

ionization 
cluster On-Chip Analysis One Single Number

       (#Clusters)

 Triggerless Mode:  254  TB/s  → 125 GB/s
 Z-pole Mode:          12.7 TB/s  → 6.25 GB/s 



Clusterization Algorithms Summary
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D2 + FCA D2 + ACA D2/1.32 True peaks
+ FCA

True peaks
+ ACA

D2 + FCA
(HIGH)

D2 + ACA
(HIGH)

Mean Relative Error 0.1% -2.2% 0.4% -0.3% -1.5% -17.7% 4.5%

Std 0.231 0.171 0.291 0.135 0.116 0.233 0.291

Correlation 0.640 0.734 0.591 0.781 0.844 / /

Note:
1.True peaks - Truth-level peak-finding results
2.HIGH - Peak-dense regions [150, 500)

Direct 
N-Regressor

CNN 
Non-Regressor

Mean Relative Error -1.04% 7.71%

Std 0.113 0.169

Correlation 0.85 0.76

ML Results:

Non-ML Results:

 The direct #cluster-regressor model seems to 
be promising!



10 GeV Momentum K/π Separation (unnormalized) 
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D2+FCA D2+ACA



More ML-Based Cluster Counting Paradigms
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 Flexible Configurations
 Classical (Non-ML) Strategy

• D2 + ACA/FCA
      [Peak-finding algorithm followed by clustering]

 Pure ML Strategy
• CNN direct regressor
      [Challenging to meet O(20 ns) latency requirement]
• DNN direct regressor

 Classical + ML Hybrid Strategy
• D2 + CNN direct regressor
      [On-Chip PF + off detector ML cluster counting]

 On-Chip DNN Regressor

 D2 + CNN Regressor



More ML-Based Cluster Counting Paradigms
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 Flexible Configurations
 Classical (Non-ML) Strategy

• D2 + ACA/FCA
      [Peak-finding algorithm followed by clustering]

 Pure ML Strategy
• CNN direct regressor
      [Challenging to meet O(20 ns) latency requirement]
• DNN direct regressor

 Classical + ML Hybrid Strategy
• D2 + CNN direct regressor
      [On-Chip PF + off detector ML cluster counting]



 20 μm diameter sense wires

 40 μm diameter field wires

 Cell X:Y = 14 mm: 12.5 mm

3x3 Cell Array

 Hinge the layers together 

 Cells offset by 1/4 cell between them

 No +/- stereo angles in this exercise

Potential Contours

 Ionization generated in each cell is 

properly drifted to the corresponding 

sense wire

Event Display
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IDEA DCH-like Cell Array Simulation

1 GeV π-

9th IDEA Study Group meeting


