Beam Monitoring with SAND

Federico Battisti University of Bologna and INFN Bologna

DUNE Italia Collaboration Meeting 2025

Outline

In this presentation:

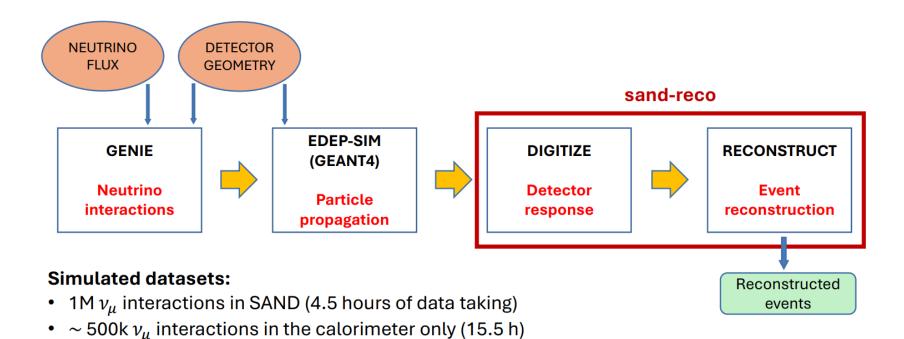
- Presentation of proof of concept beam monitoring analisys with SAND STT
- Based on thesis work by Francesco Barilari, supervised by me, Matteo Tenti and Gabriele Sirri (https://amslaurea.unibo.it/id/eprint/35319/)
- Thesis work concluded in March 2025, only presented to the collaboration during group meeting

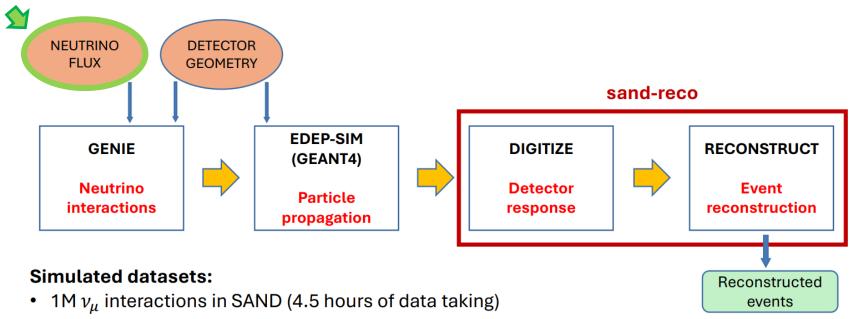
DUNE-ITA CM 2025

Beam monitoring procedure with SAND

The prompt **detection of beam variations** is crucial to **validate** measurements at Far Detector

How? Periodic comparison of beam spectra at the near site with SAND detector


Observable used for comparison in this work: reconstructed muon momentum

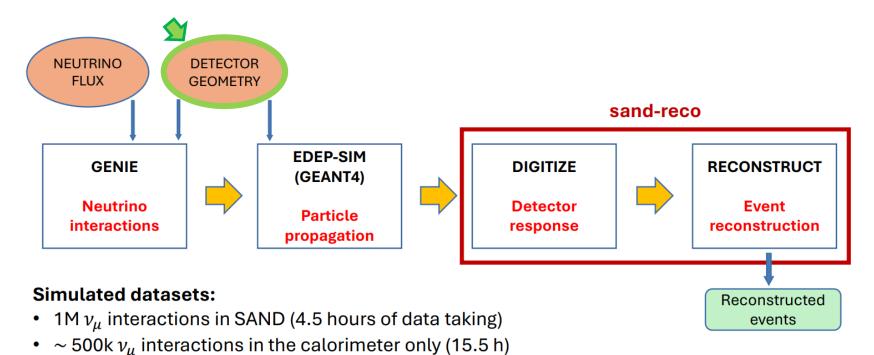

Analysis procedure:

- Full simulation of neutrino interactions in SAND
- Selection and characterization of muon neutrino CC interactions
- Generation of altered spectra
- Comparison and results

DUNE-ITA CM 2025

• \sim 500k ν_{μ} interactions in the calorimeter only (15.5 h)

Neutrino flux and variations

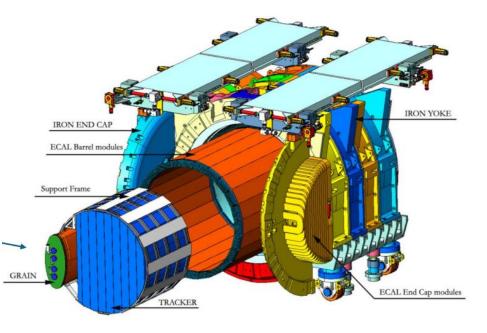

- Neutrino flux histograms are disseminated by the DUNE collaboration at this link: https://glaucus.crc.nd.edu/DUNEFluxes/
- Provided the Formula of the Formula
- What is not readily available are the input files needed by Genie (gsimple/dk2nu) to produce a full simulation in a detector geometry (had to use workaround, see later slides)
- These files are being made available by the FNAL computing team, but it's still a work in progress

Variations

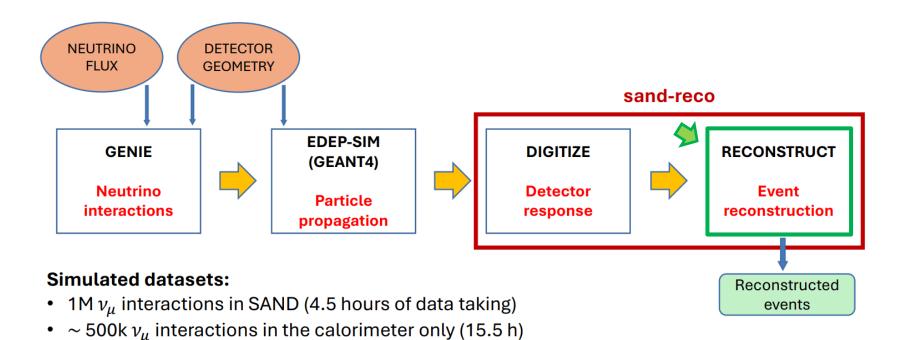
BaffletScrapingInX_pos_1_sigma
BaffletScrapingInX_neg_1_sigma
BaffletScrapingInY_pos_1_sigma
BaffletScrapingInY_neg_1_sigma

HornCurrent_pos_1_sigma HornCurrent_neg_1_sigma HornWaterLayerThickness_pos_1_sigma HornWaterLayerThickness_neg_1_sigma ProtonBeamRadius_pos_1_sigma ProtonBeamRadius_neg_1_sigma

DecayPipe3SegmentBowingX(Y)_pos(neg)_1_sigma DecayPipeDisplaceTransverseX(Y)_pos(neg)_1_sigma DecayPipeEllipticalCrossSectionXA(YB)_pos(neg)_1_sigma DecayPipeGeoBField_pos(neg)_1_sigma DecayPipeRadius_pos(neg)_1_sigma DecayPipeTiltX(Y)_DSOA_pos(neg)_1_sigma HornADisplaceLongitudinalZ_pos(neg)_1_sigma HornADisplaceTransverseX(Y)_pos(neg)_1_sigma HornAEccentricityXInducedBField_pos(neg)_1_sigma HornAEllipticityXInducedBField_pos(neg)_1_sigma HornATiltTransverseX(Y)_pos(neg)_1_sigma HornBDisplaceLongitudinalZ_pos(neg)_1_sigma HornBDisplaceTransverseX(Y)_pos(neg)_1_sigma HornBEllipticityXInducedBField_pos(neg)_1_sigma HornBTiltTransverseX(Y)_pos(neg)_1_sigma HornCDisplaceLongitudinalZ_pos(neg)_1_sigma HornCDisplaceTransverseX(Y)_pos(neg)_1_sigma HornCEccentricityXInducedBField_pos(neg)_1_sigma HornCEllipticityXInducedBField_pos(neg)_1_sigma HornCTiltTransverseX(Y)_pos(neg)_1_sigma ProtonBeamAngleX(Y)_pos(neg)_1_sigma ProtonBeamTransverseX(Y)_pos(neg)_1_sigma TargetDensity_pos(neg)_1_sigma TargetDisplaceTransverseX(Y)_pos(neg)_1_sigma TargetLength_pos(neg)_1_sigma TargetTiltTransverseX(Y)_pos(neg)_1_sigma DecayPipeLength_pos(neg)_1_sigma



SAND geometry


- SAND geometry used for this work is standard STT configuration
- Identified as SAND_opt3_STT1.gdml
- A copy of the gdml file can be found in neutrino-01 (CNAF server) at: /storage/gpfs_data/neutrino/SAND/GDML-GEO/SAND opt3 STT1.gdml

Straw Tube Tracker

Notes on tracker reconstruction

sandreco / src / reconstruction.cpp

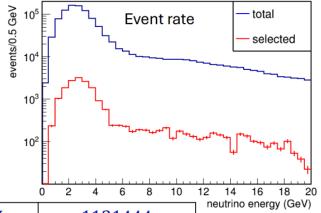
```
1905 case STT_Mode::fast:

1906 TrackFind(ev, vec_digi, vec_tr, trackerType);

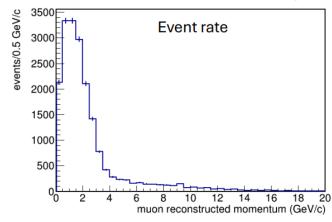
1907 TrackFit(vec_tr);

1908 break;
```

https://github.com/DUNE/sandreco/blob/241ba 4c9126d4d23ee9214b50569b7c1154eaf9a/src /reconstruction.cpp#L1900


- For this study charged particle tracks in STT were reconstructed using a simple helix fit applied to smeared trajectory points (fastreco option in sandreco)
- Track formation from MC truth info;
- Disregarded digitization, done simply with truth smearing;
- No Kalman Filter (no handling of enrgy loss/multiple scattering);

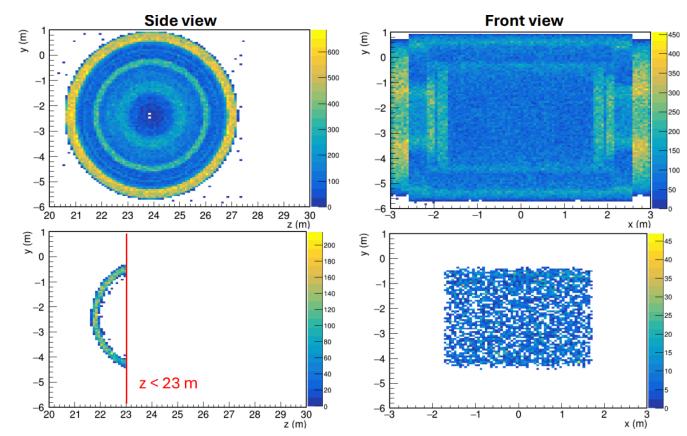
N.B. Predates most up-to-date reconstruction presented by G.Lupi



Event Selection

Several cuts to select events interacting in the front calorimeter with a muon-like particle

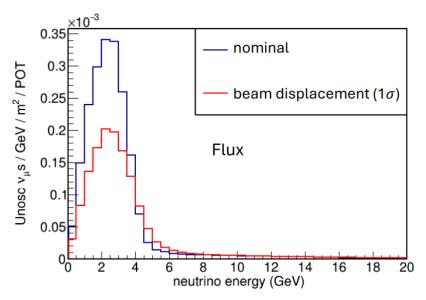
N_{tot}	1121444		
N_1	845195		
N_2	25693		
N_3	23945		
N_4	18881		
R	0.0168 ± 0.0001		

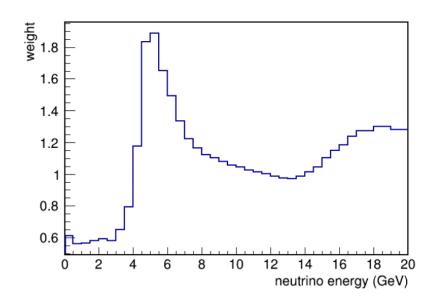

- 1. Charge current interactions
- MC truth
- 2. Vertex in the front calorimeter
- 3. Neutrino energy less than 20 GeV
- 4. Muon *well* reconstructed in the tracker (Reconstruction produced non zero result)

Vertex position

Full dataset

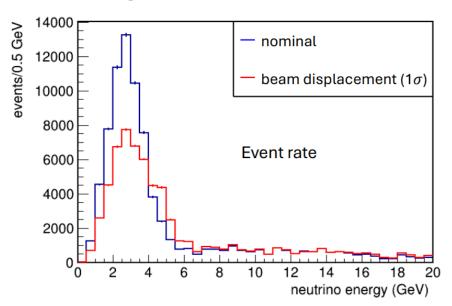
Selected sample: vertices in the front calorimeter

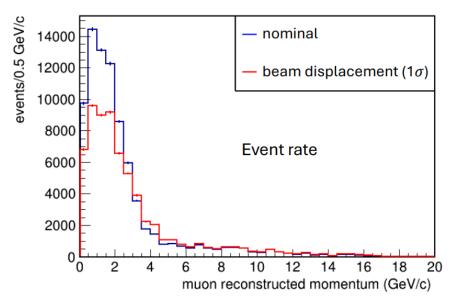



Altered flux re-weighting (work-around)

The altered **flux** data cannot be used as input for a full simulation

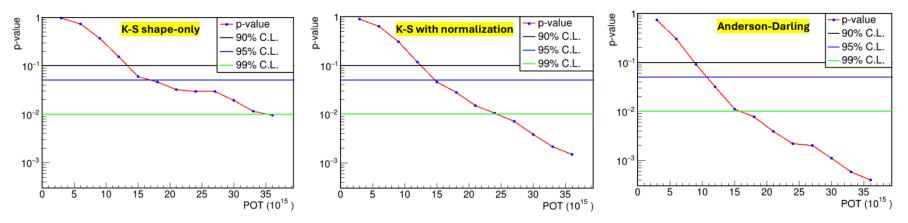
Re-weight events according to their neutrino energy




Weights are evaluated as the **ratio bin-by-bin** between the two fluxes (altered / nominal)

Muon momentum spectra

Histograms filled with muon momentum weighted by the flux ratio


Muon reconstructed momentum spectra compared using two-sample test statistics:

- Kolmogorov-Smirnov (both shape-only, and considering the normalization)
- Anderson-Darling

Critical value to consider the test successfull: p-value < 0.01 (99% C.L.)

Analysis and results

p-values computed as a function of POT for «beam displacement (1σ) » variation

Results:

- Variation of the nominal flux can be found in **few minutes** ($\sim 10^{16}$ POT)
- Anderson-Darling test is the most effective

All other 93 variations considered are not resolved with this statistics, which is limited to 20 hours

Results for all variations

- With our limited simulated statistics (~ 20 hours data-taking) we are sensitive to the most substantive flux variations
- Some very limited sensitivity was found for other for additional variation sets
- No sensitivity was found for the majority of variations
- Higher statistics needed to study sensitivity to other variations

Variations	KS	shape KS	shape AD
BaffletScrapingInX_pos_1_sigma	$< 10^{-15}$	$< 10^{-15}$	$< 10^{-15}$
BaffletScrapingInX_neg_1_sigma	$< 10^{-15}$	$< 10^{-15}$	$< 10^{-15}$
BaffletScrapingInY_pos_1_sigma	$< 10^{-15}$	$< 10^{-15}$	$< 10^{-15}$
BaffletScrapingInY_neg_1_sigma	$< 10^{-15}$	$< 10^{-15}$	$< 10^{-15}$
HornCurrent_pos_1_sigma	0.999	0.994	0.867
HornCurrent_neg_1_sigma		0.999	0.937
HornWaterLayerThickness_pos_1_sigma		1	1
HornWaterLayerThickness_neg_1_sigma		0.998	0.951
ProtonBeamRadius_pos_1_sigma		0.922	0.469
ProtonBeamRadius_neg_1_sigma	0.999	0.998	0.846
DecayPipe3SegmentBowingX(Y)_pos(neg)_1_sigma	1	1	1
DecayPipeDisplaceTransverseX(Y)_pos(neg)_1_sigma		1	1
DecayPipeEllipticalCrossSectionXA(YB)_pos(neg)_1_sigma		1	1
DecayPipeGeoBField_pos(neg)_1_sigma	1	1	1
DecayPipeRadius_pos(neg)_1_sigma	1	1	1
DecayPipeTiltX(Y)_DSOA_pos(neg)_1_sigma		1	1
HornADisplaceLongitudinalZ_pos(neg)_1_sigma		1	1
HornADisplaceTransverseX(Y)_pos(neg)_1_sigma		1	1
HornAEccentricityXInducedBField_pos(neg)_1_sigma		1	1
HornAEllipticityXInducedBField_pos(neg)_1_sigma	1	1	1
		1	1
HornATiltTransverseX(Y)_pos(neg)_1_sigma		1	1
HornBDisplaceLongitudinalZ_pos(neg)_1_sigma		1	1
HornBDisplaceTransverseX(Y)_pos(neg)_1_sigma		1	1
HornBEllipticityXInducedBField_pos(neg)_1_sigma	1	1	- 3
HornBTiltTransverseX(Y)_pos(neg)_1_sigma			1
HornCDisplaceLongitudinalZ_pos(neg)_1_sigma	1	1	1
HornCDisplaceTransverseX(Y)_pos(neg)_1_sigma	1	1	1
HornCEccentricityXInducedBField_pos(neg)_1_sigma	1	1	1
HornCEllipticityXInducedBField_pos(neg)_1_sigma	1	1	1
HornCTiltTransverseX(Y)_pos(neg)_1_sigma	1	1	1
ProtonBeamAngleX(Y)_pos(neg)_1_sigma	1	1	1
ProtonBeamTransverseX(Y)_pos(neg)_1_sigma	1	1	1
TargetDensity_pos(neg)_1_sigma		1	1
TargetDisplaceTransverseX(Y)_pos(neg)_1_sigma		1	1
TargetLength_pos(neg)_1_sigma	1	1	1
<pre>TargetTiltTransverseX(Y)_pos(neg)_1_sigma</pre>		1	1
DecayPipeLength_pos(neg)_1_sigma	1	1	1

Conclusions and Outlooks

Summary

- Completed proof of concept study on beam-monitoring capabilities of SAND-STT
- Simulated statistics equivalent to ~ 20 hours of data taking and reweighed muon spectra based on 93 flux variation provided by DUNE collaboration
- Using re-weighed reconstructed muon spectra from ν_{μ} CCQE: showed **sensitivity to** most significant variations

Outlook & Conclusions

- Limitations:
- 1. Cuts and reconstructions heavily reliant on MC truth (not up-to-date)
- 2. Flux variations not fully simulated, just re-weighed
- 3. Only one observable considered
- 4. Very limited statistics
- Study serves as solid proof-of-concept and gives a model for future work

Thank you!

backup

