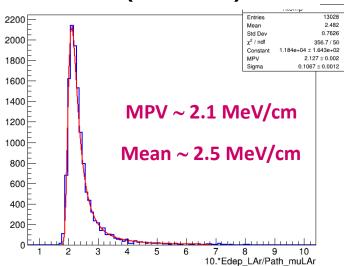


GRAIN calibration with muons

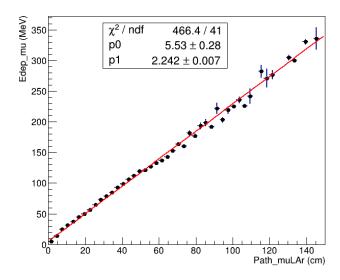
Antonio Surdo

INFN - Lecce Group


DUNE-Italy Collaboration Meeting LNF, 10-12 November 2025

Use of muons for GRAIN calibration

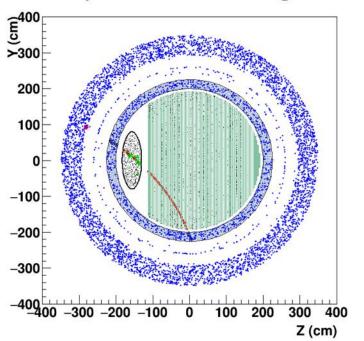
- ✓ Natural energy calibration probe: MIPs crossing the LAr volume
 - muons from the beam interactions outside GRAIN (detectors, rock, ..)
 - cosmic ray muons
- ✓ Specific energy loss by muons in LAr


$\Delta E/\Delta L$ (MeV/cm)

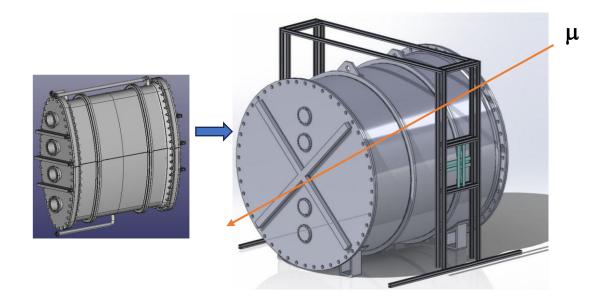
 Δ L: pathlength in GRAIN LAr

 ΔE : energy loss by the muon in ΔL

Relation btw ΔL and ΔE



Correlation useful to extract muon energy deposit from Track-length


Muons crossing GRAIN

 \blacktriangleright Muons as MIPs crossing LAr volume in GRAIN are easily available both on the ν beam and in GRAIN prototypes (ARTIC and LNL)

Muon from ν interaction in the yoke and crossing GRAIN

Full-scale GRAIN prototype at LNL

Expected muon flux from the beam and CRs

✓ Different contributions of the target masses in SAND for beam neutrinos

Table 1.29: Total number of $(\nu_{\mu} + \bar{\nu}_{\mu} + \nu_{e} + \bar{\nu}_{e})$ CC+NC events expected within a single beam spill (9.6 μ s, 7.5 \times 10¹³ POT) in the various detector components for both the FHC and RHC beam modes.

Detector element	Mass	FHC	RHC	
Magnet	511 t	68.9	36.6	
ECAL	100 t	13.5	7.2	
LAr+STT	8.2 t	1.1	0.59	
STT fiducial volume	5.5 t	0.74	0.39	
Total	619.2	83.5	44.39	

	Magnet Yoke		ECAL		Yoke + ECAL		GRAIN	
Total/spill	69		14		83		0.14	
CC + (NC)	51	(18)	10	(4)	61	(22)	0.1	(0.04)
Evts in ECAL	12 (24%)		10 (100%)		22 (36%)			
Evts in GRAIN	2.2 (4,4%)		2.0 (19%)		4.2 (6,9%)		0.1	
μ's from rock	~1.7/spill in GRAIN (*)							

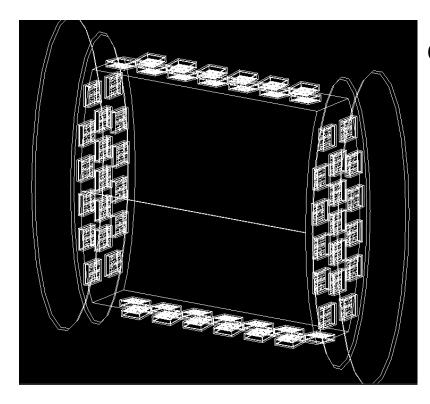
 From the interaction rate /spill in Magnet yoke and ECAL, a quite low number of <u>clean muons</u> are expected to cross GRAIN per spill (≤ 1 / spill)

Table 1.34: Number of events per spill (9.6 μs , 7.5 \times 10¹³ POT) and selection efficiency for the signal from ν_{μ} CC in the front barrel ECAL and the backgrounds from rock muons and magnet events.

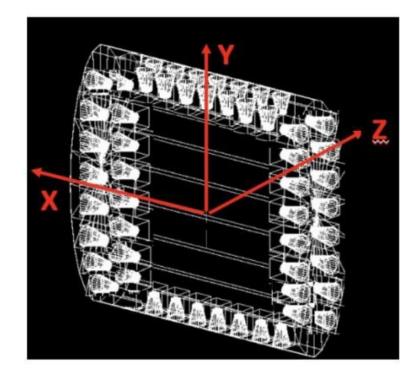
	ECAL		Rock r	nuons	Magnet events		
Cut	Events	ε (%)	Events	ε (%)	Events	ε (%)	
No cut	2.23	100.0	1447.26	100.000	50.82	100.000	
μ in ECAL FV	2.23	100.0	12.73	0.880	18.92	37.229	
STT & ECAL hits	1.63	72.9	6.05	0.420	3.443	6.775	
NN cut	1.56	95.5	0.10	0.007	0.07	0.136	

Further contribution from rock μ's (~ 1.7/spill)

✓ Contribution from Cosmic Rays ...


CR Muon flux at surface ~ 0.01 μ /(s cm²) + underground reduction of ~ 100 Effective area of GRAIN for <60° CR muons: ~3×10⁴ cm² \Rightarrow ~ 3 μ /s are expected to cross GRAIN

Drawback: smaller acceptance by the tracker for a precise track reconstruction


Main contribution only if inter-spill DAQ were ON

GRAIN Detector readout by photosensors

Coded masks

Lenses

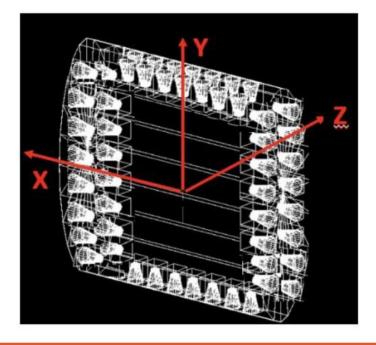
- 1024 SiPM matrix
- SiPM 3x3 mm² area
- mask of same size and hole pitch as SiPM matrix
- 60 cameras inside GRAIN, total 62k channels

- 53 cameras for maximum coverage:
 - 16 pairs on the sides (at optimal distance)
 - 7 pairs on top
 - 7 single cameras on bottom
- 32 x 32 SiPM matrix, with 2 mm pixels and 20% PED

Imaging setup: Lens-camera system

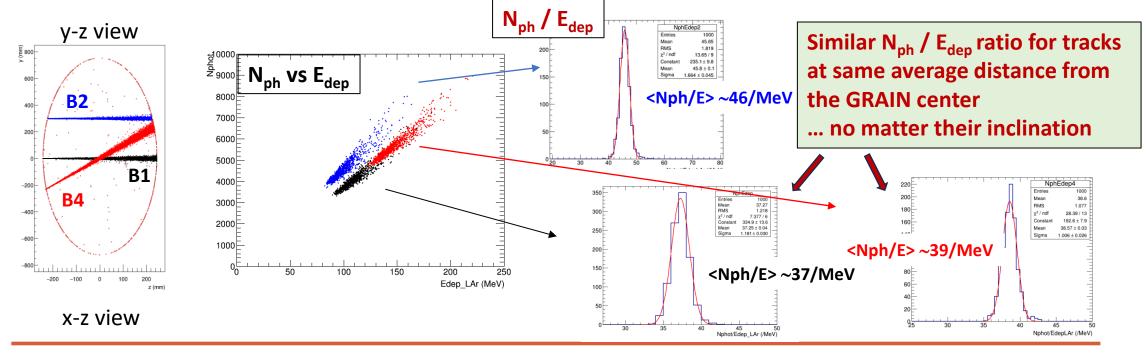
Scintillation light photons propagated in LAr and collected by the photo-sensor system through *OptMen* code

Simulation of the Lens-camera setup with proper SiPM-PDE and Electronics


Sensor matrix:

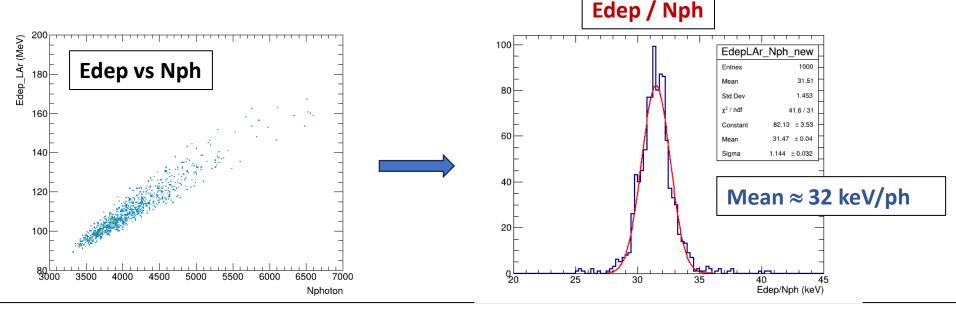
A. Surdo

- 32 x 32 Silicon Photomultipliers (SiPM)
- SiPM active area: 2x2 mm²
 PDE ≈ 0.1 0.2


Total # of 53 cameras in GRAIN

Simulation of muon beams crossing GRAIN

- Scintillation photon emission $f \sim 4.10^4$ ph/MeV
- The photon collection depends on the energy deposit location inside GRAIN, according to the camera layout
 - ⇒ The calibration constants are functions of the position and orientation of the track related to the scintillation light emission



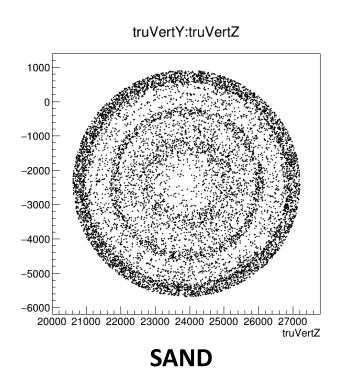
Calibration constants for energy estimate

Mean of the distribution of (Edep_LAr / Nphoton) taken as calibration constant

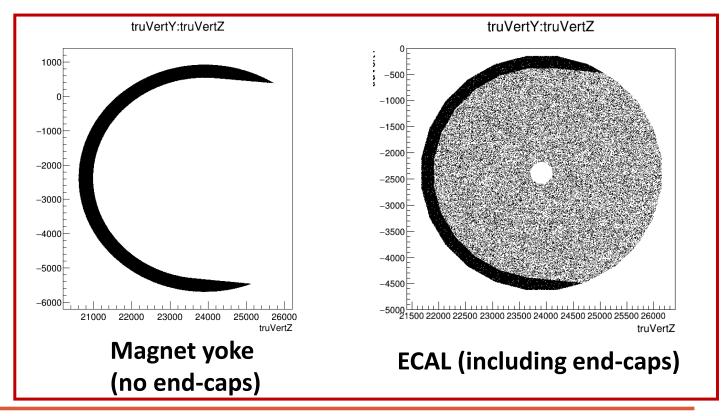
for a given position inside GRAIN

Random beam

The "constants" are parametrized with the distance from GRAIN center, to account for dependence on the average position of deposited energy (the track) on X and Y axes

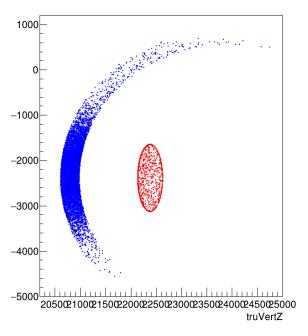

Assumption: track position and length reconstructed in GRAIN

(by combining information also from Tracker and Ecal)


Monte Carlo simulation of v interactions

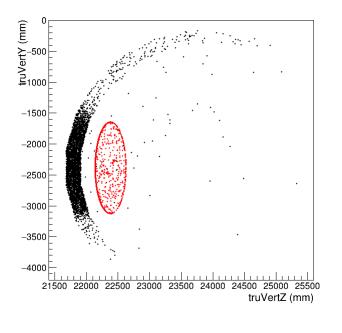
✓ Three samples of nu_mu CC interactions in whole SAND, in the Magnet yoke and in ECAL were generated through GENIE

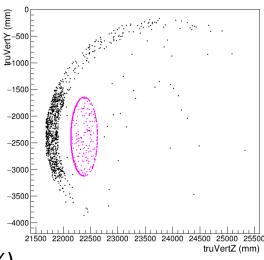
Distribution of interaction vertexes:


A. Surdo

Events with the muon entering GRAIN

Vertex in the Magnet yoke


Total interaction events: 441,000

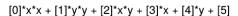

Muons entering GRAIN: ~ 13,000 (3%)

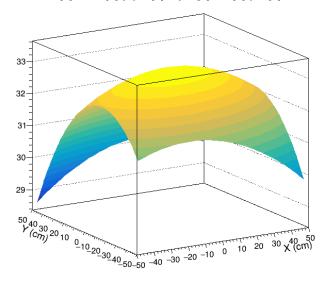
Clean muons: ~ 10,000 (2.3%)

Vertex in ECAL

Total interaction events: 200,000

Muons entering GRAIN: ~ 6,000 (3%)


Clean muons: ~ 1,500 (0.8%)


Calibration constants for <u>any position</u> in X-Y plane

The GRAIN surface ΔX = (-50cm,50cm) and ΔY = (-50cm,50cm) was subdivided into 100 cells (10cm x 10cm) and the sample of Yoke muons spread-out on the whole area was used

The average calibration constant was estimated in each cell from the Gaussian fit of the distribution of (Edep/Nphot) ratio for the muons crossing the cell

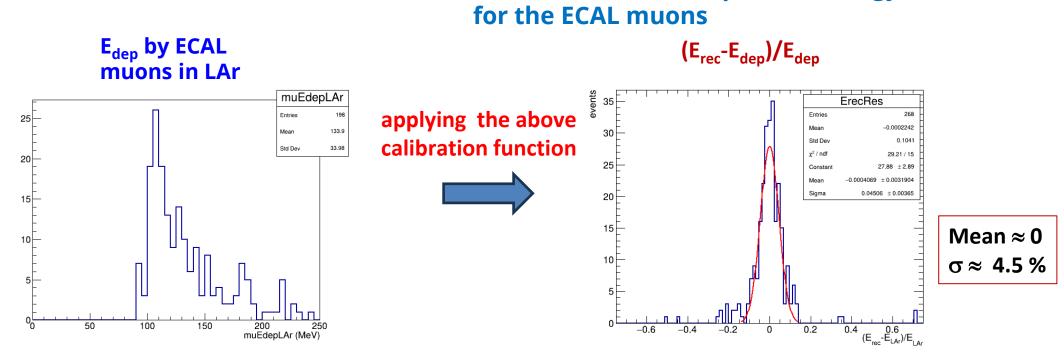
Fit of the most probable values of (Edep/Nphot) ratios in the grid with a 2D function of X and Y coord \rightarrow quadratic function used as a calibration function: $F_{cal}(x,y) = a \cdot x^2 + b \cdot y^2 + c \cdot xy + d \cdot x + e \cdot y + f$

- Muons from v interaction in Yoke
- \rightarrow Realistic muon distribution in GRAIN from ν beam
- Event statistics not huge, anyway enough to obtain the parametric function fitting the grid points

$$a = -3.9e-04$$

$$b = -1.0e-03$$

$$c = 2.7e-04$$


$$d = -1.44e-04$$

$$e = -1.4e-04$$

$$f = 33.1$$

Test of the Calibration function on ECAL μ 's

 \succ Calibration function tested on the sample of isolated muons from ν interactions in ECAL, as an independent muon sample

Cut: muons entering GRAIN with $E_{\mu}>300MeV$ and within 35cm from Z axis are selected

Reconstruction of deposited energy in GRAIN

Muons useful for GRAIN calibration

Requirements for muons to calibration purposes:

- produced outside GRAIN (from v interactions in ECAL, in the Yoke, in front detectors, in the rock, from cosmic rays, ..)
- with enough energy to reach and cross GRAIN as isolated particles
- with a minimum track length in the SAND Tracker, to ensure a precise measurement of the pathlength inside GRAIN LAr volume (combining the information from ECAL, GRAIN, Tracker)

DUNE-Italy Collaboration Meeting - 10-12/11/2025

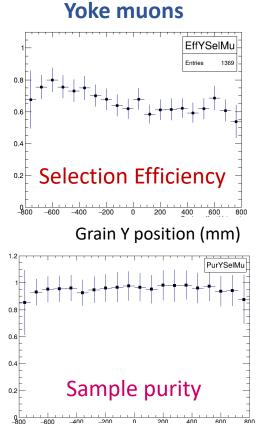
Selection of "calibration muons"

- ✓ In the real experiment, a proper selection of events with muons useful for GRAIN calibration will be needed, both for v beam muons and cosmic muons
- \checkmark Possible selection criteria for \lor beam muons (without use of MC info):
 - events with at most 1 cluster (with no more than 3 nearly contiguous cells) in the innermost layer of the upward ECAL

DUNE-Italy Collaboration Meeting - 10-12/11/2025

- energy deposit occurring in GRAIN
- a single track reconstructed in the Tracker, such that:
 - length $> L_min = 15$ (or 30) hits
 - geometrically crosses the GRAIN volume
 - matches the cluster in ECAL

Events with v interaction in ECAL


Events selection tests

✓ The above selection criteria were tested on the MC sample of v interactions in the Yoke and ECAL Yoke muons

- > Results:
- Efficiency:

A. Surdo

- Events with v interactions in Yoke: \approx 72 %
- Events with v interactions in ECAL: \approx 54 %
- Purity of selected sample:
 - Events with ν interactions in Yoke: \approx 94 %
 - Events with v interactions in ECAL: $\approx 68 \%$

Grain Y position (mm)

Events selection tests

- ✓ Additional selection cut in order to increase purity for <u>ECAL sample</u>:
 - events with at least 1 cluster in the 4th layer of the upward ECAL, matching the track (to ensure the muon production occurred up to that layer)
 - Updated results:
 - Efficiency:
 - Events with v interactions in Yoke: $\approx 72 \%$
 - Events with v interactions in ECAL: \approx 35 %
 - Purity of selected sample:
 - Events with v interactions in Yoke: $\approx 95 \%$
 - Events with v interactions in ECAL: \approx 72 %

17

Conclusions

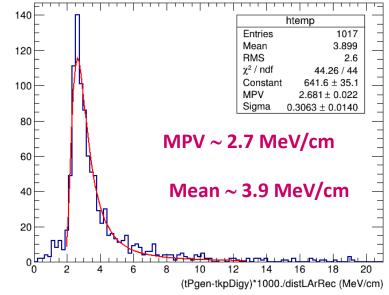
✓ What presented:

- Muons (from beam or cosmic rays) as natural probes for GRAIN calibration
- A possible calibration procedure investigated and tested, using simulated muons from beam v interactions in the Yoke and ECAL
- Definition of the basic requirements for calibration muons
- Possible event selection criteria for calibration muons from netrino beam

✓ Nest steps:

- evaluation of track-length inside GRAIN for selected events
- estimate of energy deposit from Edep vs Pathlength relation

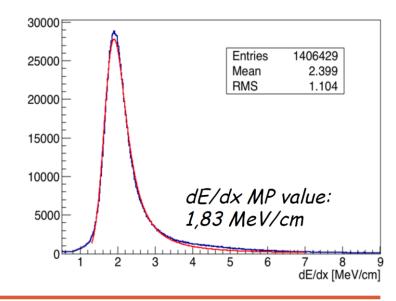
BACKUP



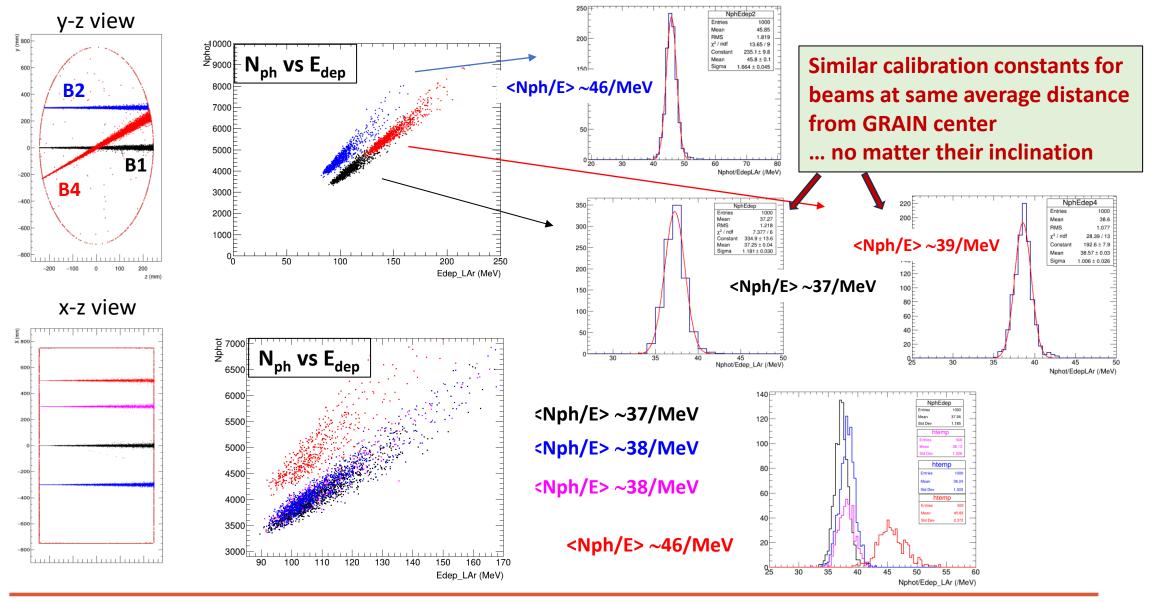
Muons crossing LAr volume

> Precise determination of <dE/dx> in LAr

From MC simulation of SAND, for a μ crossing GRAIN:



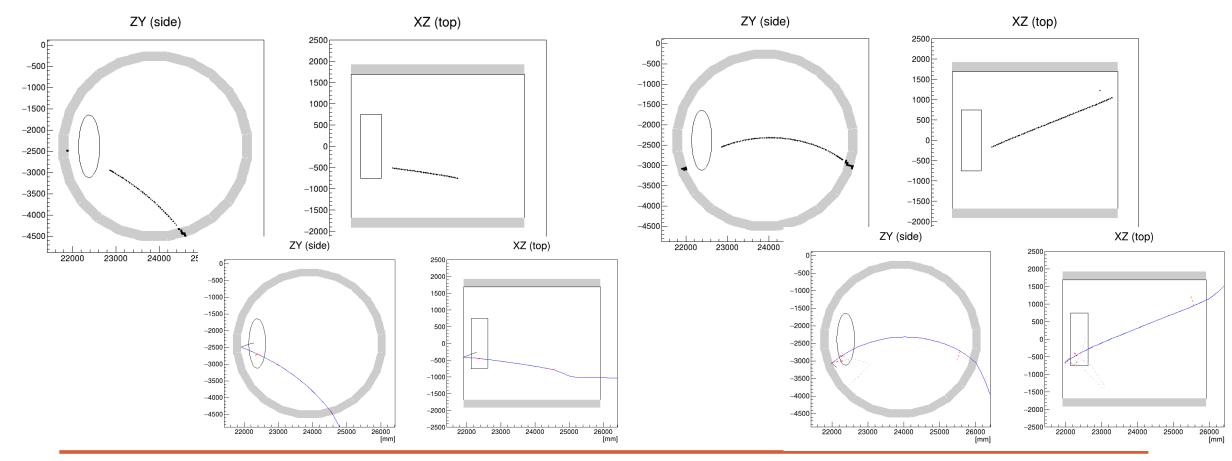
 Δ L: pathlength in GRAIN LAr


 ΔE : energy loss by the muon in ΔL

From ICARUS

Full 3D reconstruction on selected muon tracks crossing LAr volume

Muon beams with different positions and inclinations



DUNE-Italy Collaboration Meeting - 10-12/11/2025

Events selection tests

✓ Preliminary event selection for calibration muons: pure purity for <u>ECAL sample</u> due to interactions in ECAL internal layers with particles entering GRAIN but not tracked ...

