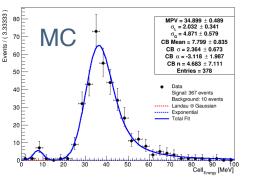
Report from SAND Calibration WG

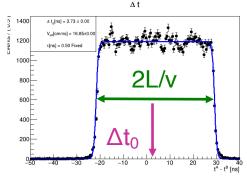
P.Gauzzi
(Universita' La Sapienza e INFN – Roma)
for the SAND Calibration WG

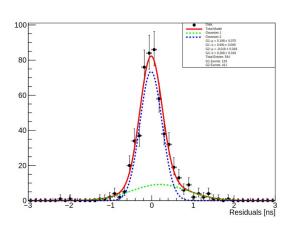
Meeting annuale della Collaborazione DUNE Italia LNF - November 11, 2025

SAND Calibration WG

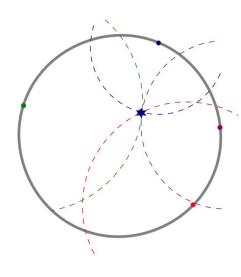
- Calibration: from detector signals to physical variables
 - ECAL: energy, time and positions of the particles
 - GRAIN: tracks, time, energy,
 - Tracker: r-t relations, track momentum, dE/dx for PID,
 - Timing alignment among the subdetectors
- Define a strategy for each subdetector:
 - Sources: cosmics, particles from beam, ...
 - Choose suitable processes (given the expected fluxes of particles in the detector, e.g. for the ECAL: cosmic μ's as MIPs, MIPs from the beam, electrons and photons)
 - Set a calibration procedure (Which level of precision? How much time expected?)
 - People: ECAL P.Gauzzi R.D'Amico GRAIN: A.Surdo, Tracker:
- WG meetings generally every three weeks, on Thursday at 5 p.m. CET
- WG mailing list: <u>dune-nd-sand-calibration@fnal.gov</u>




ECAL calibration with MIPs


- ECAL: 4880 readout channels (PMTs), 2440 cells
- MIP peaks to equalize the Energy response of the ECAL cells

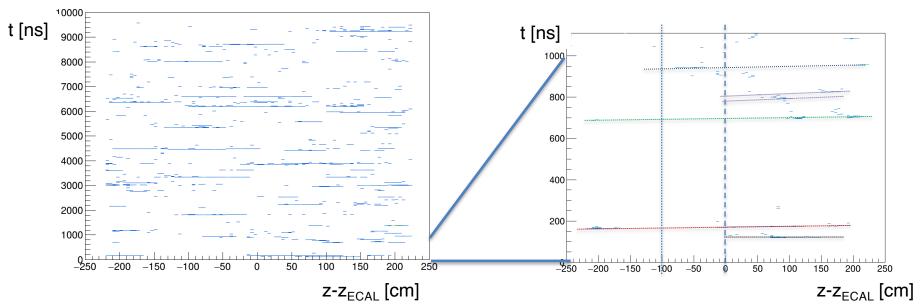
- Time calibration: 2 sets of constants to determine
- t_0 's and Δt_0 's for timing alignment of the cells and for calibration of the coordinate along the fibres
- We need muons from beam and from cosmic rays
- MC study of calibration with muons
 - ⇒ see R.D'Amico's talk



Energy scale calibration in SAND

- γ 's from π^0 decays, invariant mass reconstruction (need a vertex from the tracker)
- γ + electrons: ~ 30% of photons from π^0 convert in the tracker
 - \Rightarrow ~ 50% of π^0 have at least one $\gamma \rightarrow e^+e^-$ (from DUNE-doc-13262 A Near Detector for DUNE)
- High energy electrons from $v_{\rm e}$ interactions \Rightarrow need the momentum measurement in the tracker
- Also exploit K⁰→π⁰π⁰ →4γ
- From a naive rescaling of $K^0 \rightarrow \pi^+\pi^- \Rightarrow O(10^5)$ evts in 5 years of FHC data-taking
- Reconstruct a vertex with the ECAL only, back-propagating each of the 4 photons, but the times of the ECAL cells must be very well aligned

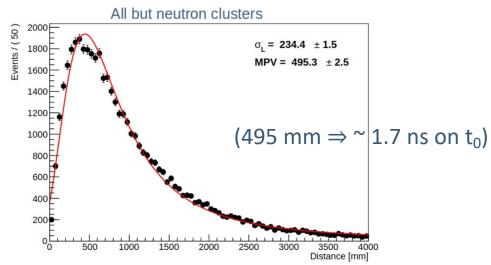


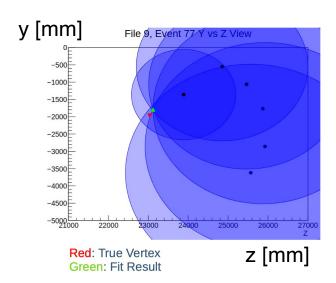


ECAL global t₀

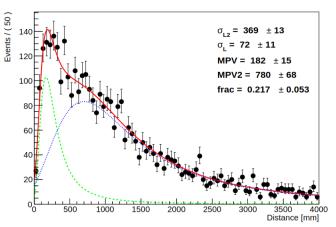
$$t = \frac{1}{2}(t_A + t_B) - \frac{L}{2v} - t_0 - t_0$$

- Global t₀, to be determined for each event
- The clusters will have the time distribution of the spill
- On average 88 v interactions/spill in the SAND volume (FHC mode, 1.2 MW)
- Cell time vs Z coordinate:





ECAL: Global to


- A complementary approach is to find the vertex of the v interaction and compute the global t₀ from it
- Take the apex of each cluster as the center of a sphere, find the intersection of all the spheres with a fit.

 $5 \times 10^5 \, v_{\mu}$ interacting in the tracker volume: select events with at least 3 clusters (all particles except neutrons)

 $3 \times 10^4 v_{\mu}$ interacting in the whole SAND (all particles except neutrons)

 $(780 \text{ mm} \Rightarrow \sim 2.5 \text{ ns uncert. on } t_0)$

GRAIN calibration with muons

Expected muon flux from the beam and CRs

✓ Different contributions of the target masses in SAND for beam neutrinos

Table 1.34: Number of events per spill (9.6 μs , 7.5 imes 10¹³ POT) and selection efficiency for the signal from ν_{μ} CC in the front barrel ECAL and the backgrounds from rock muons and magnet events.

(from DUNE-doc-13262, A Near Detector for I	DUNE)
---	-------

Table 1.29: Total number of $(\nu_{\mu} + \bar{\nu}_{\mu} + \nu_{e} + \bar{\nu}_{e})$ CC+NC events expected within a single beam (9.6 μ s, 7.5 \times 10¹³ POT) in the various detector components for both the FHC and RHC beam modes.

	ECAL		Rock muons		Magnet events	
Cut	Events	ε (%)	Events	ε (%)	Events	ε (%)
No cut	2.23	100.0	1447.26	100.000	50.82	100.000
μ in ECAL FV	2.23	100.0	12.73	0.880	18.92	37.229
STT & ECAL hits	1.63	72.9	6.05	0.420	3.443	6.775
NN cut	1.56	95.5	0.10	0.007	0.07	0.136

• Further contribution from rock μ's (~ 1.7/spill) ...

Detector element	Mass	FHC	RHC
Magnet	511 t	68.9	36.6
ECAL	100 t	13.5	7.2
LAr+STT	8.2 t	1.1	0.59
STT fiducial volume	5.5 t	0.74	0.39
Total	619.2	83.5	44.39

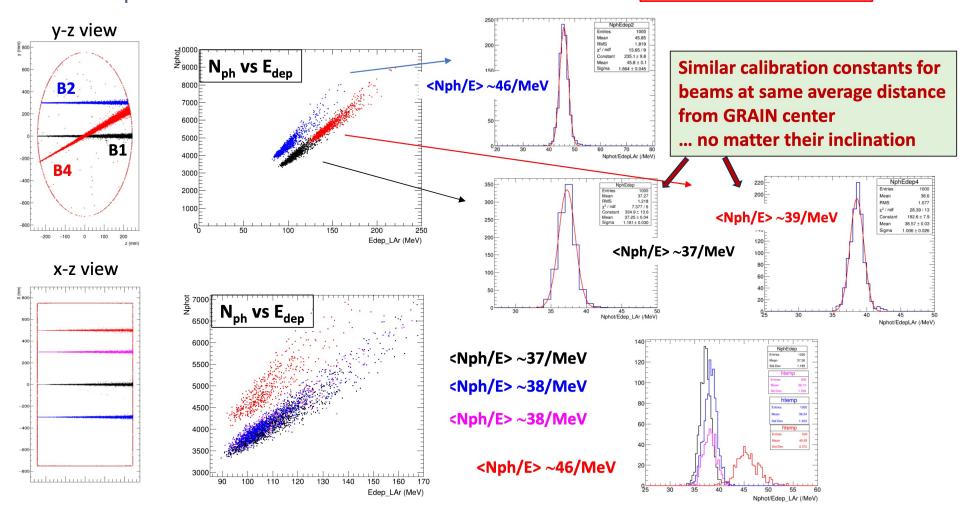
• From the interaction rate /spill in Magnet yoke and ECAL, a quite low number of clean muons are expected to cross GRAIN per spill (\leq 1 μ / spill)

✓ Contribution from Cosmic Rays ...

CR Muon flux at surface $\sim 0.01 \,\mu/(s \,cm^2) + underground reduction of <math>\sim 100$ Effective area of GRAIN for $<60^{\circ}$ CR muons: $\sim 3\times 10^4 \,cm^2 \Rightarrow \sim 3 \,\mu/s$ are expected to cross GRAIN

Drawback: smaller acceptance by the tracker for a precise track reconstruction

Main contribution only if inter-spill DAQ were ON



Muon beams with different positions and inclinations

MC samples of monochromatic muons of 1 GeV

See talk by A.Surdo

Conclusions

ECAL

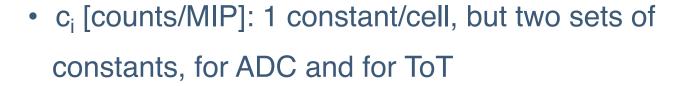
- Calibration with muons (see Riccardo's presentation)
- First MC tests for a global t₀ determination
 (with ECAL alone, the method will improve by using the info from the tracker)
- Next steps:
 - Start the study of the energy scale calibration
 - Define the number of constants and the amount of data to be saved in a DB

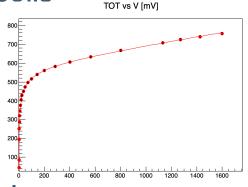
GRAIN

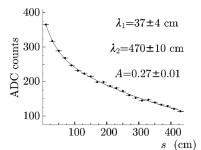
Studying the calibration with muons (see Antonio's talk)

Strategy of time alignment among the subdetectors has to be studied

SPARES

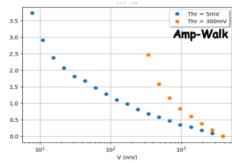



ECAL calibration constants


• ECAL: 4880 readout channels (PMTs), 2440 cells

- Pedestals: 1 constant/readout channel
- ToT calibration: 5th order polynomial,
 6 constants/readout channel
- Attenuation curve: 3 constants/readout channel

K: absolute energy scale (few values for the whole ECAL)

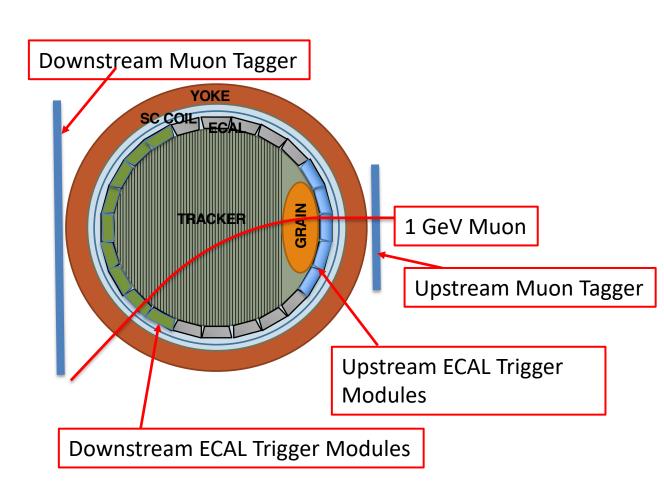

ECAL calibration constants (II)

$$t_{A,B}$$
 [ns] = $c_{A,B}$ [ns/(TDC count)] $(T_{A,B} - T_{A,B}^{(P)})$ [TDC counts]

- T_P, time offsets due to cables, electronics: 1 constant/readout channel
- C_{A,B}[ns/count]: 1 constant/readout channel
- Time-walk corrections: polynomial fit, few constants/readout

channel

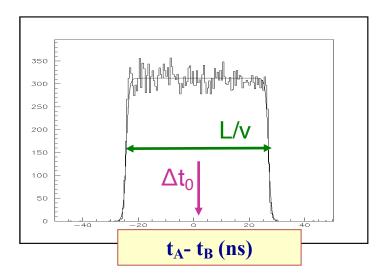
- t₀'s from MIPs: 1 constant/cell
- Δt_0 's : 1 constant/cell
- Global T₀: 1 value/event

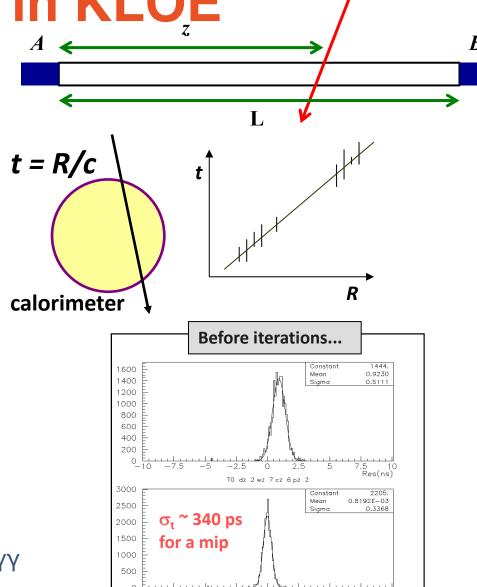


12

Scheme

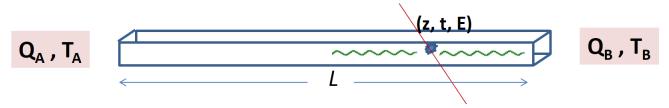
- Upstream ECAL
 - In-time hits in 3 out of 4 layers
 - ~10ns window
 - Ignore outer (upstream)
 layer
- Downstream ECAL
 - In-time hits in 4 out of 5 layers
 - ~10ns window
- Coincidence
 - Upstream left and right
 - Downstream left and right
 - Pick out 100ns window for event-builder




Time calibration in KLOE

 MIPs: uniform illumination of the ECAL for time and z-coord. calibration

$$t = \frac{1}{2}(t_A + t_B) - \frac{L}{2v} - t_0 - t_G^0$$
$$z = \frac{1}{2}v(t_A - t_B) - \Delta t_0$$



 Fine determination with Bhabha and γγ t₀'s at ~ 20 ps

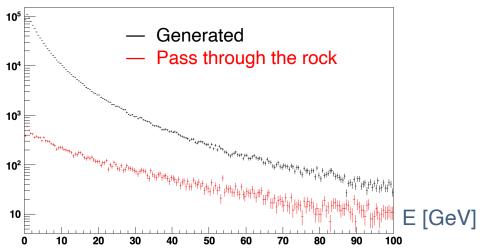
... After iterations

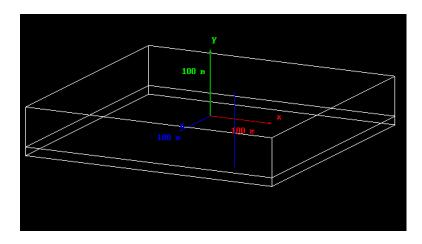
Energy calibration in KLOE

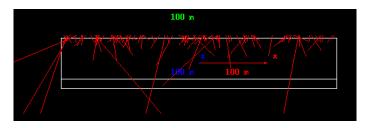
$$E_i^{(A,B)}[\text{MeV}] = \frac{(Q_i^{(A,B)} - P_i^{(A,B)})[\text{ADC counts}]}{C_i[\text{ADC counts/MIP}]} K \times f_{MIP2MeV}[\text{MeV/MIP}]$$

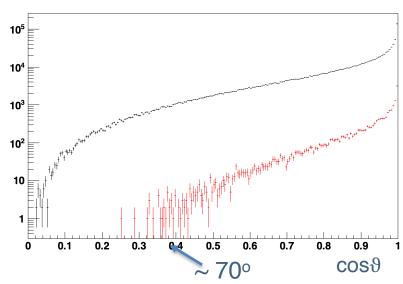
- C_i = peak of the MIP distribution
- Corrections to the C_i with the Bhabha scattering events $(e^+e^-\rightarrow e^+e^-)$: showers of 510 MeV
- Absolute energy scale K fixed at cluster level with the $e^+e^- \rightarrow \gamma\gamma$ events

$$\Rightarrow$$
 Calib. Const. $=\frac{K}{C_i}$

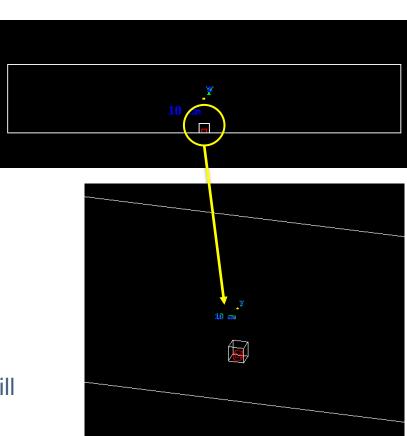



Cosmic µ with GEANT4


Very simple model:


- Box of Standard Rock, 60 m thick (52% O, 27% Ca, 12% C, 9% Mg, density 2.65 g/cm³)
- Box of air 10 m thick
- 10⁶ muons generated on top of the rock box

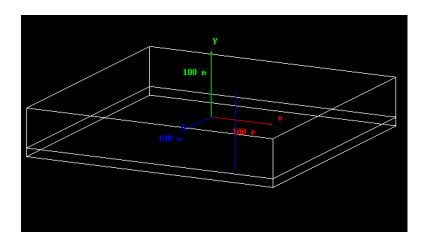
Events surviving	16965	1.7%
MIPs ($p_{\mu} > 300 \text{ MeV}$)	16583	1.7%
p _μ > 1 GeV	15983	1.6%
Straight tracks (p _µ > 6 GeV)	12228	1.2%

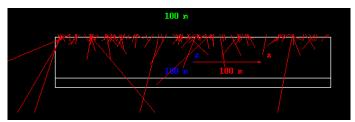


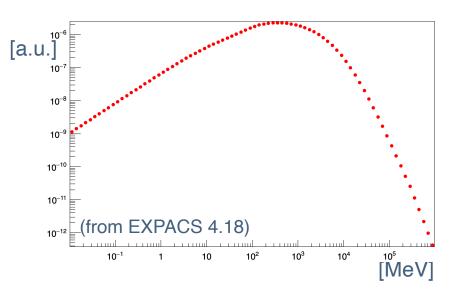
Cosmic µ simulation with GEANT4

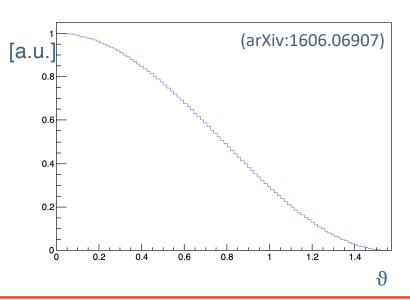
- Simplified model of the hall (a cube of air of 10 × 10 × 10 m³ embedded in the rock)
- Red box representing the SAND:
 cube 4.5 × 4.5 × 4.5 m³ inside the air cube
- Generated 10⁶ events on a surface of 50 × 50 m²
- 95 events on SAND volume (~ 10⁻⁴)
- Rescaling the muon flux at the surface $(\sim 0.02 \ \mu/(s \ cm^2)) \Rightarrow ~40 50 \ \mu/s \ on \ ECAL$
- To collect cosmics we need data out of the spill

Next step: Interface with Edepsim and SAND geometry






Cosmic µ with GEANT4


Very simple model:

- Box of Standard Rock, 60 m thick (52% O, 27% Ca, 12% C, 9% Mg, density 2.65 g/cm³)
- Box of air 10 m thick
- Muons generated on top of the rock box

