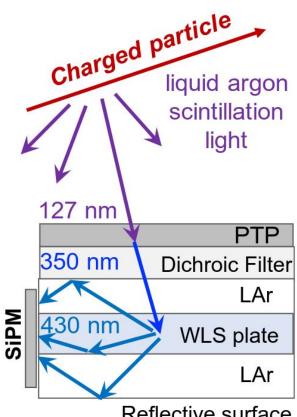
Misure a CIEMAT e Milano Bicocca e impatto sui filtri dicroici

Luca Meazza per il gruppo Milano-Bicocca


L'XArapuca

Dispositivo utilizzato dal PDS del Far Detector di DUNE per rivelare luce VUV da scintillazione del LAr

- fotoni VUV convertiti da pTP
- fotoni attraversano filtro dicroico (~350nm)
- nella guida di luce (LG) ulteriore conversione
- fotoni **intrappolati** da due meccanismi:
 - riflessione interna totale in LG per θ<56°
 - riflessione da dicroici (~450nm)
- trasporto verso i SiPM disposti lungo i bordi della LG

Un filtro dicroico <u>ideale</u> sarebbe *contemporaneamente*:

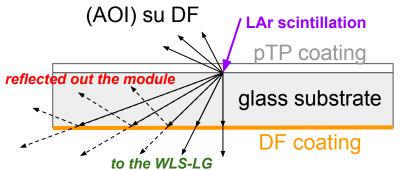
- completamente trasparente all'emissione del pTP
- completamente riflettente per l'emissione della WLS-LG (BBT)

Reflective surface

Motivo dello studio

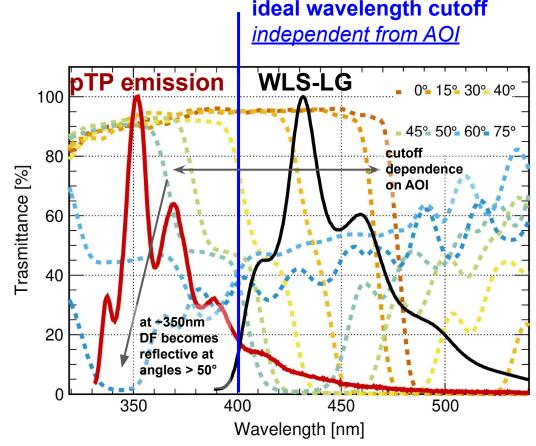
La finestra ottica con filtro dicroico dell'XArapuca ha una doppia funzione:

- convertire e accettare luce di scinillazione da LAr (VUV 128nm -> 350nm)
- intrappolare luce convertita all'interno della guida di luce ma fuoriuscita (450nm)


Tuttavia, il **filtro dicroico non è ideale**:

- dipendenza sia dalla lunghezza d'onda che dall'angolo di incidenza per
 - trasmittanza
 - posizione e "shape" del cutoff
- difficile ottimizzazione
 - struttura e produzione complessa (multi layer coating interferometer)
 - requisiti stringenti dell'XArapuca

Motivo dello studio

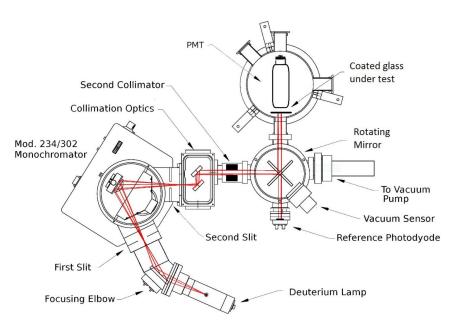

emissione di materiali cromofori (pTP, BBT) è isotropa

distribuzione di angoli di incidenza

fotoni emessi a grandi angoli dal pTP vengono riflessi fuori dal modulo

vice versa, fotoni da guida di luce vengono trasmessi

Misure Pavia - Trasparenza finestra ottica



Misure effettuate su finestre ottiche:

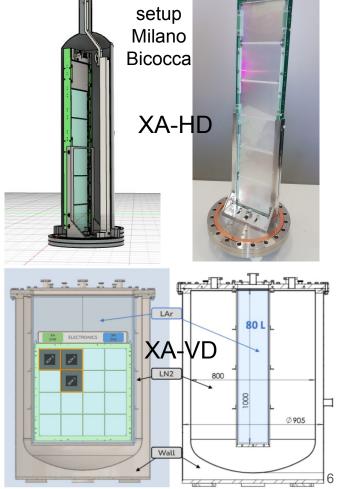
- luce incidente VUV da lampada al deuterio
 - in vuoto per eliminare assorbimento
- specchio rotante permette di illuminare:
 - diodo di riferimento
 - PMT dietro a finestra da misurare

Testate **finestre ottiche** con deposizione di **pTP** (per convertire fotoni VUV), **con** e **senza DF**

→ finestra con DF perde il 27% di luce rispetto al solo substrato in vetro

Misure PDE in Argon Liquido

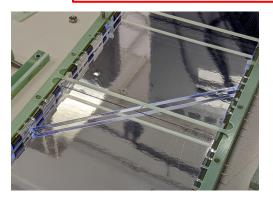
A Milano-Bicocca e CIEMAT testati i moduli in LAr:


- Luce di scintillazione causata da sorgente alfa di 241Am
- misurata la Photon Detection Efficiency (PDE)
 - numero fotoelettroni rivelati / fotoni incidenti

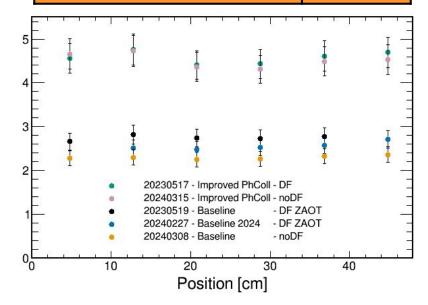
Testate configurazioni con e senza filtri dicroici

La **misura dell'intero modulo** permette di osservare l'**effetto combinato** di entrambe le funzioni del dicroico:

- trasparenza alla luce VUV in ingresso
- riflessione della luce in fuga dalla guida di luce


setup CIEMAT

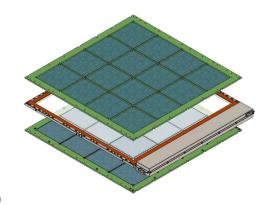
Misure Milano-Bicocca - XA-HD


A Milano-Bicocca <u>testate 4 configurazioni</u>:

- meccanica (baseline modificata)
- finestre ottiche (ZAOT nov22 DF no DF)
- → meccanica di baseline
 - ◆ **DF** è ~10-20% più performante
- → meccanica modificata
 - **◆** DF ≈ no DF

la meccanica modificata permette di raccogliere più luce tramite la guida di luce Efficiency [%]

Configuration	Avg PDE %
improved PhColl - DF	4.57
improved PhColl - no DF	4.51
baseline - DF	2.74
baseline - no DF	2.30


Misure CIEMAT - XA-VD

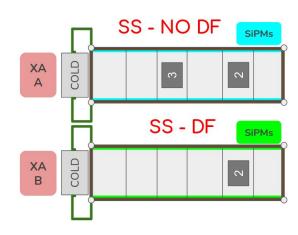
Campagna di misure 2024 XA-VD, di cui:

- confronto DF no DF
 - o DF ZAOT nov22
 - meccanica baseline VD

Modulo di **dimensioni maggiori** (60cmx60cm) penalizza l'intrappolamento da dicroico

rimuovendo i DF misurato un aumento di efficienza di 17% ± 3%

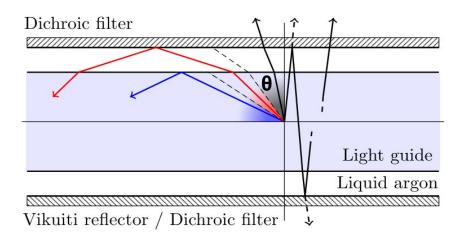
configuration	OV 3.5V	OV 4.5V	OV 7V
DF	3.2 ± 0.2	3.7 ± 0.3	4.7 ± 0.3
no DF	3.9 ± 0.4	4.5 ± 0.4	5.8 ± 0.6
no DF - 24mg WLS-LG	3.6 ± 0.4	4.3 ± 0.4	5.5 ± 0.6



Campagna di misure 2025 XA-HD di cui:

- confronto DF no DF
 - o DF OPTO nuovo design
 - nuova meccanica frame
- → non direttamente confrontabile con misure effettuate a Milano-Bicocca

rimuovendo i DF (<u>OPTO nuovo design</u>) misurato un aumento di efficienza di 40% ± 2%


config	DF	no DF	
OV	pos 2	pos 2	pos 3
3V	2.0 ± 0.2 %	2.8 ± 0.3 %	2.9 ± 0.3%
2.5V	1.8 ± 0.2 %	2.6 ± 0.2 %	2.6 ± 0.3 %
2V	1.6 ± 0.2 %	2.3 ± 0.2 %	2.4 ± 0.2 %

XA-HD - MiB testing - Results and Discussion I

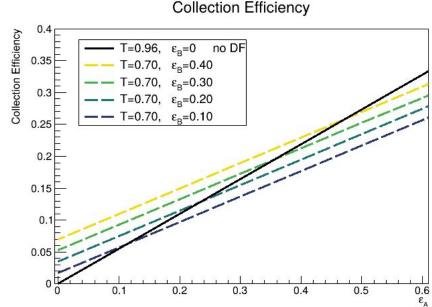
Previous **results can be explained** considering the **photon** trapping and **transport mechanism**

2 components:

- ➤ A Light guide (mostly TIR)
 - working for angles θ> 56°
 - very efficient (<1% loss)
- B Dichroic filter (+ reflector)
 - designed for angles >45°
 - required broad range of angles and wavelengths lowers reflectivity (~98%)

- → the dichroic filter is also less transparent to incoming light from the first shifter
 - affects both components
 - ◆ measured a ~30% decrease in transparency compared to clear glass substrate

XA-HD - MiB testing - Results and Discussion II


The **number of collected photons can be modeled** with the approximated formula:

$$\gamma_{collected} = T \cdot (0.57 \ \epsilon_A + 0.25 \ \epsilon_B) \cdot \gamma_{pTP}$$

- T optical window transparency
- γ_{PTP} photons coming from pTP (=1)
- ϵ collection efficiency
 - o A LG TIR
 - o **B** dichroic reflection

the **coefficients** to the trapping components (**0.57** and **0.25**) correspond to the **maximum fraction of collectable photons**

- given by analytical geometrical computation
- upper limit ϵ is realistically < 50%

Due to the lower transparency, for a given dichroic filter coating there is a module configuration, with LG trapping efficient enough, for which the DF is counterproductive

Conclusioni

Misure effettuate nei laboratori di Milano-Bicocca e Ciemat (Madrid, Spagna) hanno dimostrato che:

- il filtro dicroico comporta un compromesso tra
 - o ingresso di luce nel modulo
 - intrappolamento via DF

In particolare, rimuovendo il filtro dicroico:

- per il modulo VD aumenta la performance del 17%
- per il modulo HD, a seconda della configurazione, (-10% +40%)

Grazie per l'attenzione!