ProtoDUNE-VD PDS Results and Updates

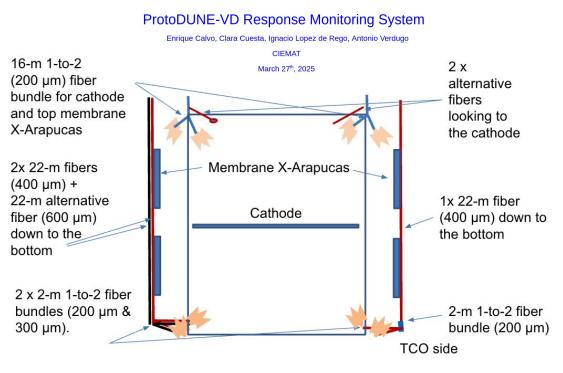
Henrique Souza on behalf of the NP02 PDS team

INFN Milano Bicocca

Meeting Annuale DUNE-Italia Frascati, Italy 10/11/2025

Overview

- PDS Calibration: definition of the optimal PDS configuration:
 - LED mask and intensity for SPE identification
 - Attenuator
 - Offset
 - Trim
- NP02 Beam:
 - Fast analysis developed during acquisition
 - Preliminary results



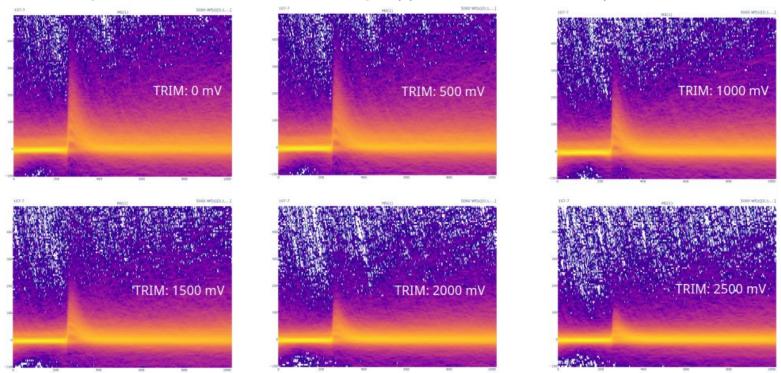
Calibration overview

- In order to calibrate the PDS properly:
 - Find proper fiber and LED intensity combination to produce good quality 'finger plots' for calibration.
 - Find breakdown voltage of SiPMs in the membrane and set the to proper over-voltage.
 - Define DAPHNE attenuation to establish good SNR (compromised by desired low single photoelectron (PE) amplitude)
 - Define DAPHNE offset to maximize dynamic range

Calibration: fibers and LED

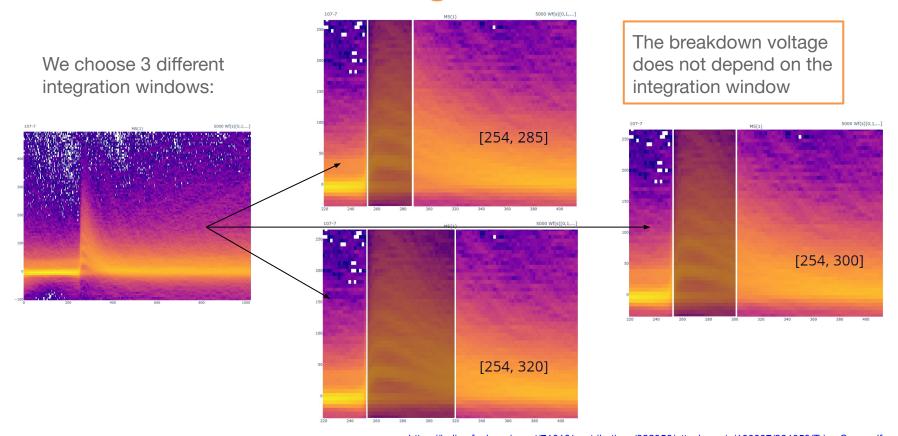
- 6 different 'masks' available for calibration
 - During commissioning, only 4
- Scans over intensity and masks were done trying to find appropriate amount of light.
- 3 Masks selected:
 - Top beam non TCO (Base) for C1-C5
 - Top beam TCO (Base) for M5-M8
 - Top beam TCO (Alt.) for M3-M4, C6-C8
- With around 14 runs (~ 50 min) we could calibrate all modules

Calibration masks	Intensities	
Mask 8	[1900, 1750, 1600, 2250, 3250]	Membrane
Mask 16	[1900, 1700, 1600, 1550]	Both
Mask 1	[3100, 3950, 2100, 3500, 2800]	Cathode


- **Trim scan** can changed the applied voltage over a range of 4 V with 12 bit
- Goal of operate membrane modules with specific overvoltage: FBK: +4.5 V, HPK +5.0 V
- Several steps:
 - Attenuator and offset adjustment to maximize range of trim scan
 - Multi-gaussian fit for proper evaluation of 'gain'
 - o Linear fit:
 - Retrieve breakdown voltage and uncertainty by confidence level (from Federico Galizzi analysis)
 - After establishing target trim, necessary to redo attenuator and offset scan

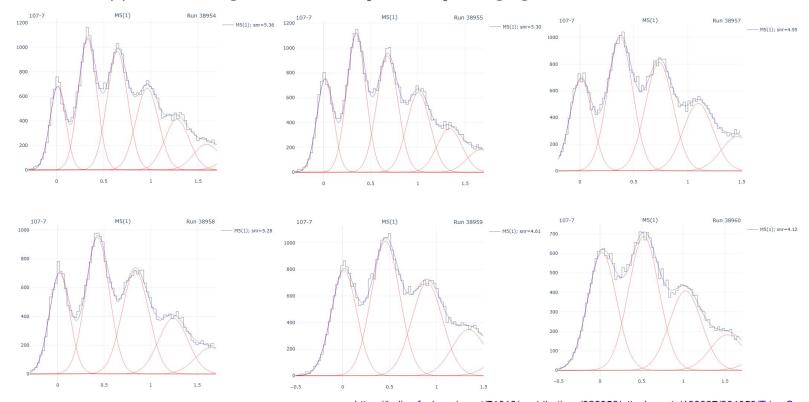
Why:

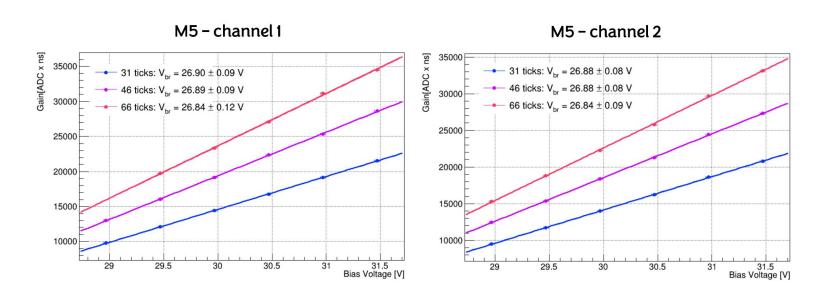
- The breakdown voltage information was missing (I-V curve not possible after DAPHNE modifications).
- Moreover, DAPHNE self-measurement of applied voltage can have an offset, so we need to establish a method to set all SiPMs to the same overvoltage.



Increasing the TRIM we decrease the voltage applied to the SiPMs with precision of ~1 mV

https://indico.fnal.gov/event/71018/contributions/322956/attachments/190987/264059/Trim_Scan.pdf





Plot for M5(1) with an integration window: [254, 300] changing trim

 Trim scan with the goal of operate membrane modules with specific overvoltage: FBK: +4.5 V, HPK +5.0 V

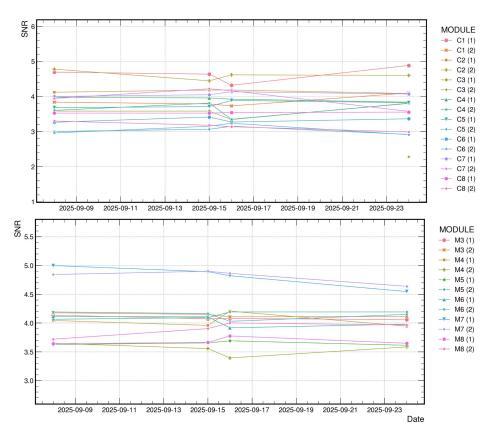
https://indico.fnal.gov/event/71018/contributions/322956/attachments/190987/264059/Trim_Scan.pdf

Calibration: PDS Calibration

- The calibration was "validated" on-site, values of SNR, gain, offset and others are reported here
- All codes and analysis parameters are committed in waffles

Francesca's talk

 The measured values of gain and PE amplitude can be refined, however, they are already available in waffles to be used in analysis


AFTER TRIM SCAN														
Endpoint	Channel	Module	AFE	Mask	LED	Attenuator	PE	RUN	SNR	Gain	Bsl std	SPE std	SPE integ	Offset
	47	M1 (1)	AFE4	16										2674
	45	M1 (2)												2516
	40	M2 (1)		16										2842
	42	M2 (2)												2760
	46	M3 (1)	/ 11	16	1600		16			3147.79		967.21	3.36	2888
	44	M3 (2)					16	39215	100000000000000000000000000000000000000	3278.53	902.04	989.75	3.65	2657
	43	M4 (1)		16	1600		16	39215	2.93	1380.77	470.54	502.81	3.25	2752
107	41	M4 (2)		10			16	39215	3.78	2205.66	582.84	711.01	3.16	3112
107	7	M5 (1)	AFE0	8	1900 1750	2450	10	39210	3.41	4364.88	1281.31	1416.65	3.71	1640
	0	M5 (2)	AI LU	0			10	39211	5.01	4221.51	841.74	1186.27	2.24	1248
	27	M6 (1)	AFE2	8	1600	2700	10	39212	3.82	3058.11	801.08	1011.57	3.68	3516
	20	M6 (2)	AI LZ	U	1000	2100	10	39212	4.22	3009.3	712.66	904.18	3.11	3235
	37	M7 (1)	AFE3	8	2550	2650	10	39223	4.38	2634.38	600.46	682.02	2.21	3328
	30	M7 (2)	AFES				10	39223	4.60	2557.6	555.25	636.23	2.21	3393
	17	M8 (1)	AFE1	8	3250	2550	10	39213	3.67	3771.75	1028.13	1139.98	2.88	2267
	10	M8 (2)	AFEI				10	39213	3.83	3723.89	971.99	1121.94	2.83	2275
	32	C1 (1)		1	3100	2150	20	38695	4.67	3482.9	745.67	892.81	2.52	2811
	33	C1 (2)					8		3.78	1893.97	501.06	559.63	2.81	2882
	30	C2 (1)		1	3950		10	38696	4.14	2148.87	519.10	593.77	2.95	2271
	31	C2 (2)	AFE3				15		4.89	4332.16	885.20	1103.55	2.9	3257
	34	C3 (1)	AFE3	1	2100		10	138697	3.12	2063.53	661.40	680.12	3.84	2446
	35	C3 (2)					12							2672
	36	C4 (1)		1	3500		12	38699	3.95	2257.92	570.79	672.06	2.98	2816
100	37	C4 (2)					12		3.83	2530.51	661.85	749.55	2.89	2519
106	0	C5 (1)		1	2800		18	38690	5.13	5225.09	1017.39	1353.22	2.62	4327
	2	C5 (2)					20	20 38690	5.08	5185.5	1020.88	1082.48	2.75	5322
	1	C6 (1)		16	1900 1700		12.5	38712	3.18	2426.86	762.20	1218.78	4.95	1771
	3	C6 (2)	AFE0			1995	12	38715	4.30	2685.4	624.57	894.86	4.64	1844
	5	C7 (1)		16	1600		20	38716	4.39	3831.38	871.88	1324.10	2.57	1919
	7	C7 (2)					18		4.14	3567.7	863.19	1139.28	2.76	1949
	4	C8 (1)		16	1500		10	10 8 38718	3.30	1526.98	462.65	619.26	3.54	2077
	6	C8 (2)					8		2.44	1258.39	515.79	676.90	5.26	1670

Calibration: PDS Calibration

- The calibration was "validated" on-site, values of SNR, gain, offset and others are reported here
- All codes and analysis parameters are committed in waffles

Francesca's talk

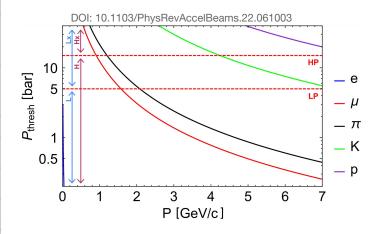
 The measured values of gain and PE amplitude can be refined, however, they are already available in waffles to be used in analysis

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Beam: runs acquired

- Operation of beam with different configurations:
 - **PDS only**: DAQ time window of 100 us
 - **PDS + TPC**: DAQ time window of 5 7.5 ms

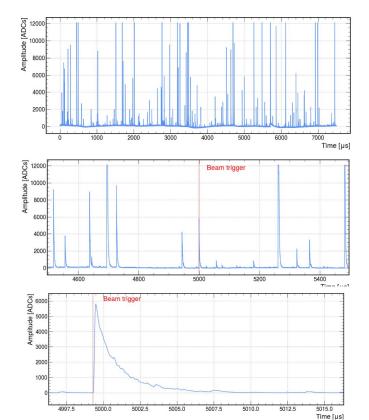
Check Francesca's talk for complete table


PD(only)-DAQ

Date	Run n.	Mom GeV/c	Charge	H2-VLE Target	Tot. N.of Beam Triggers
2025-08-25 19:02	39110	0.2	+	Cu	307,530
2025-08-26 21:16	39132	0.3	+	Cu	455,733
2025-08-23 16:16	39046	0.5	+	Cu	13,747
2025-08-27 16:17	39137	0.7	+	Cu	88,128
2025-08-20 20:13	38930	1	+	w	118,530
2025-08-23 16:56	39047	1.5	+	w	406,166
2025-08-23 12:39	39030	2	+	w	46,057
2025-08-24 23:08	39105	2.5	+	w	324,709
2025-08-21 20:25	39007	3	+	w	562,073
2025-08-22 21:22	39029	3	-	w	340,118
2025-08-25 10:16	39106	4	+	Cu	251,800
2025-08-25 15:18	39108	5	+	Cu	278,200
2025-08-22 18:49	39027	6	+	Cu	193,940
2025-08-28 16:43	39183	8	+	w	965,862
					4,352,593

[PD+TPC]-DAQ

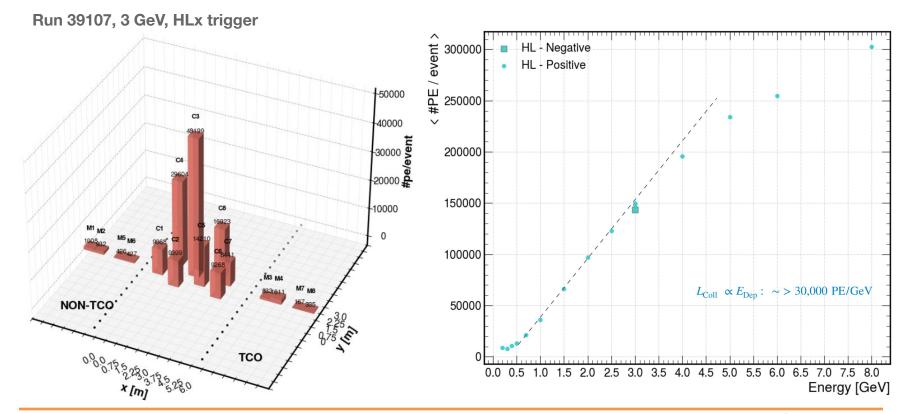
Date	Run Type/N.	Mom GeV/c	Charge	H2-VLE Target	Tot. N.of Beam Triggers
	TPC+PD	0.5	+	w	62000
2025-09-09 13:48	39350				
	TPC+PD	1	+	w	
2025-08-31 16:12	39275				
2025-09-02 11:07	39276				
2025-09-04 15:24	39303				
2025-09-05 16:38	39324				1.6 M
	TPC+PD	1.5	+	w	
2025-09-02 15:38	39277				
2025-09-02 17:36	39278				
2025-09-02 18:01	39279				
2025-09-03 21:36	39300				
2025-09-04 16:13	39305	2	+	w	422000
	TPC+PD	3	+	w	
2025-08-30 11:46	39273				
	TPC+PD	4	+	Cu	
2025-09-08 14:16	39344				
	TPC+PD	5	+	Cu	
2025-08-29 12:28	39255				
	TPC+PD	8	+	w	
2025-09-01 17:36	39252				
2025-8-29 8:47	39253				
					>~5M

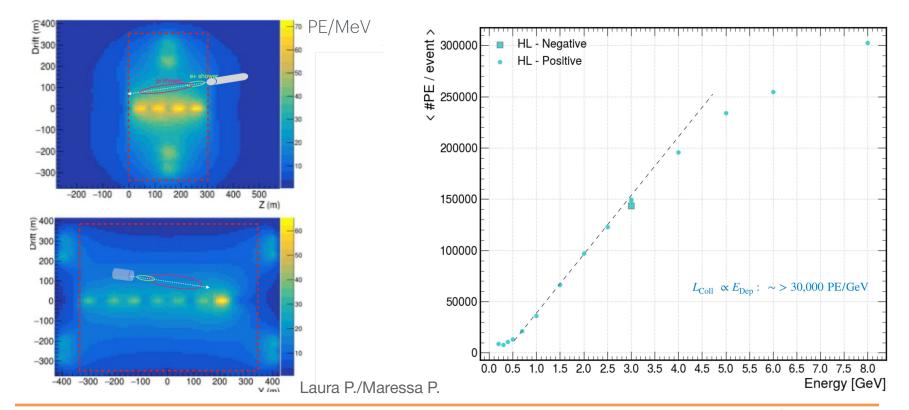

- Different pressure in Cherenkov detectors allow for tagging of different particles depending on the energy
- Time of Flight information also available offline (LArSoft)

Beam: fast analysis

During operation, we developed fast analysis to (1) give feedback to DAQ, TPC and Beam Instrumentation teams and (2) make a preliminary evaluation of PDS performance:

- Waveforms were selected offline around the beam trigger
- Integration over ~500 ticks (8 us)
- Usage of previous calibration to estimate number of PE
- Evaluate mean PE for each module and for entire detector.




Beam runs: fast analysis

Data visualization and preliminary results of PDS shows linear response versus energy

Beam runs: fast analysis

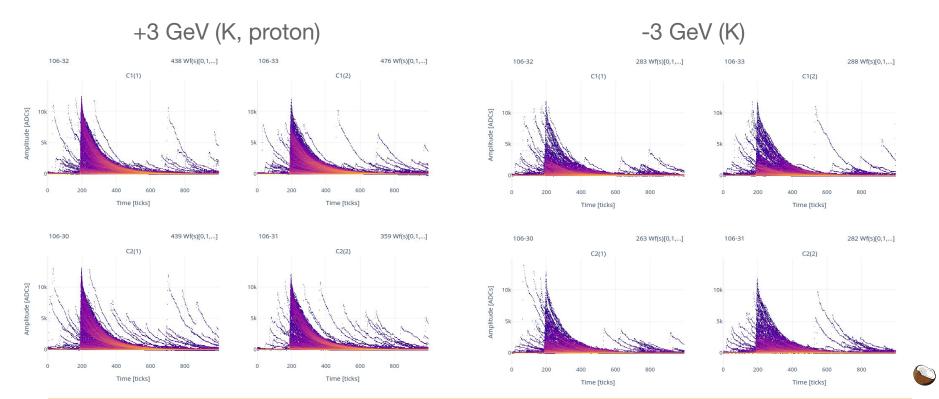
Data visualization and preliminary results of PDS shows linear response versus energy

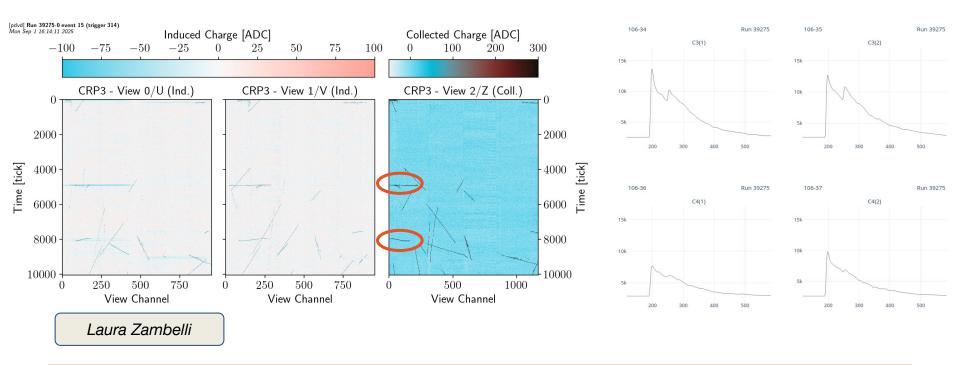
Conclusions

Stolen from Francesca Alemanno

- The protoDUNE-VD operations successfully restarted after the safety pause
- Hardware implementations and software developments
- Huge effort for PDS calibration:
 - Definition of optimized configuration for the beam data taking
 - More than 800 runs processed
- PDS successful data taking over three beam periods
 - Several PDS-only data collected
 - Full detector (PDS + TPC) integration from the end of August
- First results from preliminary analyses
- More data taking ongoing and to be done in the next months
- Plenty of data to analyze

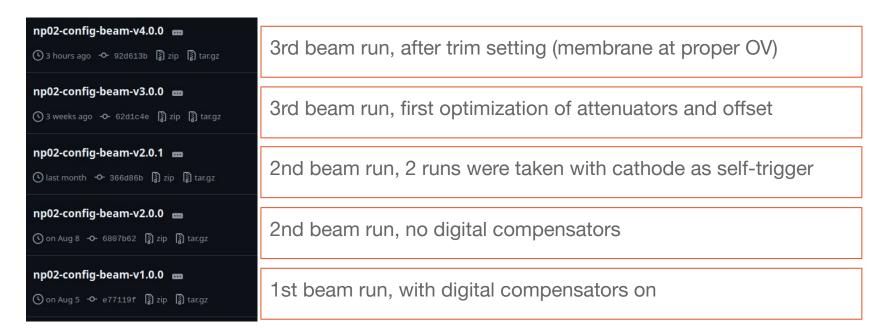
Thanks to Flavio, Manuel, Valeria, Esteban,
Biswaranjan, Jaime, Halit, Gloria, Vlada, Alex,
Jacob, Vojtech, Wei, Laura I., Gemma, Sabrina,
Nilay, Francesco T., Anselmo, Andrea,
Marco R. and the DAQ and NP02 team




PDS in beam/TPC commissioning

On-site feedback on beam instrumentation and matching events with TPC

PDS in beam/TPC commissioning


- On-site feedback on beam instrumentation and matching events with TPC:
 - PDS gave feedback to TPC analyses to search for pion signals @ 1 GeV

Git repo., configurations and more

Git repository to launch runs and establish configurations: https://github.com/DUNE/PDS
Configurations were tagged:

Git repo., configurations and more

Git repository to launch runs and establish configurations: https://github.com/DUNE/PDS

New implementations allow for:

- LED intensity and mask scans
- Attenuator scans
- Offset scans
- Trim scans
- Threshold scans
- Daily calibration runs
- Cosmic
- Noise

```
PATH
```

[cosmics|noise|ledrun|calibrun]

```
Commands
              Launch a PDS data-acquisition run.
run
              Iterate over correlation threshold values defined in *conf* and take one run per setting.
thr-scan
att-scan
              Iterate over attenuators values defined in *conf* and take one run per setting.
              Iterate over offset values defined in *conf* and take one run per setting.
offset-scan
              Iterate over offset values defined in *conf* and take one run per setting.
trim-scan
seed
              Generate configuration files from details.
set
              Apply configuration settings to hardware.
```


Git repo., configurations and more

More than 800 runs processed (cathode and membrane) Location: /eos/experiment/neutplatform/protodune/experiments/ProtoDUNE-VD/commissioning/

```
commissioning/
    plots
        run036995 membrane
         nTCO.html
            TCO.html
        run037022 cathode
          nTCO.html
           TCO.html
    processed
        run036995_cathode
        run036995 membrane

    processed merged run036995 structured membrane.hdf5

        run037022_cathode

    processed merged run037022 structured cathode.hdf5

        run037022 membrane
        run036995
           np02vd raw run036995 0000 df-s04-d0 dw 0 20250702T082435.hdf5
        run037022
            np02vd raw run037022 0000 df-s04-d0 dw 0 20250703T125259.hdf5.copied
            np02vd raw run037022 0001 df-s04-d0 dw 0 20250703T125436.hdf5.copied
            np02vd raw run037022 0002 df-s04-d0 dw 0 20250703T125513.hdf5.copied
            np02vd raw run037022_0003_df-s04-d0_dw_0_20250703T125552.hdf5.copied
           np02vd raw run037022 0004 df-s04-d0 dw 0 20250703T125631.hdf5.copied
    raw lists
        036995.txt
        037022.txt
```

We are also able to process data for PMTs

If a run is not processed, or one needs more files processed, please ask

By definition:

$$G = aV_0 + b$$
$$V_b = -\frac{b}{a}$$

$$V_b = -\frac{b}{a}$$

If we now consider a different integration window we expect a different value for the gain, G', so that

$$G' = a'V_0 + b'$$

$$V_b = -\frac{b'}{a'} = -\frac{b}{a}$$

Now

$$a' = b' \frac{a}{b}$$

and

$$G' = b' \frac{a}{b} V_0 + b'$$

$$G' = \frac{b'}{b} (aV_0 + b)$$

$$G' = \frac{b'}{b} \left(aV_0 + b \right)$$

$$\frac{G'}{G} = \frac{h}{2}$$

The bias voltage is evaluated as

AFE n: Bias = DAC x
$$(a + - err_a)$$
 [mV/DAC] + $(b + - err_b)$ [mV] - trim

And the target trim as

$$T = V_0 - V_{target}$$

where V_0 is the bias voltage at trim = 0 and V_{target} the bias at the correct OV.

Since both V_0 and V_{target} depend on the coefficient a and b even if the DAC-Bias conversion is not correct the target trim value does not change.