ProtoDUNE Vertical Drift activities

Francesca Alemanno

INFN Lecce

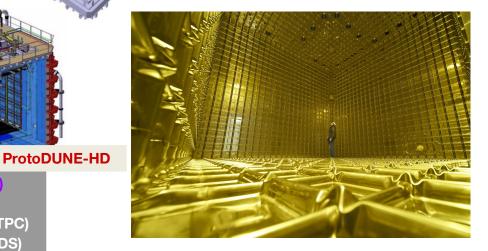
DUNE Italia 10 Novembre 2025, INFN - LNF

Overview

- Overview of ProtoDUNE Vertical Drift
- The Photon Detection System of ProtoDUNE-VD
- Hardware activities at CERN
- Software activities for the PDS of ProtoDUNE
- Summer data taking with ProtoDUNE-VD:
 - Definition of the optimal PDS configuration
 - 3 beam periods

Francesca Alemanno

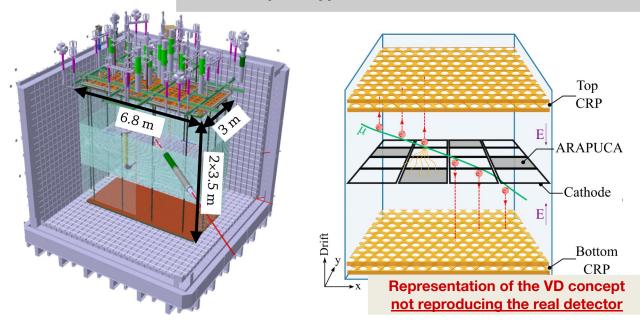
- Ongoing activities
- Future plans

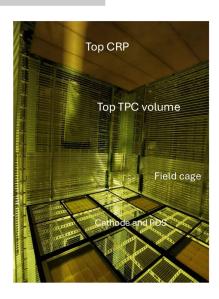

ProtoDUNE at CERN

CERN NEUTRINO PLATFORM
@ EHN1

NP02 VD **ProtoDUNE-VD**

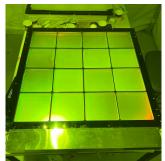
Talk from Gabriel Botogoske on ProtoDUNE-HD




- 2 prototypes (~ 8 x 8 x 8 m3)
- 760 ton of LAr
- Time Projection Chamber (TPC)
- Photon Detector System (PDS)
- Cosmic-Ray Tagger

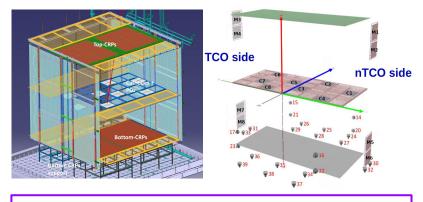
ProtoDUNE Vertical Drift

Second prototype but first module to be installed in South Dakota


- 2 vertical drift volumes of 3.5 m each
- TPC made of 4 Charge Readout Planes (CRPs) 2 top and 2 bottom: perforated PCB technology
- Horizontal cathode in the middle
- Photon Detection System (PDS) on the cathode and on the walls

The PDS of ProtoDUNE-VD

X-Arapuca Megacell



Pictures from VD-coldbox

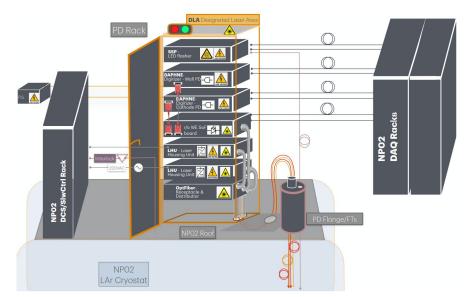
- Megacell X-ARAPUCA (65 cm x 65 cm)
- 160 SiPMs (40 per side)
- Two channels: 80 SiPMs per channel
- 2 different SiPMs: Hamamatsu and FBK

ProtoDUNE-VD

- 16 Megacell X-ARAPUCAs
- 8 on the cathode
- 8 behind the field cage
- 160 SiPMs (40 per side)
- 20 PMTs installed outside the active volume

Far Detector 1 (FD1)

- 320 double-face X-ARAPUCAs on the Cathode
- 352 single-face X-ARAPUCAs on the walls

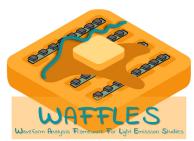


Hardware activities at CERN on ProtoDUNE-VD

- Safety pause do to an accident at the neutrino platform in January
- Restart of lab activities approved at the end of May
- Additional CERN safety courses and safety inspections

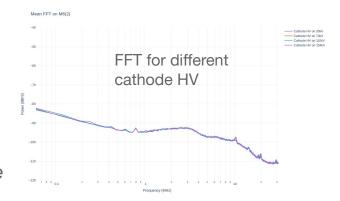
- Interlock
- Fiber crate
- Laser Housing Units
- Warm electronics/ SoF box
- Calibration module
- 2 DAPHNE boards (digitizer)

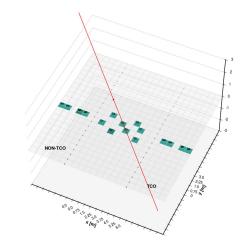
NPO2 Detector Control System | Section | Post | Po


Remote detector control

DEEP UNDERGROUND
NEUTRINO EXPERIMENT

Software activities at CERN


- PDS-runner: https://github.com/DUNE/PDS
 - Several tools developed for the PDS data taking
- WAFFLES (Waveform Analysis Framework for Light Emission Studies): https://github.com/DUNE/waffles
 - Initially developed for ProtoDUNE-HD, adapted for ProtoDUNE-VD and possibility to be used in the Far Detector
 - Framework to process the data taken with ProtoDUNE and perform several analyses related to the PDS
 - It includes beam trigger information, useful to perform PID



Data taking

- Several **PDS runs** taken (spreadsheet: NP02 data taking)
- Data available on lxplus at:
 - /eos/experiment/neutplatform/protodune/experime nts/ProtoDUNE-VD/commissioning/
- Calibration (LED intensity and mask scan, attenuators scan, trim (SiPM bias) scan, baseline set, SNR for all channels) More details in next talk from Henrique Souza
- **Noise studies**
- **Beam** data taking
- **Fast look** at beam data for monitoring purposes

Beam tests

Three beam periods:

More details in next talk from Henrique Souza

- 1. July 9th to 16th dedicated to beam and beam instrumentation commissioning
 - a. Beam Trigger-DAQ development/synchronization with PDS
 - b. Confirmed that PDS could see the beam (data used for developing fast analysis)
 - c. PDS commissioning
- 2. July 30th to August 13th PDS data taking and commissioning
 - a. First optimized PDS configuration
 - b. The PDS was used to advance the beam trigger
- 3. August 20th to September 10th
 - a. Definition of PDS final configuration
 - b. PDS only runs until end of August
 - c. Data taking with **TPC and PDS** from end of August to end of beam

After the beam - ongoing activities

- Data taken during the cathode HV ramp down and ramp up:
 - Steps of 20 kV ramp down with 10 minutes wait + 5 minutes data collection
 - Steps of 10 kV ramp up with 5 minutes wait + 5 minutes data collection
 - Only PDS because of short data taking time
 - Plan for another similar data taking with PDS+TPC, larger steps, longer acquisition
 time
- Periodic calibration membranes and cathode once or twice per week if detector available
- PMT calibration work in progress
- Analysis of beam data with PDS+TPC work in progress
- Several analyses (SPE integral, signal shape, saturation, ...) work in progress

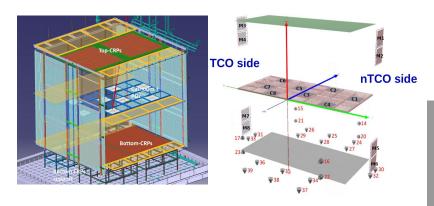
Future plans: a full agenda

- Periodic calibration membranes and cathode to monitor detector stability
- CRT installation to be done soon
- Combined PDS-TPC data taking with CRT trigger
- Low-energy calibration: high SPE amplitude to increase sensitivity to low energy events
- Calibration system validation for the FD design: how many PDS modules can we calibrate with one LED?
- Xenon doping December
- Test with Pulse Neutron Source January/February
- Additional data analysis to study detector performance (time resolution, trigger studies, beam data ...)
- Continue operations until **March 2025**

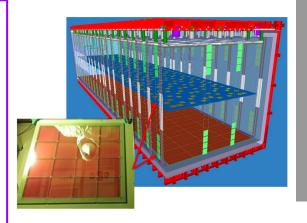
Conclusions

- The ProtoDUNE-VD operations successfully restarted after the safety pause
- Hardware implementations and software developments
- Huge effort for **PDS calibration**:
 - Definition of optimized configuration for the beam data taking
 - More than 800 runs processed
- PDS successful data taking over three beam periods
 - Several PDS-only data collected
 - Full detector (PDS + TPC) integration from the end of August
- First results from preliminary analyses
- More data taking ongoing and to be done in the next months
- Plenty of data to analyze

Thanks to Flavio, Manuel, Valeria, Esteban,
Biswaranjan, Jaime, Halit, Gloria, Vlada, Alex,
Jacob, Vojtech, Wei, Laura I., Gemma, Sabrina,
Nilay, Francesco T., Anselmo, Andrea,
Marco R. and the DAQ and NP02 team



BACKUP



The PDS of protoDUNE-VD

protoDUNE-VD

- 16 Megacell X-ARAPUCAs (60 x 60 cm2)
- 8 on the cathode
- 8 behind the field cage
- 160 SiPMs (40 per side)
- 2 different SiPMs: Hamamatsu and FBK
- 20 PMTs installed outside the active volume

Preparing for the Far Detector

Far Detector 1 (FD1)

- Cathode (300 kV)
 - 80 cathode modules
 - 4 X-ARAPUCA Megacell double-faced per cathode module
 - 320 double-face X-ARAPUCAs in total
- Walls
- Behind the transparent (70%) field cage
- 320 at long walls
- 32 short walls
- 352 single-face X-ARAPUCAs

The Photon Detection System (PDS) X-Arapuca

• PTP (P-terphenyl layer)

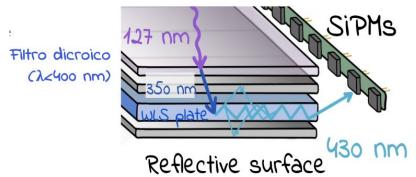
Converts the LAr scintillation light $\lambda=128 \text{ nm} \rightarrow \lambda=350 \text{ nm}$

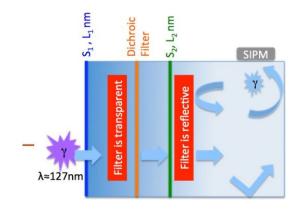
• Dichroic filter

Transparent to light with $\lambda < 400 \text{ nm}$

→ the PTP converted light can enter

Reflective for $\lambda > 400 \text{ nm}$

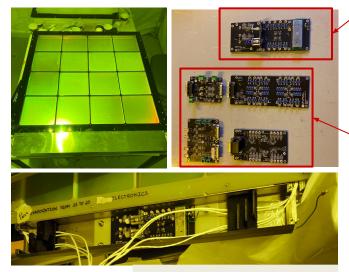

Wavelength shifter bar (WLS bar)


Converts the incoming light to $\lambda = 430 \text{ nm}$

- \rightarrow the light is trapped
- Silicon PhotoMultipliers (SiPM)

Light detection

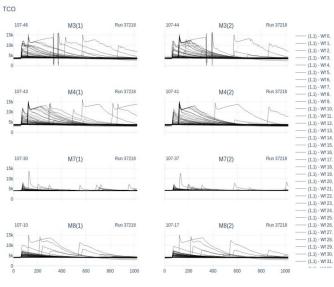
PTP (127 nm-350 nm)

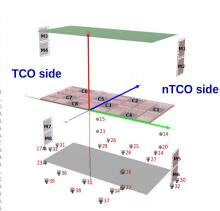


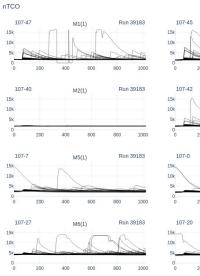
The PDS of protoDUNE-VD X-Arapuca Megacell

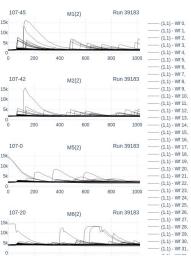
Power over Fiber (PoF) and Signal over Fiber (SoF) technology for cathode modules

HD-style and VD-style electronics for wall modules

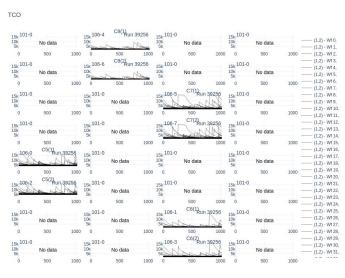

Pictures from VD-coldbox

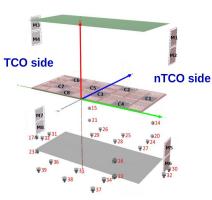

- Megacell X-ARAPUCA (65 cm x 65 cm)
- 160 SiPMs (40 per side)
- Two channels: 80 SiPMs per channel

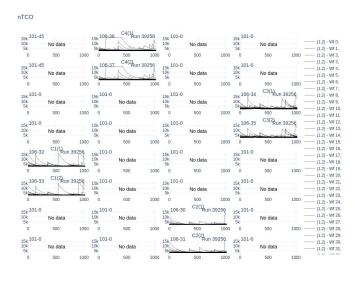

Signals from the wall PDS modules


Membranes (wall modules) TCO side

nTCO side






Signals from the cathode PDS modules

Cathode TCO side

nTCO side

