AstroPix: monolithic active pixel sensors for space based applications and collider experiments

Anna Driutti University and INFN Pisa on behalf of the AstroPix Collaboration

Sep 10-11, 2025 Dipartimento di Studi Umanistici UNITS - Androna Baciocch

ASTROPIX

The AstroPix Project

- Goal: develop and test pixelated silicon sensor for use in space-based gamma-ray instruments and calorimeters for future colliders
- AstroPix sensors: developed based on the experience from ATLASPix and MuPix from 2019

[Developing the future of gamma-ray astrophysics with monolithic silicon pixels, Nucl. Instrum. Meth. A 1019, 165795 (2021)]

AMEGO-X: All-sky Medium Energy Gamma-ray Observatory eXplorer

- Si-stacked Compton
 Telescope planned to
 explore multi-messenger
 astronomy
- 4 towers, 40 layers each, $0.5 \times 0.5 \text{ m}^2$
- Energy range: 25 keV-1 GeV
- AstroPix replaced double-sided strip detectors as the new baseline:
 - Provides pixelated readout
 - Lower energy threshold
 - Room temperature readout
 - Affordable

[AMEGO-X mission concept, J. Astron.

Telesc. Instrum. Syst. 8, no.4, 044003 (2022)

BIC: Barrel Imaging Calorimeter for EIC

Hybrid lead/scintillating fiber calorimeter with silicon tracking layers to precisely measure electromagnetic shower profile:

- main detector for electron-pion separation
- 4(+2) layers of Astropix sensors interleaved with the first 5 Pb/SciFi layers follow by a large section of Pb/SciFi
- Total radiation thickness ~ 17.1 X_0 at $\eta = 0$
- Sampling fraction ~ 10%

Requirements:

- Electron ID up to 50 GeV and down to 1 GeV and below
- Energy resolution $< 10\%/\sqrt{E} + (2-3)\%$
- High power for e/π separation down to 1 GeV/c
- Photon measurements up to 10 GeV
- γ/π^0 separation up to 10 GeV

[EIC Yellow Paper Nucl. Phys. A 1026, 122447 (2022)]

Energy resolution - Primarily from Pb/ScFi layers (+ AstroPix energy information)

Position resolution - Primarily from Imaging Layers (+ 2-sided Pb/ScFi readout and φ-R segmentation)

AstroPix: High-voltage CMOS monolithic active pixel sensor (HV-CMOS MAPS)

Design Goals

- Energy Resolution: aim for low energy gamma rays ⇒ thicker sensors
- Low Power: limited by solar panels & payload
 ⇒ fewer/larger pixels and slower readout
- Low Mass: to avoid photon conversions in dead material
- High Position Precision: pixelated tracking

Sensor Features:

- Large sensitive volume: full depletion achieved by applying HV
- Low power consumption and low noise: charge collection and signal processing (Charge Sensitive Amplifier → Comparator for ToT) on each pixel

[Performance evaluation of the HV CMOS active pixel sensor

AstroPix for gamma-ray space telescopes, Nucl. Instrum. Meth.

A **1068**, 169762 (2024)]

Parameter	Goal		
\mathbf{E}_{Res}	< 10% (FWHM) at 122 keV		
Power Usage	$< 1.5 \mathrm{mW/cm^2}$		
Passive Material	<5% on the active area of Si		
Pixel Size	$500 \times 500 \ \mu \text{m}^2$		
Si Thickness	$500~\mu\mathrm{m}$		
Time Tag	$\sim 1 \mu s$		

AstroPix Development Timeline

2019

2020

2021

2023

ATLASPix

100 μ m thick wafer 40 x 130 μ m² pitch 0.3 x 1.6 cm² chip 150 mW/cm²

AstroPix_v1

AstroPix_v2

AstroPix_v3

175 x 175 μm² pitch

 $0.5 \times 0.5 \text{ cm}^2 \text{ chip}$

14.7 mW/cm²

1st prototype based on ATLASPix HV-CMOS MAPS.

-----720 μm thick wafer -----

 $250~x~250~\mu m^2~pitch$

1 x 1 cm² chip

3.4 mW/cm²

SEE radiation tolerance tested

500 x 500 μm² pitch

2 x 2 cm² chip 4.12 mW/cm² Voltage/Curre

Voltage/Current DACs included on-chip Beam Tests in '23, '24 Flight prototype

AstroPix_v3 Performance: Bench Tests

Noise Scans:

Goal: quantify fraction of pixels with a response sensitive to dynamic range and intrinsic noise rate lower than threshold.

- v3 dynamic range: 25-200 keV ⇒ comparator threshold values up to 200 mV above baseline
- < 0.5% of pixels with > 2 Hz noise rate (masked): low noise BIC/AMEGO-X requirements fulfilled

Radiation Source Test:

Energy resolution/calibration from 22 keV to 122 keV: Cd-109, Ba-133, Am-241, and Co-57

- v3 dynamic range: 25-200 keV (requirement for BIC/AMEGO-X: 25-700 keV)
- 44% of pixels meet the energy resolution requirement of 10% at 59.5 keV with a median FWHM of 6.2 keV (10.4%)
- 92.4% of pixels achieve the low-energy floor requirement of 25 keV sensitivity

[AstroPix: A Pixelated HVCMOS Sensor for Space-Based Gamma-Ray Measurement, [arXiv:2501.11698]]

AstroPix_v3 Performance: Beam Test

Single Layer:

- Data collected with a 120 GeV proton beam
- The hit map reveals the proton beam profile with 500 um position resolution.
- ToT histograms with MIP response for each pixel
- MIP sits well within dynamic range (25 200 keV) in AstroPix_v3.

First 120 GeV proton response: ~ 35 keV for

[Performance of the AstroPix Prototype Module for the BIC at the

 $ePIC\ Detector\ and\ in\ Space-Based\ Payloads,\ VERTEX25]]$

Double Layer:

- 120 GeV proton beam events from the first two layers, read in coincidence, showing the position of the hit pixel.
- The proof-of-concept demonstration of the integration of two daisy-chained AstroPix_v3 layers in a beam-like environment

[AstroPix: Low power high voltage CMOS active pixel sensors

for space and collider experiments, PIXEL24]] $\label{eq:prop} % \begin{subarray}{ll} \end{subarray} % \be$

AstroPix_v3: Configurations Under Tests

Test Setup

Single chip Quad-chips

Test Results

quad-chips

Bench test

- Noise scan (w.r.t thresholds)
 → Masking noisy pixels
- · Injection test
 - → ToT response vs injection voltages
- Radiation source test
 - → Calibration curve each pixel
 - → w. Sr-90: Validation of configuration

Beam test

- 120 GeV Proton beam @FNAL (June.2024)
 - → MIP response
 - → Depletion depth

lest results							
	Single chip	Quad chip	Three layer of Quad-chips	9-chip Module	Three layer of 9-chip Module		
Noise scan	V	V		V			
Injection test	✓	$\overline{\mathbf{V}}$		✓	On-going		
Source test	✓	$\overline{\mathbf{v}}$	✓	✓			
Beam test	(2024)						

Slide from Bobae Kim (ANL) presented @VERTEX25

[Performance of the AstroPix Prototype Module for the BIC at the ePIC Detector and in Space-Based Payloads, VERTEX25]]

A-STEP: the AstroPix Sounding rocked Technology dEmonstrator Payload

- Multi-stage sounding rocket launch from Wallops Flight Facility (Virginia, USA) at the end of March 2026
- 3 layers of Astropix_v3 QuadChips with data collected by the FPGA and sent to ground via the on-board computer
- It will be the "A step" between a single chip and a space telescope
- Current Status:
 - Validate capability to read data from all 3 QuadChips
 - Test Calibration procedure
 - Assembly of flight detectors

[A-STEP, the AstroPix Sounding rocked Technology

dEmonstrator Payload: Multi-detector performance,

ASAPP25]]

AstroPix_v4

Potentially the final design but in small size 1×1 cm²:

- Thickness 700 μ m, $V_{BD} \sim 400 \,\mathrm{V}$
- -16×16 pixel matrix
- Pixel pitch 500 μ m with pixel size 300 μ m

Features:

- Individual pixel readout with individual hit buffer
- Time stamp w/ 3.125 ns time resolution
- Increase Time-Over-Threshold (ToT) bits
- TuneDACs Pixel-by-pixel threshold tuning and pixel masking

Performance and Characterization are ongoing

[Evaluation of gamma-ray response of the AstroPix4 HV-CMOS active pixel sensor, [arXiv:2501.21618]]

Astropix_v5, Astropix_v6 and COMPAIR2

AstroPix_v5:

- $-2 \times 2 \text{ cm}^2 \text{ size}$
- same size but half the power of AstroPix_v3
- Improved dynamic energy range: up to 700 keV

AstroPix - future:

- Full-volume depletion

ComPair-2

- Compton-Pair telescope prototype
- High-altitude balloon hosted flight
- Prototype of AMEGO-X tower
- 10 tracker segment layers of AstroPix_v5 (1300cm² active area per segment).
- Instrument integration and gamma-ray beam test end of 2026

[ComPair-2: a next-generation medium-energy gamma-ray telescope prototype, Proc. SPIE Int.Soc.Opt.Eng. 13093, 130932L (2024)]]

Summary and Outlook

